Structure and Electron Mobility of ScN Films Grown on α-Al2O3(1102) Substrates
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Heterostructure and Electrical Properties
3.2. Effects of the Sc/N Supply Ratio
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alsaad, A.; Ahmad, A.; Alta’ani, H.; Alshyab, R. A first-principles-derived method for computing the piezoelectric coefficients of complex semiconductor Sc1−xGaxN alloys. Physica B 2008, 403, 4174–4181. [Google Scholar] [CrossRef]
- Zerroug, S.; Sahrauoui, F.A.; Bouarissa, N. Ab initio calculations of structural properties of ScxGa1−xN. J. Appl. Phys. 2008, 103, 063510. [Google Scholar] [CrossRef]
- Ranjan, V.; Bin-Omran, S.; Sichuga, D.; Nichols, R.S.; Bellaiche, L.; Alsaad, A. Properties of GaN/ScN and InN/ScN superlattices from first principles. Phys. Rev. B 2005, 72, 085315. [Google Scholar] [CrossRef]
- Fredj, A.B.; Oussaifi, Y.; Bouarissa, N.; Said, M. Electronic properties of zinc-blende ScxGa1−xN. Phys. Status Solidi B 2006, 243, 2780–2787. [Google Scholar] [CrossRef]
- Hall, J.L.; Moram, M.A.; Sanchez, A.; Novikof, S.V.; Kent, A.J.; Foxon, C.T.; Humphreys, C.J.; Campion, R.P. Growth of ScN epitaxial films by plasma-assisted molecular beam epitaxy. J. Cryst. Growth 2009, 311, 2054–2057. [Google Scholar] [CrossRef]
- Moram, M.A.; Zhang, Y.; Joyce, T.B.; Holec, D.; Chalker, P.R.; Mayrhofer, P.H.; Kappers, M.J.; Humphreys, C. Structural properties of wurtzite-like ScGaN films grown by NH3-molecular beam epitaxy. J. Appl. Phys. 2009, 106, 113533. [Google Scholar] [CrossRef]
- Moram, M.A.; Zhang, Y.; Kappers, M.J.; Barber, Z.H.; Humphreys, C.J. Dislocation reduction in gallium nitride films using scandium nitride interlayers. Appl. Phys. Lett. 2007, 91, 152101. [Google Scholar] [CrossRef]
- Höglund, C.; Bareño, J.; Birch, J.; Alling, B.; Czigány, Z.; Hultman, L. Cubic Sc1−xAlxN solid solution thin films deposited by reactive magnetron sputter epitaxy onto ScN(111). J. Appl. Phys. 2009, 105, 113517. [Google Scholar] [CrossRef]
- Perjeru, F.; Bai, X.; Ortiz-Libreros, M.I.; Higgins, R.; Kordesch, M.E. ScN/GaN heterojunctions: Fabrication and characterization. Appl. Surf. Sci. 2001, 175–176, 490–494. [Google Scholar] [CrossRef]
- Little, M.E.; Kordesch, M.E. Band-gap engineering in sputter-deposited ScxGa1−xN. Appl. Phys. Lett. 2001, 78, 2891–2892. [Google Scholar] [CrossRef]
- Dismukes, J.P.; Yim, W.M.; Ban, V.S. Epitaxial growth and properties of semiconducting ScN. J. Cryst. Growth 1972, 13/14, 365–370. [Google Scholar] [CrossRef]
- Febvrier, A.L.; Tureson, N.; Stilkerich, N.; Greczynski, G.; Eklund, P. Effect of impurities on morphology, growth mode, and thermoelectric properties of (111) and (001) epitaxial-like ScN films. J. Phys. D 2019, 52, 035302. [Google Scholar] [CrossRef]
- Ohgaki, T.; Watanabe, K.; Adachi, Y.; Sakaguchi, I.; Hishita, S.; Ohashi, N.; Haneda, H. Electrical properties of scandium nitride epitaxial films grown on (100) magnesium oxide substrates by molecular beam epitaxy. J. Appl. Phys. 2013, 114, 093704. [Google Scholar] [CrossRef]
- Al-Brithen, H.A.H.; Trifan, E.M.; Ingram, D.C.; Smith, A.R.; Gall, D. Phase stability, nitrogen vacancies, growth mode, and surface structure of ScN(001) under Sc-rich conditions. J. Cryst. Growth 2002, 242, 345–354. [Google Scholar] [CrossRef]
- Al-Brithen, H.; Smith, A.R. Molecular beam epitaxial growth of atomically smooth scandium nitride films. Appl. Phys. Lett. 2000, 77, 2485–2487. [Google Scholar] [CrossRef]
- Al-Brithen, H.A.; Smith, A.R.; Gall, D. Surface and bulk electronic structure of ScN(001) investigated by scanning tunneling microscopy/spectroscopy and optical absorption spectroscopy. Phys. Rev. B 2004, 70, 045303. [Google Scholar] [CrossRef]
- Gall, D.; Petrov, I.; Madsen, L.E.; Sundgren, J.E.; Greene, J.E. Microstructure and electronic properties of the refractory semiconductor ScN grown on MgO(001) by ultra-high-vacuum reactive magnetron sputter deposition. J. Vac. Sci. Technol. A 1998, 16, 2411–2417. [Google Scholar] [CrossRef]
- Smith, A.R.; Al-Brithen, H.A.H.; Ingram, D.C.; Gall, D. Molecular beam epitaxy control of the structural, optical, and electronic properties of ScN(001). J. Appl. Phys. 2001, 90, 1809–1816. [Google Scholar] [CrossRef]
- Burmistrova, P.V.; Maassen, J.; Favaloro, T.; Saha, B.; Salamat, S.; Koh, Y.R.; Lundstrom, M.S.; Shakouri, A.; Sands, T.D. Thermoelectric properties of epitaxial ScN films deposited by reactive magnetron sputtering onto MgO(001) substrates. J. Appl. Phys. 2013, 113, 153704. [Google Scholar] [CrossRef]
- Deng, R.; Ozsdolay, B.D.; Zheng, P.Y.; Khare, S.V.; Gall, D. Optical and transport measurement and first-principles determination of the ScN band gap. Phys. Rev. B 2015, 91, 045104. [Google Scholar] [CrossRef]
- Gall, D.; Petrov, I.; Hellgren, N.; Hultman, L.; Sundgren, J.E.; Greene, J.E. Growth of poly- and single-crystal ScN on MgO(001): Role of low-energy N2+ irradiation in determining texture, microstructure evolution, and mechanical properties. J. Appl. Phys. 1998, 84, 6034–6041. [Google Scholar] [CrossRef]
- Ohgaki, T.; Sakaguchi, I.; Ohashi, N.; Haneda, H. Heteroepitaxial growth and electric properties of (110)-oriented scandium nitride films. J. Cryst. Growth 2017, 476, 12–16. [Google Scholar] [CrossRef]
- Kerdsongpanya, S.; Nong, N.V.; Pryds, N.; Žukauskaite, A.; Jensen, J.; Birch, J.; Lu, J.; Hultman, L.; Wingqvist, G.; Eklund, P. Anomalously high thermoelectric power factor in epitaxial ScN thin films. Appl. Phys. Lett. 2011, 99, 232113. [Google Scholar] [CrossRef] [Green Version]
- Oshima, Y.; Villora, E.G.; Shimamura, K. Hydride vapor phase epitaxy and characterization of high-quality ScN epilayers. J. Appl. Phys. 2014, 115, 153508. [Google Scholar] [CrossRef]
- Gregoire, G.M.; Kirby, S.D.; Scopelianos, G.E.; Lee, F.H.; van Dover, R.B. High mobility single crystalline ScN and single-orientation epitaxial YN on sapphire via magnetron sputtering. J. Appl. Phys. 2008, 104, 074913. [Google Scholar] [CrossRef]
- Ohgaki, T.; Ohashi, N.; Kakemoto, H.; Wada, S.; Adachi, Y.; Haneda, H.; Tsurumi, T. Growth condition dependence of morphology and electric properties of ZnO films on sapphire substrates prepared by molecular beam epitaxy. J. Appl. Phys. 2003, 93, 1961–1965. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohgaki, T.; Sakaguchi, I.; Ohashi, N. Structure and Electron Mobility of ScN Films Grown on α-Al2O3(1102) Substrates. Materials 2018, 11, 2449. https://doi.org/10.3390/ma11122449
Ohgaki T, Sakaguchi I, Ohashi N. Structure and Electron Mobility of ScN Films Grown on α-Al2O3(1102) Substrates. Materials. 2018; 11(12):2449. https://doi.org/10.3390/ma11122449
Chicago/Turabian StyleOhgaki, Takeshi, Isao Sakaguchi, and Naoki Ohashi. 2018. "Structure and Electron Mobility of ScN Films Grown on α-Al2O3(1102) Substrates" Materials 11, no. 12: 2449. https://doi.org/10.3390/ma11122449