Highly Integrated All-Fiber FP/FBG Sensor for Accurate Measurement of Strain under High Temperature
Abstract
1. Introduction
2. Operating Principle
3. Fabrication of the Sensor
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tian, J.J.; Jiao, Y.Z.; Fu, Q.; Ji, S.B.; Li, Z.G.; Quan, M.R.; Yao, Y. A Fabry–Perot Interferometer Strain Sensor Based on Concave-Core Photonic Crystal Fiber. J. Lightwave Technol. 2018, 36, 1952–1958. [Google Scholar] [CrossRef]
- Bremer, K.; Lewis, E.; Moss, B.; Leen, G.; Lochmann, S.; Mueller, I. Fabrication of a high temperature-resistance optical fibre micro pressure sensor. In Proceedings of the 2009 6th International Multi-Conference on Systems, Signals and Devices, Djerba, Tunisia, 23–26 March 2009. [Google Scholar]
- Ran, Z.L.; Li, C.; Zuo, H.M.; Chen, Y. Laser-machined cascaded micro cavities for simultaneous measurement of dual parameters under high temperature. IEEE Sens. J. 2013, 13, 1988–1991. [Google Scholar] [CrossRef]
- Yang, H.Z.; Qiao, X.G.; Wang, Y.P.; Ali, M.M.; Lai, M.H.; Lim, K.S.; Ahmad, H. In-fiber gratings for simultaneous monitoring temperature and strain in ultrahigh temperature. IEEE Photonics Technol. Lett. 2015, 27, 58–61. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, P.; Liao, H.; Ni, W.J.; Fu, X.; Jiang, X.Y.; Liu, D.M.; Zhang, J.S. Simultaneous measurement of axial strain and temperature based on a Z-shape fiber structure. IEEE Photonics J. 2017, 9, 1–8. [Google Scholar] [CrossRef]
- Singh, H.; Sirkis, J.S. Simultaneously measuring temperature and strain using optical fiber microcavities. J. Lightwave Technol. 1997, 15, 647–653. [Google Scholar] [CrossRef]
- Cavaleiro, P.M.; Arajo, F.M.; Ferreira, L.A.; Santos, J.L.; Farahi, F. Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boron-codoped germanosilicate fibers. IEEE Photonics Technol. Lett. 1999, 11, 1635–1637. [Google Scholar] [CrossRef]
- Zhou, D.P.; Wei, L.; Liu, W.K.; Liu, Y.; Lit, J.W.Y. Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers. Appl. Opt. 2008, 47, 1668–1672. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, H.Z.; Qiao, X.G.; Hu, M. l.; Feng, Z.Y.; Wang, R.H.; Rong, Q.Z.; Gunawardena, D.S.; Lim, K.-S.; Ahmad, H. Strain measurement at high temperature environment based on Fabry-Perot interferometer cascaded fiber regeneration grating. Sens. Actuators A Phys. 2016, 248, 199–205. [Google Scholar] [CrossRef]
- Rao, Y.J.; Ran, Z.L.; Liao, X.; Deng, H.Y. Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain. Opt. Express 2007, 15, 14936–14941. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.H.; Liu, T.G.; Jiang, J.F.; Liu, K.; Wang, S.; Yin, J.D.; He, P.; Yan, J.L. Simultaneous Measurement of Temperature and Strain Using Spheroidal-Cavity-Overlapped FBG. IEEE Photonics J. 2015, 7, 6803406. [Google Scholar] [CrossRef]
- Liu, Q.; Ran, Z.L.; Rao, Y.J.; Luo, S.C.; Yang, H.Q.; Huang, Y. Highly Integrated FP/FBG Sensor for Simultaneous Measurement of High Temperature and Strain. IEEE Photonics Technol. Lett. 2014, 26, 1715–1717. [Google Scholar] [CrossRef]
- Wang, Y.X.; Bao, H.H.; Ran, Z.L.; Huang, J.W.; Zhuang, S. Integrated FP/RFBG sensor with a micro-channel for dual-parameter measurement under high temperature. Appl. Opt. 2017, 56, 4250–4254. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.J.; Qiao, X.G.; Rong, Q.Z.; Hu, N.F.; Yang, H.Z.; Feng, Z.Y.; Hu, M.L. Sensing characteristics for a fiber bragg grating inscribed over a fiber core and cladding. IEEE Photonics Technol. Lett. 2015, 27, 709–712. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Yang, D.X.; Yuan, Y.; Xu, J.; Li, D.; Zhao, J.L. Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry—Perot interferometer. Appl. Opt. 2016, 55, 6341–6345. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.T.; Qiao, X.G.; Rong, Q.Z.; Bao, W.J. Orientation-dependent displacement sensor using an inner cladding fiber bragg grating. Sensors 2016, 16, 1473. [Google Scholar] [CrossRef] [PubMed]
- Smelser, C.W.; Mihailov, S.J.; Grobnic, D. Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask. Opt. Express 2005, 13, 5377–5386. [Google Scholar] [CrossRef] [PubMed]
- Poeggel, S.; Duraibabu, D.; Lacraz, A.; Kalli, K.; Tosi, D.; Leen, G.; Lewis, E. Femtosecond-Laser-Based Inscription Technique for Post-Fiber-Bragg Grating Inscription in an Extrinsic Fabry-Perot Interferometer Pressure Sensor. IEEE Sens. J. 2016, 16, 3396–3402. [Google Scholar] [CrossRef]
- Ali, M.M.; Islam, M.R.; Lim, K.S.; Gunawardena, D.S.; Yang, H.Z.; Ahmad, H. PCF-Cavity FBG Fabry-Perot Resonator for Simultaneous Measurement of Pressure and Temperature. IEEE Sens. J. 2015, 15, 6921–6925. [Google Scholar] [CrossRef]
Temperature(°C) | Strain Sensitivity (pm/µε) | |
---|---|---|
FP | FBG | |
27 | 5 | 1.86 |
100 | 5 | 1.77 |
200 | 5.32 | 1.88 |
300 | 5.14 | 1.62 |
400 | 5 | 1.63 |
500 | 5.34 | 1.71 |
Sensor Structure | Grating Type | Strain/Pressure Sensitivity of the Interferometer | Reference |
---|---|---|---|
FP cascaded RFBG | RFBG | 1.23 pm/µε (at 19 °C) | [9] |
FBG cascaded a capillary-based FP | Inscribed by Femtosecond laser | 1.74 pm/µε (at 23 °C) | [15] |
Air cavity FP overlapped on RFBG | RFBG | 3.3 pm/µε (at 50 °C) | [13] |
Spheroidal-Cavity-Overlapped FBG | Inscribed by UV laser | 3.76 pm/µε (at 25 °C) | [11] |
PCF 1-Cavity FBG FP Resonator | Inscribed by UV laser | ~10.1 pm/Mpa (at room temperature) | [19] |
Air cavity FP cascaded FBG | Inscribed by Femtosecond laser | 5 pm/µε, −63.2 pm/Mpa (at 27 °C) | In this work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; He, X.; Ran, Z.; Xie, Z.; Rao, Y.; Qiao, X.; He, Z.; He, P. Highly Integrated All-Fiber FP/FBG Sensor for Accurate Measurement of Strain under High Temperature. Materials 2018, 11, 1867. https://doi.org/10.3390/ma11101867
Yang T, He X, Ran Z, Xie Z, Rao Y, Qiao X, He Z, He P. Highly Integrated All-Fiber FP/FBG Sensor for Accurate Measurement of Strain under High Temperature. Materials. 2018; 11(10):1867. https://doi.org/10.3390/ma11101867
Chicago/Turabian StyleYang, Tingting, Xiu He, Zengling Ran, Zhendong Xie, Yunjiang Rao, Xueguang Qiao, Zhengxi He, and Peng He. 2018. "Highly Integrated All-Fiber FP/FBG Sensor for Accurate Measurement of Strain under High Temperature" Materials 11, no. 10: 1867. https://doi.org/10.3390/ma11101867
APA StyleYang, T., He, X., Ran, Z., Xie, Z., Rao, Y., Qiao, X., He, Z., & He, P. (2018). Highly Integrated All-Fiber FP/FBG Sensor for Accurate Measurement of Strain under High Temperature. Materials, 11(10), 1867. https://doi.org/10.3390/ma11101867