# Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Data

**Figure 4.**Allowed variations of the asymptotic wind velocity inside a bin with the steady wind flow conditions.

## 3. Simulation Model

**Figure 5.**The sign convention of the normal and tangential forces. The counter-clockwise direction of the blade azimuth angle θ is defined as positive.

#### 3.1. Vortex Model of the Turbine

**Figure 6.**Flow chart of the vortex model combined with the dynamic stall (DS) model. ${N}_{step}$ is the current time step, and ${N}_{step,max}$ is the maximum number of time steps. ${N}_{step,max}\phantom{\rule{3.33333pt}{0ex}}=\phantom{\rule{3.33333pt}{0ex}}12,000$, corresponding to 120 time steps per each of 100 revolutions.

#### 3.2. Dynamic Stall Modeling

**Figure 7.**Normal force coefficient for the pitching NACA0021 airfoil, $\alpha =12+10sin\left(\right)open="("\; close=")">\omega t$, $k=0.06$, $M=0.1$, $c=0.55\phantom{\rule{0.166667em}{0ex}}\mathrm{m}$, where k, M and c are the reduced frequency, the Mach number and the chord length correspondingly.

#### Modification Due to Vortex Shedding

**Figure 8.**Dynamic vortex shedding for a straight-bladed vertical axis turbine operating in a towing tank at the tip speed ratio (TSR) of 2.14, obtained from [32]. a, ${a}^{\prime}$, b and c denote vortices.

## 4. Results and Discussion

**Figure 9.**The normal force at $\lambda =1.84$, $\Omega =40.29\phantom{\rule{0.166667em}{0ex}}\mathrm{rpm}$. The air density and the kinematic viscosity are $\rho =1.25\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}/{\mathrm{m}}^{3}$ and $\nu =1.42\xb7{10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}/\mathrm{s}$.

**Figure 10.**The normal force at $\lambda =2.26$, $\Omega =45.19\phantom{\rule{0.166667em}{0ex}}\mathrm{rpm}$. The air density and the kinematic viscosity are $\rho =1.25\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}/{\mathrm{m}}^{3}$ and $\nu =1.42\xb7{10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}/\mathrm{s}$.

**Figure 11.**The normal force at $\lambda =2.85$, $\Omega =50.80\phantom{\rule{0.166667em}{0ex}}\mathrm{rpm}$. The air density and the kinematic viscosity are $\rho =1.27\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}/{\mathrm{m}}^{3}$ and $\nu =1.39\xb7{10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}/\mathrm{s}$.

**Figure 12.**The normal forces at similar λ and different Ω. The air densities and the kinematic viscosities are ${\rho}_{1}=1.27\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}/{\mathrm{m}}^{3}$, ${\rho}_{2}=1.24\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}/{\mathrm{m}}^{3}$ and ${\nu}_{1}=1.39\xb7{10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}/\mathrm{s}$, ${\nu}_{2}=1.45\xb7{10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}/\mathrm{s}$.

**Figure 13.**The normal forces at the similar λ and different Ω. The air densities and the kinematic viscosities are ${\rho}_{1}=1.28\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}/{\mathrm{m}}^{3}$, ${\rho}_{2}=1.24\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}/{\mathrm{m}}^{3}$ and ${\nu}_{1}=1.39\xb7{10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}/\mathrm{s}$, ${\nu}_{2}=1.45\xb7{10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}/\mathrm{s}$.

**Figure 14.**The normal force at $\lambda =3.74$, $\Omega =65.07\phantom{\rule{0.166667em}{0ex}}\mathrm{rpm}$. The air density and the kinematic viscosity are $\rho =1.24\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}/{\mathrm{m}}^{3}$ and $\nu =1.44\xb7{10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}/\mathrm{s}$.

**Figure 15.**The normal forces at the similar λ and different Ω. The air densities and the kinematic viscosities are ${\rho}_{1}=1.28\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}/{\mathrm{m}}^{3}$, ${\rho}_{2}=1.24\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}/{\mathrm{m}}^{3}$ and ${\nu}_{1}=1.39\xb7{10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}/\mathrm{s}$, ${\nu}_{2}=1.43\xb7{10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}/\mathrm{s}$.

**Figure 16.**The normal forces for two different sets of data with almost identical λ and Ω. The air densities and the kinematic viscosities are ${\rho}_{1}=1.24\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}/{\mathrm{m}}^{3}$, ${\rho}_{2}=1.24\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}/{\mathrm{m}}^{3}$ and ${\nu}_{1}=1.44\xb7{10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}/\mathrm{s}$, ${\nu}_{2}=1.45\xb7{10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}/\mathrm{s}$.

**Figure 17.**The normal force at $\lambda =4.57$, $\Omega =65.35\phantom{\rule{0.166667em}{0ex}}\mathrm{rpm}$. The air density and the kinematic viscosity are $\rho =1.25\phantom{\rule{0.166667em}{0ex}}\mathrm{kg}/{\mathrm{m}}^{3}$ and $\nu =1.43\xb7{10}^{-5}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{2}/\mathrm{s}$.

#### General Discussion

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Li, C.; Zhu, S.; Xu, Y.L.; Xiao, Y. 2.5 D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow. Renew. Energy
**2013**, 51, 317–330. [Google Scholar] [CrossRef] - Paquette, J.; Barone, M. Innovative offshore vertical-axis wind turbine rotor project. Available online: http://wiki-cleantech.com/wind-energy/innovative-offshore-vertical-axis-wind-turbine-rotor-project (accessed on 1 October 2015).
- Sutherland, H.J.; Berg, D.E.; Ashwill, T.D. A Retrospective of VAWT Technology; Technical Report SAND2012-0304; Sandia National Laboratories: Albuquerque, NM, USA, 2012.
- Blusseau, P.; Patel, M.H. Gyroscopic effects on a large vertical axis wind turbine mounted on a floating structure. Renew. Energy
**2012**, 46, 31–42. [Google Scholar] [CrossRef] - Goude, A. Fluid Mechanics of Vertical Axis Turbines. Simulations and Model Development. Ph.D. Thesis, Department of Engineering Sciences, Electricity, Uppsala University, Uppsala, Sweden, 14 December 2012. [Google Scholar]
- Islam, M.; Ting, D.K.; Fartaj, A. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renew. Sustain. Energy Rev.
**2008**, 12, 1087–1109. [Google Scholar] [CrossRef] - Paraschivoiu, I. Wind Turbine Design—With Emphasis on Darrieus Concept; Presses Internationales Polytechnique: Montreal, QC, Canada, 2002. [Google Scholar]
- Johnston, S.F. Proceedings of the Vertical Axis Wind Turbine (VAWT) Design Technology Seminar for Industry; Technical Report SAND80-0984; Sandia National Laboratories: Albuquerque, NM, USA, 1982.
- Akins, R.E. Measurements of Surface Pressures on an Operating Vertical-Axis Wind Turbine; Technical Report SAND89-7051; Sandia National Laboratories: Albuquerque, NM, USA, 1989.
- Oler, J.; Strickland, J.; Im, B.; Graham, G. Dynamic Stall Regulation of the Darrieus Turbine; Sandia National Laboratories: Albuquerque, NM, USA, 1983.
- Strickland, J.H.; Webster, B.T.; Nguyen, T. A vortex model of the Darrieus turbine: An analytical and experimental study. J. Fluids Eng.
**1979**, 101, 500–505. [Google Scholar] [CrossRef] - Ashuri, T.; van Bussel, G.; Mieras, S. Development and validation of a computational model for design analysis of a novel marine turbine. Wind Energy
**2013**, 16, 77–90. [Google Scholar] [CrossRef] - Shires, A. Development and Evaluation of an Aerodynamic Model for a Novel Vertical Axis Wind Turbine Concept. Energies
**2013**, 6, 2501–2520. [Google Scholar] [CrossRef] [Green Version] - Keinan, M. A Modified Streamtube Model for Vertical Axis Wind Turbines. Wind Eng.
**2012**, 36, 145–180. [Google Scholar] [CrossRef] - Wang, K.; Hansen, M.O.L.; Moan, T. Model improvements for evaluating the effect of tower tilting on the aerodynamics of a vertical axis wind turbine. Wind Energy
**2015**, 18, 91–110. [Google Scholar] [CrossRef] - Dyachuk, E.; Goude, A. Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model. Energies
**2015**, 8, 1353–1372. [Google Scholar] [CrossRef] - Rossander, M.; Dyachuk, E.; Apelfröjd, S.; Trolin, K.; Goude, A.; Bernhoff, H.; Eriksson, S. Evaluation of a blade force measurement system for a vertical axis wind turbine using load cells. Energies
**2015**, 8, 5973–5996. [Google Scholar] [CrossRef] - Dyachuk, E.; Rossander, M.; Goude, A.; Bernhoff, H. Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine. Energies
**2015**, 8, 8482–8496. [Google Scholar] [CrossRef] - Kjellin, J.; Bülow, F.; Eriksson, S.; Deglaire, P.; Leijon, M.; Bernhoff, H. Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine. Renew. Energy
**2011**, 36, 3050–3053. [Google Scholar] [CrossRef] - Co, C. Flow of Fluids Through Valves, Fittings, and Pipe; Number 410; Crane Company: Joliet, IL, USA, 1988. [Google Scholar]
- Beale, J.T.; Majda, A. High order accurate vortex methods with explicit velocity kernels. J. Comput. Phys.
**1985**, 58, 188–208. [Google Scholar] [CrossRef] - Greengard, L.; Rokhlin, V. A Fast Algorithm for Particle Simulations. J. Comput. Phys.
**1987**, 73, 325–348. [Google Scholar] [CrossRef] - Goude, A.; Engblom, S. Adaptive fast multipole methods on the GPU. J. Supercomput.
**2013**, 63, 897–918. [Google Scholar] [CrossRef] - Ramachandran, P.; Rajan, S.C.; Ramakrishna, M. A fast, two-dimensional panel method. SIAM J. Sci. Comput.
**2003**, 24, 1864–1878. [Google Scholar] [CrossRef] - Dyachuk, E.; Goude, A.; Berhnoff, H. Simulating pitching blade with free vortex model coupled with dynamic stall model for conditions of straight bladed vertical axis turbines. J. Sol. Energy Eng.
**2015**, 137, 041008. [Google Scholar] [CrossRef] - Goude, A.; Ågren, O. Simulations of a vertical axis turbine in a channel. Renew. Energy
**2014**, 63, 477–485. [Google Scholar] [CrossRef] - Leishman, J.G.; Beddoes, T.S. A generalised model for airfoil unsteady behaviour and dynamic stall using the indicial method. In Proceedings of the 42nd Annual Forum of the American Helicopter Society, Washington, DC, USA, 2–5 June 1986; Westland Helicopters Ltd.: Yeovil, UK, 1986; pp. 243–265. [Google Scholar]
- Leishman, J.G.; Beddoes, T.S. A semi-empirical model for dynamic stall. J. Am. Helicopter Soc.
**1989**, 34, 3–17. [Google Scholar] - Dyachuk, E.; Goude, A.; Bernhoff, H. Dynamic Stall Modeling for the Conditions of Vertical Axis Wind Turbines. AIAA J.
**2014**, 52, 72–81. [Google Scholar] [CrossRef] - Sheng, W.; Galbraith, R.A.M.; Coton, F.N. A Modified Dynamic Stall Model for Low Mach Numbers. J. Sol. Energy Eng.
**2008**, 130, 1–10. [Google Scholar] [CrossRef] - Sheldahl, R.E.; Klimas, P.C. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines; Technical Report SAND80-2114; Sandia National Laboratories: Albuquerque, NM, USA, 1981.
- Brochier, G.; Fraunié, P.; Béguier, C.; Paraschivoiu, I. Water Channel Experiments of Dynamic Stall on Darrieus Wind Turbine Blades. AIAA J. Propul. Power
**1986**, 2, 445–449. [Google Scholar]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dyachuk, E.; Goude, A.
Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine. *Energies* **2015**, *8*, 11800-11820.
https://doi.org/10.3390/en81011800

**AMA Style**

Dyachuk E, Goude A.
Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine. *Energies*. 2015; 8(10):11800-11820.
https://doi.org/10.3390/en81011800

**Chicago/Turabian Style**

Dyachuk, Eduard, and Anders Goude.
2015. "Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine" *Energies* 8, no. 10: 11800-11820.
https://doi.org/10.3390/en81011800