Model Development and Implementation of Techno-Economic Assessment of Hydrogen Logistics Value Chain: A Case Study of Selected Regions in the Czech Republic
Abstract
:1. Introduction
2. Literature Review
2.1. Pipelines
2.2. Road Transport
2.2.1. Gaseous Hydrogen Transport
2.2.2. Liquid Hydrogen Transport
2.2.3. Hydrogen Transport with Carriers
2.3. Rail Transport
2.4. Technology Summary
2.5. Techno-Economic Assessment
3. Materials and Methods
- A comprehensive database of transport systems for road and rail transport;
- Inclusion of all key components within the logistics chain;
- Infrastructure network based on real-world data;
- Determination of theoretical energy/fuel consumption of the transport system;
- Detailed assessment of both technical and economic performance;
- Evaluation of relevant emissions (CO2, NOx, solid particles, etc.).
3.1. Database of Transport Systems
3.2. Infrastructure Network
3.3. Technical Evaluation
- Weight calculation;
- Transport route determination;
- Fuel/energy consumption assessment;
- Total time calculation;
- Emission analysis.
3.3.1. Technical Evaluation of Road Transport
- By density (bulk weight): The model calculates weight based on vehicle or trailer volume.
- By fixed weight per cycle: The model verifies compliance with the transport system load limits or calculates a lower loaded weight if necessary.
- EURO VI emission standard trucks: −5 L/100 km for a load factor of 0% and +5 L/100 km for a load factor of 100%;
- Passenger cars and vans: −1.5 L/100 km for a load factor of 0% and +1.5 L/100 km for a load factor of 100%.
3.3.2. Technical Evaluation of Rail Transport
3.4. Environmental Evaluation
3.5. Economic Evaluation
3.6. Transshipment
4. Case Study
4.1. Selected Study Area
4.2. Strategies in Hydrogen Transportation
4.3. Hydrogen Logistic Chain
4.4. Techno-Economic Assessment
4.4.1. Option 1—Road Transport
4.4.2. Option 2—Multimodal Transport
5. Discussion
5.1. Comparison Option 1 vs. Option 2
5.2. Contributions, Limitations, and Future Works
5.2.1. Contributions
- Pre-calculations using the TEA model (e.g., calculating costs and travel time for all routes) as inputs for an optimization tool;
- Optimization processing (e.g., determining optimal transfer station locations and supply routes);
- Refining the optimization results with the use of the TEA model for more precise cost and time estimations.
5.2.2. Limitations and Future Works
6. Conclusions
- Multimodal transport significantly reduces transportation costs compared to road transport. The highest transportation costs are reduced by 52%, and the average transportation costs are reduced by 41%.
- Integrating real infrastructure into the model leads to variations in transportation costs for similar distances due to differences in variable costs (mainly tolls).
- A comprehensive evaluation of all key components of the logistics chain is essential for an accurate TEA.
- Acquiring real and verified data is crucial but remains one of the most challenging aspects.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACTS | Abroll container transport system |
AETR | Accord européen sûr les transports routiers (European Road Transport Agreement) |
Eh | Engine hour |
EU | European Union |
EUR | Euro (currency) |
ISO | International Organization for Standardization |
LCA | Life cycle assessment |
LOHC | Liquid Organic Hydrogen Carriers |
MEGC | Multi-element Gas Container |
TEA | Techno-economic assessment |
Appendix A
Parameter | Value | Unit |
---|---|---|
AdBlue consumption | 2 | L/100 km |
AdBlue price | 1.4 | EUR/L |
Administrative overhead costs | 7500 | EUR/year |
Allowed combinations of transportation system elements | [‘0000’, ‘1000’, ‘2000’, ‘3000’, ‘0500’, ‘1500’, ‘2100’, ‘2200’, ‘2300’, ‘2210’, ‘3010’, ‘3001’, ‘3400’, ‘3410’, ‘3401’] | |
Average speeds | pd.DataFrame ({‘tridaSilnice’: [‘dalnice’, ‘silniceItridy’, ‘silniceIItridy’, ‘silniceIIItridy’, ‘mesto’, ‘ostani’], ‘kat_00’: [125, 80, 80, 60, 35, 20], ‘kat_01-02’: [115, 80, 80, 60, 35, 15], ‘kat_03-04’: [80, 65, 60, 30, 30, 10]}) | km/h |
Container—definition (name) | Hexagon Purus Type 4 H2 380 bar (1029 kg H2) 40 ft | |
Container—empty weight | 18,971 | kg |
Container—length | 12,116 | mm |
Container—lifespan | 30 | year |
Container—price | 220,000 | EUR |
Container—regular maintenance | 2000 | EUR/year |
Container—volume | 39.9 | m3 |
Delay on the journey | 10 | % |
Destination point | variable | |
Diesel fuel price | 1.6 | EUR/L |
Driver wage costs | 2000 | EUR/month |
Emission class fee | 0 | EUR/year |
Hydrogen filling/emptying time | 10 | kg/min |
Interest rate for the loan | 7 | % |
Interest rate for own resources | 10 | % |
Loan maturity | 5 | year |
Motor oil price | 8 | EUR/L |
Motor vehicle—ad hoc maintenance expenses | 2000 | EUR/year |
Motor vehicle—average fuel consumption (load factor 50%) | 23 | L/100 km |
Motor vehicle—category | 2 | |
Motor vehicle—definition (name) | Volvo FH 16 4x2 | |
Motor vehicle—emission category | N3 | |
Motor vehicle—emission class | EURO VI | |
Motor vehicle—empty weight | 7130 | kg |
Motor vehicle—insurance | 1000 | EUR/year |
Motor vehicle—maximum load | 18,000 | kg |
Motor vehicle—maximum permissible weight | [{‘pocetNaprav’: 2, ‘limitHmotnost’: 18}, {‘pocetNaprav’: 3, ‘limitHmotnost’: 26}, {‘pocetNaprav’: 4, ‘limitHmotnost’: 32}] | t |
Motor vehicle—MOT + emissions costs | 170 | EUR/year |
Motor vehicle—number of axles | 2 | |
Motor vehicle—number of tires | 6 | |
Motor vehicle—price | 140,000 | EUR |
Motor vehicle—price of tires | 640 | EUR |
Motor vehicle—regular maintenance | 6000 | EUR/year |
Motor vehicle—tire type | 315/70 R22.5 | |
Motor vehicle (rigid chassis)—lifespan | 6 | year |
Motor vehicle (semi-trailer)—lifespan | 5 | year |
Multimodal system type | ISO container | |
Number of containers per transport system | 1 | |
Number of shifts per day (2 drivers) | 2 | |
Operating overhead costs | 7500 | EUR/year |
Own resources at the beginning | 160,000 | EUR |
Project length | 10 | year |
Required payback | 5 | year |
Road tax for trailers with a maximum permissible weight of over 12 t | 144 | EUR |
Starting point | variable | |
Tires—lifespan | 120,000 | km |
Trailer—ad hoc maintenance expenses | 800 | EUR/year |
Trailer—category | 1 | |
Trailer—definition (name) | Koegel Port 45 Triplex container trailer | |
Trailer—empty weight | 4480 | kg |
Trailer—height | 1100 | mm |
Trailer—insurance | 800 | EUR/year |
Trailer—length | 12,200 | mm |
Trailer—lifespan | 10 | year |
Trailer—max axle load | 9000 | kg |
Trailer—maximum load | 39,000 | kg |
Trailer—maximum permissible weight | [{‘pocetNaprav’: 2, ‘limitHmotnost’: 18}, {‘pocetNaprav’: 3, ‘limitHmotnost’: 24}, {‘pocetNaprav’: 4, ‘limitHmotnost’: 32}] | t |
Trailer—MOT + emissions costs | 59.2 | EUR/year |
Trailer—number of axles | 3 | |
Trailer—number of tires | 6 | |
Trailer—price | 36,000 | EUR |
Trailer—price of tires | 560 | EUR |
Trailer—regular maintenance | 1000 | EUR/year |
Trailer—tire type | 385/65 R22.5 | |
Trailer—volume | 39.9 | m3 |
Transport system—maximum permissible weight | 48 | t |
Weight per container | 1029 | kg |
Working days of the week | 7 | |
Working shift length | 9 | h |
Working weeks of the year | 52 | |
Year-on-year increase in expenses | 3 | % |
Year-on-year increase in investments | 1 | % |
Year-on-year revenue growth | 3.5 | % |
Year-on-year wage increase | 4.5 | % |
Parameter | Value | Unit |
---|---|---|
Administrative overhead costs | 6000 | EUR/year |
Allocated code for combined transport | not specified | |
Annual theoretical route composition—standard | 90 | % |
Braking acceleration | 0.2 | m/s |
Container—definition (name) | Hexagon Purus Type 4 H2 380 bar (1029 kg H2) 40 ft | |
Container—empty weight | 18,971 | kg |
Container—general repair | 15 | year |
Container—general repair price | 20,000 | EUR |
Container—length | 12,116 | mm |
Container—lifespan | 30 | year |
Container—price | 220,000 | EUR |
Container—volume | 39.9 | m3 |
Container loading time | 3 | min |
Container unloading time | 3 | min |
Crew at the station costs | 44,000 | EUR/year |
Crew salary | 22,000 | EUR/year |
Delay in loading | 15 | min |
Delay in unloading | 15 | min |
Delay coefficient—track occupancy category 100% | 0.3 | |
Delay coefficient—track occupancy category 38% | 0 | |
Delay coefficient—track occupancy category 67% | 0.05 | |
Delay coefficient—track occupancy category 77% | 0.1 | |
Delay coefficient—track occupancy category 84% | 0.15 | |
Delay coefficient—track occupancy category 92% | 0.22 | |
Destination point | variable | |
Diesel fuel price | 1.6 | EUR/L |
Dispatching costs | 120,000 | EUR/year |
Emission allowance price | 67.33 | EUR/t CO2 |
Interest rate for the loan | 7 | % |
Interest rate for own resources | 10 | % |
The iterative step of calculating train driving dynamics | 0.1 | km |
Loan maturity | 10 | year |
Locomotive—continuous traction force | 250 | kN |
Locomotive—continuous traction power on the AC 15 kV system | 6400 | kW |
Locomotive—continuous traction power on the AC 25 kV system | 6400 | kW |
Locomotive—continuous traction power on the DC 1.5 kV system | 3500 | kW |
Locomotive—continuous traction power on the DC 3 kV system | 6000 | kW |
Locomotive—definition (name) | Siemens Vectron MS | |
Locomotive—efficiency AC system | 0.85 | % |
Locomotive—efficiency DC system | 0.8 | % |
Locomotive—general repair | 15 | year |
Locomotive—general repair price | 1,640,000 | EUR |
Locomotive—length | 18,980 | mm |
Locomotive—lifespan | 30 | year |
Locomotive—maximum force of the electrodynamic brake | 240 | kN |
Locomotive—maximum speed | 160 | km/h |
Locomotive—maximum traction force | 300 | kN |
Locomotive—maximum traction power on the AC 15 kV system | 6400 | kW |
Locomotive—maximum traction power on the AC 25 kV system | 6400 | kW |
Locomotive—maximum traction power on the DC 1.5 kV system | 3500 | kW |
Locomotive—maximum traction power on the DC 3 kV system | 6000 | kW |
Locomotive—minimum track load class | C2 | |
Locomotive—price | 4,080,000 | EUR |
Locomotive—regular maintenance | 140,000 | EUR/year |
Locomotive—traction type | electrified | |
Locomotive—weight | 87 | t |
Locomotive—wheel arrangement | Bo’ Bo’ | |
Locomotive preparation time | 20 | min |
Locomotive shutdown time | 20 | min |
Max train speed | 100 | km/h |
Multimodal system type | ISO container | |
Percentage of canceled transport trips per year | 5 | % |
Number of crew per system | 4 | |
Number of locomotives—pull | 1 | |
Number of locomotives—push | 0 | |
Number of shifts per day | 2 | |
Number of train drivers per system | 4 | |
Number of wagons | 16 | |
Operating overhead costs | 6000 | EUR/year |
Own resources at the beginning | 800,000 | EUR |
Product factor | P2—nákladní doprava nespecifická | |
Project length | 30 | year |
Renewable energy fee | 19.8 | EUR/MWh |
Required payback | 10 | year |
Sggrs wagon load limits for each track load class | [{“A1”, 67.1; “B1”, 79.1; “B2”, 79.1; “C2”, 94.1; “C3”, 94.1; “C4”, 94.1; “D2”, 106.1; “D3”, 106.1; “D4”, 106.1}] | |
Správa železnic—basic price per unit of transport performance (coefficient ZI) | 0.0029224 | EUR/tkm |
Správa železnic—basic price per unit of transport performance (coefficient ZRP) | 0 | EUR/tkm |
Správa železnic—the coefficient of locomotive is equipped with ETCS | 0.9 | |
Správa železnic—product factor coefficient P1 | 1 | |
Správa železnic—product factor coefficient P2 | 0.85 | |
Správa železnic—product factor coefficient P3 | 0.2 | |
Správa železnic—product factor coefficient P4 | 0.55 | |
Správa železnic—product factor coefficient P5 | 2 | |
Starting point | variable | |
Time of direction change at the dead-end track | 15 | min |
Time of connection during manipulation | 8 | min |
Time of stop on the track during the drive | 10 | min |
Time of the technical check of the train after driving | 10 | min |
Time of the technical check of the train before driving | 60 | min |
Track load class | [{1, “A1”, 16; 2, “B1”, 18; 3, “B2”, 18; 4, “C2”, 20; 5, “C3”, 20; 6, “C4”, 20; 7, “D2”, 22.5; 8, “D3”, 22.5; 9, “D4”, 22.5}] | |
Traction electricity price | 111.5 | EUR/MWh |
Traction characteristic—Siemens Vectron above critical speed | P/(v/3.6) | |
Traction characteristic—Siemens Vectron below critical speed | −0.3529 × v + 300 | |
Train driver salary | 36,000 | EUR/year |
Wagon—general repair | 15 | year |
Wagon—general repair price | 56,000 | EUR |
Wagon—length | 26,700 | mm |
Wagon—length of the loading area | 24,750 | mm |
Wagon—lifespan | 30 | year |
Wagon—number of axles | 6 | |
Wagon—price | 116,000 | EUR |
Wagon—regular maintenance | 10,400 | EUR/year |
Wagon—technical normative | T4—ložené čtyřnápravové nákladní vozy | |
Wagon—type | Sggrs | |
Wagon—weight | 28,900 | kg |
Wagon with reduced noise emissions | Ano | |
Weight per container | 1029 | kg |
Working days of the week | 7 | |
Working shift length | 12 | h |
Working weeks of the year | 52 | |
Year-on-year increase in expenses | 3 | % |
Year-on-year increase in investments | 1 | % |
Year-on-year revenue growth | 3.5 | % |
Year-on-year wage increase | 4.5 | % |
Parameter | Value | Unit |
---|---|---|
Container manipulation time—attachment | 0.5 | min |
Container manipulation time—detachment | 0.5 | min |
Container manipulation time—transfer 1 | 1 | min |
Container manipulation time—transfer 2 | 1 | min |
Container manipulator—average fuel consumption | 16 | L/Eh |
Container manipulator—lifespan | 20 | year |
Container manipulator—price | 400,000 | EUR |
Container manipulator—regular maintenance | 12,000 | EUR/year |
Driver wage costs | 1310 | EUR/month |
Fuel price | 1.6 | EUR/L |
Number of shifts per day | 1 | |
Working days of the week | 7 | |
Working shift length | 12 | h |
Working weeks of the year | 52 |
References
- Fuels—Higher and Lower Calorific Values. Online. The Engineering ToolBox. 2025. Available online: https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html (accessed on 19 January 2025).
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Hydrogen Strategy for a Climate-Neutral Europe; European Commission: Brussels, Belgium, 2020; p. 24. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0301 (accessed on 22 October 2024).
- Global Hydrogen Review 2024; International Energy Agency: Paris, France, 2024; p. 295. Available online: https://iea.blob.core.windows.net/assets/89c1e382-dc59-46ca-aa47-9f7d41531ab5/GlobalHydrogenReview2024.pdf (accessed on 22 October 2024).
- Vodíková Strategie České Republiky: Aktualizace 2024; s. 128; Ministry of Industry and Trade of the Czech Republic: Praha, Czech Republic, 2024. Available online: https://mpo.gov.cz/assets/cz/prumysl/strategicke-projekty/2024/7/Vodikova-strategie-CR-aktualizace-2024.pdf (accessed on 3 November 2024). (In Czech)
- Vodíková Mapa ČR|Centrum dopravního výzkumu, v. v. i. Available online: https://www.cistadoprava.cz/mapy/h2/ (accessed on 4 November 2024). (In Czech).
- Poul, D.; Gregor, J.; Pavlas, M.; Van Fan, Y. Techno-economic model of multimodal transport. In 6th International Conference on Technologies & Business Models for Circular Economy: Conference Proceedings; University of Maribor Press: Maribor, Slovenia, 2024; p. 190. ISBN 978-961-286-829-1. [Google Scholar] [CrossRef]
- Lipiäinen, S.; Lipiäinen, K.; Ahola, A.; Vakkilainen, E. Use of existing gas infrastructure in European hydrogen economy. Int. J. Hydrogen Energy 2023, 48, 31317–31329. [Google Scholar] [CrossRef]
- Adams, T.M.; Sindelar, R.; Rawls, G.; Lam, P.S. V.A.4 Evaluation of Natural Gas Pipeline Materials for Hydrogen/Mixed Hydrogen-Natural Gas Service; US Department of Energy: Washington, DC, USA, 2005; p. 4. Available online: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/progress05/v_a_4_adams.pdf?sfvrsn=b3b8d409_1 (accessed on 24 October 2024).
- Připravenost České Republiky na Vodíkové Hospodářství; Confederation of Industry of the Czech Republic: Praha, Czech Republic, 2024; p. 93. Available online: https://www.spcr.cz/images/media/2024_vodik_v_CR_studie_long.pdf (accessed on 4 November 2024). (In Czech)
- Přimíchávání Vodíku k Zemnímu Plynu Funguje. GasNet. 2024. Available online: https://www.gasnet.cz/o-spolecnosti/novinky/2024/02/primichavani-vodiku-funguje (accessed on 4 November 2024). (In Czech).
- GasNet Připravuje Své První Vodíkové Město v Česku. GasNet. 2024. Available online: https://www.gasnet.cz/o-spolecnosti/novinky/2024/07/GasNet-pripravuje-prvni-vodikove-mesto (accessed on 4 November 2024). (In Czech).
- Faye, O.; Szpunar, J.; Eduok, U. A critical review on the current technologies for the generation, storage, and transportation of hydrogen. Int. J. Hydrogen Energy 2022, 47, 13771–13802. [Google Scholar] [CrossRef]
- Massarweh, O.; Al-Khuzaei, M.; Al-Shafi, M.; Bicer, Y.; Abushaikha, A.S. Blue hydrogen production from natural gas reservoirs: A review of application and feasibility. J. CO2 Util. 2023, 70, 102438. [Google Scholar] [CrossRef]
- Chu, C.H.; Kim, M.S.; Kim, Y.K.; Park, S.H.; Lee, Y.G.; Lee, D.H.; Cho, S.H.; Kim, D.K. Optimal design of a hydrogen tube skid for stable charging, storage, and discharging. Int. J. Hydrogen Energy 2024, 49, 1126–1139. [Google Scholar] [CrossRef]
- Multiple Element Hydrogen Gas Containers (MEGC). Online. Hyfindr. 2024. Available online: https://hyfindr.com/en/shop/products/multiple-element-hydrogen-gas-containers-megc (accessed on 3 November 2024).
- Distribution Systems: Type 4 Cylinders; Hexagon Purus: Oslo, Norway, 2023; p. 2. Available online: https://s3.eu-central-1.amazonaws.com/hexagonpurus-website/HPU_0223_11_Datenblatt_Type4_Distribution.pdf (accessed on 4 November 2024).
- Hydrogen Tube Skid. Online. CIMC ENRIC. 2024. Available online: https://www.cimcenric.com/hydrogen-products/hygrogen-tube-skid.html (accessed on 4 November 2024).
- Kurz, R.; Winkelmann, B.; Freund, S.; McBain, M.; Keith, M.; Zhang, D.; Cich, S.; Renzi, P.; Schmitt, J. Chapter 6—Transport and storage. In Machinery and Energy Systems for the Hydrogen Economy; Elsevier: Amsterdam, The Netherlands, 2022; pp. 215–249. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780323903943000035 (accessed on 5 February 2024)ISBN 978-0-323-90394-3.
- Reuß, M.; Grube, T.; Robinius, M.; Preuster, P.; Wasserscheid, P.; Stolten, D. Seasonal storage and alternative carriers: A flexible hydrogen supply chain model. Appl. Energy 2017, 200, 290–302. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Gbadamosi, A.O.; Epelle, E.I.; Abdulrasheed, A.A.; Haq, B.; Patil, S.; Al-Shehri, D.; Kamal, M.S. Hydrogen production, transportation, utilization, and storage: Recent advances towards sustainable energy. J. Energy Storage 2023, 73, 109207. [Google Scholar] [CrossRef]
- Sleiti, A.K.; Al-Ammari, W.A.; Ghani, S.; Hussein, I.A. A novel hydrogen liquefaction process using dual mixed cryogenic refrigeration system: Energy, exergy, and economic analysis. Int. J. Hydrogen Energy 2024, 56, 1324–1339. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, C.; Bai, F.; Wang, W.; An, S.; Zhao, K.; Li, Z.; Li, J.; Sun, H. A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel 2024, 355, 129455. [Google Scholar] [CrossRef]
- Cryogenic Liquid Hydrogen Tanker. FIBA Canning: Scarborough, ON, Canada, 2022; p. 2. Available online: https://web.archive.org/web/20110710235720/http:/www.fibacanning.com/Cryogenic/Cryogenic%20Liquid%20Hydrogen%20Tankers%20for%20sale-flyer.pdf (accessed on 15 March 2025).
- Aziz, M. Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety. Energies 2021, 14, 5917. [Google Scholar] [CrossRef]
- Humphreys, J.; Lan, R.; Tao, S. Development and Recent Progress on Ammonia Synthesis Catalysts for Haber–Bosch Process. Adv. Energy Sustain. Res. 2021, 2, 2000043. [Google Scholar] [CrossRef]
- Preuster, P.; Papp, C.; Wasserscheid, P. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy. Acc. Chem. Res. 2017, 50, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Worldwide Novelty: Hydrogenious Supplies Hydrogen Filling Station in Erlangen/Germany via Liquid Organic Hydrogen Carriers. Hydrogenius. 2022. Available online: https://hydrogenious.net/worldwide-novelty-hydrogenious-supplies-hydrogen-filling-station-in-erlangen-germany-via-liquid-organic-hydrogen-carriers/ (accessed on 31 October 2024).
- Niermann, M.; Timmerberg, S.; Drünert, S.; Kaltschmitt, M. Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen. Renew. Sustain. Energy Rev. 2021, 135, 110171. [Google Scholar] [CrossRef]
- Strong Logistics for Our Future: DB Cargo Tackles the Climate Neutral Transport of Green Hydrogen. DB Cargo. 2022. Available online: https://www.dbcargo.com/rail-de-en/hydrogen (accessed on 3 November 2024).
- Trade Study—Liquid Hydrogen Transportation—Kennedy Space Center; Boeing Services International: Dallas, TX, USA, 1978; p. 233. Available online: https://ntrs.nasa.gov/api/citations/19790005765/downloads/19790005765.pdf (accessed on 3 November 2024).
- LNG Rail Tank Cars: The Few and the Unknown. Delaware Currents. 2021. Available online: https://delawarecurrents.org/2021/02/12/lng-rail-tank-cars-the-few-and-the-unknown/ (accessed on 3 November 2024).
- Transporting LNG by Rail. Nexxiot. 2023. Available online: https://nexxiot.com/efficiency/lng-by-rail/ (accessed on 3 November 2024).
- Cryogenic Railtank Car. VTG. 2024. Available online: https://www.vtg.com/hiring/our-fleet/g91111d (accessed on 4 November 2024).
- Vodíková Strategie České Republiky; Ministry of Industry and Trade of the Czech Republic: Praha, Czech Republic, 2021; p. 176. Available online: https://mpo.gov.cz/assets/cz/prumysl/strategicke-projekty/2021/8/Vodikova-strategie_CZ_G_2021-26-07.pdf (accessed on 29 October 2024). (In Czech)
- Wulf, C.; Reuß, M.; Grube, T.; Zapp, P.; Robinius, M.; Hake, J.-F.; Stolten, D. Life Cycle Assessment of hydrogen transport and distribution options. J. Clean. Prod. 2018, 199, 431–443. [Google Scholar] [CrossRef]
- Pandey, A.K.; Srivastava, S.C.; Pareek, K. Hydrogen Transportation in Tier II Indian City via Tube Trailers. In Proceedings of the 2024 IEEE 4th International Conference on Sustainable Energy and Future Electric Transportation (SEFET), Hyderabad, India, 31 July–3 August 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Sayer, M.; Ajanovic, A.; Haas, R. Economic and environmental assessment of different hydrogen production and transportation modes. Int. J. Hydrogen Energy 2024, 65, 626–638. [Google Scholar] [CrossRef]
- Miao, H.; Yu, Y.; Wan, Y.; Zhang, Y.; Ma, T. Levelized cost of long-distance large-scale transportation of hydrogen in China. Energy 2024, 310, 133201. [Google Scholar] [CrossRef]
- Yu, Q.; Hao, Y.; Ali, K.; Hua, Q.; Sun, L. Techno-economic analysis of hydrogen pipeline network in China based on levelized cost of transportation. Energy Convers. Manag. 2024, 301, 118025. [Google Scholar] [CrossRef]
- Di Lullo, G.; Giwa, T.; Okunlola, A.; Davis, M.; Mehedi, T.; Oni, A.; Kumar, A. Large-scale long-distance land-based hydrogen transportation systems: A comparative techno-economic and greenhouse gas emission assessment. Int. J. Hydrogen Energy 2022, 47, 35293–35319. [Google Scholar] [CrossRef]
- Kirschstein, T.; Meisel, F. GHG-emission models for assessing the eco-friendliness of road and rail freight transports. Transp. Res. Part B Methodol. 2015, 73, 13–33. [Google Scholar] [CrossRef]
- Christensen, T.R.; Labbé, M. A branch-cut-and-price algorithm for the piecewise linear transportation problem. Eur. J. Oper. Res. 2015, 245, 645–655. [Google Scholar] [CrossRef]
- Gregor, J.; Šomplák, R.; Pavlas, M. Transportation Cost as an Integral Part of Supply Chain Optimisation in the Field of Waste Management. Chem. Eng. Trans. 2017, 2017, 6. [Google Scholar] [CrossRef]
- Niérat, P. Methodological shortcuts in intermodal freight transport: Critical review and proposals. Online. J. Transp. Geogr. 2022, 103, 103396. [Google Scholar] [CrossRef]
- Hintjens, J.; van Hassel, E.; Vanelslander, T.; Van de Voorde, E. Port Cooperation and Bundling: A Way to Reduce the External Costs of Hinterland Transport. Sustainability 2020, 12, 9983. [Google Scholar] [CrossRef]
- Costantino, T.; Miretti, F.; Spessa, E. Assessing the viability of dynamic wireless power transfer in long-haul freight transport: A techno-economic analysis from fleet operators’ standpoint. Appl. Energy 2025, 379, 124839. [Google Scholar] [CrossRef]
- Verma, A.; Nimana, B.; Olateju, B.; Rahman, M.; Radpour, S.; Canter, C.; Subramanyam, V.; Paramashivan, D.; Vaezi, M.; Kumar, A. A techno-economic assessment of bitumen and synthetic crude oil transport (SCO) in the Canadian oil sands industry: Oil via rail or pipeline? Energy 2017, 124, 665–683. [Google Scholar] [CrossRef]
- Sahin, B.; Yilmaz, H.; Ust, Y.; Guneri, A.F.; Gulsun, B.; Turan, E. An Approach for Economic Analysis of Intermodal Transportation. Sci. World J. 2014, 2014, 630320. [Google Scholar] [CrossRef]
- Karam, A.; Jensen, A.J.K.; Hussein, M. Analysis of the barriers to multimodal freight transport and their mitigation strategies. Eur. Transp. Res. Rev. 2023, 15, 43. [Google Scholar] [CrossRef]
- Bešinović, N.; Quaglietta, E.; Goverde, R.M. A simulation-based optimization approach for the calibration of dynamic train speed profiles. J. Rail Transp. Plan. Manag. 2013, 3, 126–136. [Google Scholar] [CrossRef]
- Havaei, P.; Sandidzadeh, M.A. Multi-objective train speed profile determination for automatic train operation with conscious search: A new optimization algorithm, a comprehensive study. Eng. Appl. Artif. Intell. 2023, 119, 105756. [Google Scholar] [CrossRef]
- Jong, J.C.; Chang, S. Algorithms for generating train speed profiles. J. East. Asia Soc. Transp. Stud. 2005, 6, 356–371. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, C.; Tang, T. An Optimal Train Speed Profile Planning Method for Induction Motor Traction System. Energies. 2021, 14, 5153. [Google Scholar] [CrossRef]
- Motorová Nafta Třídy B, D, F (MN tř. B,D,F). ORLEN Unipetrol RPA. Available online: https://www.unipetrolrpa.cz/CS/NabidkaProduktu/rafinerske-produkty/PohonneHmoty/Nafty/Stranky/Motorov%C3%A1-nafta-t%C5%99%C3%ADdy.aspx (accessed on 7 January 2025). (In Czech).
- EMEP/EEA Air Pollutant Emission Inventory Guidebook 2023; European Environment Agency: Copenhagen, Denmark, 2023; Available online: https://www.eea.europa.eu/en/analysis/publications/emep-eea-guidebook-2023 (accessed on 7 January 2025).
- Hydrogen Cluster of the Moravian-Silesian Region. Online. Available online: https://www.ms-vk.cz/en/en-home/ (accessed on 27 November 2024).
- Desetiletý Plán Rozvoje Přepravní Soustavy 2025–2034; NET4GAS: Praha, Czech Republic, 2024; Available online: https://www.net4gas.cz/files/rozvojove-plany/ntyndp25-34_cz_2024_240708_konzultace.pdf (accessed on 19 December 2024). (In Czech)
- Newman, A.; Manders, S. Fishermans Bend Freight Corridor Advisory Services; S. 65; Department of Economic Development, Jobs, Transport and Resources: Melbourne, Australia, 2016. Available online: https://www.vic.gov.au/sites/default/files/2024-12/04-Freight-Corridor-advisory-Report-redacted-in-part.pdf (accessed on 20 March 2025).
- 700 Bar Hydrogen Refueling. Online. Teesing. 2024. Available online: https://teesing.com/en/library/hydrogen/700-bar-hydrogen-refueling (accessed on 5 December 2024).
- IES-H2-35 Hydrogen Vehicle H35 Fast Fill Fleet Dispenser: Datasheet; IVYS Energy Solutions: Waltham, MA, USA, 2022; p. 2. Available online: https://pacificenergy.com.au/wp-content/uploads/2024/08/Ies-h2-35-hydrogen-vehicle-h35-fast-fill-fleet-dispenser.pdf (accessed on 5 December 2024).
- Eißler, T.; Schumacher, G.; Behrens, J.; Mendler, F.; Voglstätter, C. Detailed Cost Analysis of Hydrogen Refueling Costs for Fleets. Chem. Ing. Tech. 2024, 96, 86–99. [Google Scholar] [CrossRef]
- Pluskal, J.; Šomplák, R.; Hrabec, D.; Nevrlý, V.; Hvattum, L.M. Optimal location and operation of waste-to-energy plants when future waste composition is uncertain. Oper. Res. 2022, 22, 5765–5790. [Google Scholar] [CrossRef]
- Pluskal, J.; Šomplák, R.; Nevrlý, V.; Smejkalová, V.; Pavlas, M. Strategic decisions leading to sustainable waste management: Separation, sorting and recycling possibilities. J. Clean. Prod. 2021, 278, 123359. [Google Scholar] [CrossRef]
- Pluskal, J.; Šomplák, R.; Szásziová, L.; Suja, J.; Pavlas, M. Post-consumer plastic sorting infrastructure improvements planning: Scenario-based modeling of greenhouse gas savings with sustainable costs. J. Environ. Manag. 2023, 325, 116567. [Google Scholar] [CrossRef]
Type | Pressure Level (bar) | H2 Capacity at 15 °C (kg) | Water Volume (L) | Weight of Container (kg) | Total Weight (H2 + Container) (kg) | Transport System Weight per 1 MJ of H2 (kg) *** |
---|---|---|---|---|---|---|
Compressed cylinders | 300 | 847 | 39,900 | 16,403 | 17,250 | 4.9 |
380 | 1029 | 39,900 | 18,971 | 20,000 | 5.3 | |
500 | 1106 | 34,840 | 25,644 | 26,750 | 4.4 | |
Horizontal tubes | 200 | 403 * | 27,780 | 25,587 ** | 25,990 | 1.6 |
Type | Pressure Level (bar) | H2 Capacity at 15 °C (kg) | Water Volume (L) | Weight of Semi-Trailer (kg) | Total Weight (H2 + Semi-Trailer) (kg) | Transport System Weight per 1 MJ of H2 (kg) |
---|---|---|---|---|---|---|
Tank | - | 3500 | 49,210 | 19,730 | 23,230 | 21.3 |
Motor Vehicle | Trailer | Body Type for Chassis |
---|---|---|
Passenger Car | Trailer | Hook Loader (roll on/roll off) |
Van | Semi-trailer | Dumper/Tipper |
Rigid Chassis | Box | |
Semi-trailer Tractor | Walking Floor (box) | |
Tank |
Locomotive | Wagon |
---|---|
Electric | Flat/Intermodal wagon |
Diesel | Open/covered wagon |
Hybrid | Tank wagon |
Vehicle Category | Maximum Weight [t] | Maximum Height [m] |
---|---|---|
0—passenger car, small van | 3.5 | 2 |
1—van | 3.5 | 2.5 |
2—light-duty vehicle | 10 | 3.2 |
3—heavy-duty vehicle I | 26 | 4 |
4—heavy-duty vehicle II | 48 | 4 |
Input Parameters | Value | Unit |
---|---|---|
Container | ||
Cylinders rated pressure | 380 | bar |
Amount of hydrogen in the container | 1.029 | t |
Cylinders dispense rate | 10 | kg/min |
Container weight | 18.971 | t |
Rail transport | ||
Number of locomotives | 1 | |
Number of wagons | 20 | |
Lifespan—locomotive, wagon | 30 | year |
Locomotive price | 4,080,000 | EUR |
Intermodal wagon price | 116,000 | EUR |
Service costs—locomotive | 140,000 | EUR/year |
Service costs—wagon | 10,400 | EUR/year |
Labor costs—operators (rail transport) | 102,000 | EUR/year |
Administrative and operational overhead, dispatching (rail transport) | 132,000 | EUR/year |
Traction electricity price | 112 | EUR/kWh |
Annual working time (rail transport) | 8736 | h/year |
Road transport | ||
Lifespan—tractor, trailer | 7 | year |
Semi-trailer tractor price | 140,000 | EUR |
Road trailer price | 36,000 | EUR |
Service costs—tractor + trailer | 11,800 | EUR/year |
Labor costs—driver (road transport) | 48,000 | EUR/year |
Administrative and operational overhead, dispatching (road transport) | 15,000 | EUR/year |
Fuel price | 1.6 | EUR/L |
Semi-trailer tractor—average fuel consumption (load factor 50%) | 23 | L/100 km |
Annual working time (road transport) | 4680 | h/year |
Container handler | ||
Container handler price | 400,000 | EUR |
Service costs – container handler | 12,000 | EUR/year |
Lifespan – container handler | 20 | year |
Fuel consumption – container handler | 16 | L/Eh |
Loading/unloading time | 3 | min |
Annual working time (transshipment) | 4368 | h/year |
Labor costs—operator | 15,744 | EUR/year |
Microregion/ Municipality | Direct Distance (km) | Road Distance (km) | Road with Toll (km) | Transportation Costs (EUR/t) |
---|---|---|---|---|
Vizovice | 82 | 106 | 23 | 238 |
Prostějov | 78 | 112 | 105 | 295 |
Transportation Costs (EUR/t) | Option 1 Road Transport | Option 2 Multimodal Transport | Difference (O1 vs. O2) |
---|---|---|---|
Lowest | 51 | 51 | 0% |
Highest | 607 | 292 | −52% |
Average | 348 | 205 | −41% |
Microregional centre—Břeclav | 51 | 51 | 0% |
Microregional centre—Přerov | 354 | 136 | −62% |
Microregional centre—Ostrava | 556 | 175 | −69% |
Distribution area Břeclav (average costs) | 155 | 155 | 0% |
Distribution area Přerov (average costs) | 339 | 214 | −37% |
Distribution area Ostrava (average costs) | 541 | 244 | −55% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poul, D.; Jia, X.; Pavlas, M.; Stehlík, P. Model Development and Implementation of Techno-Economic Assessment of Hydrogen Logistics Value Chain: A Case Study of Selected Regions in the Czech Republic. Energies 2025, 18, 1741. https://doi.org/10.3390/en18071741
Poul D, Jia X, Pavlas M, Stehlík P. Model Development and Implementation of Techno-Economic Assessment of Hydrogen Logistics Value Chain: A Case Study of Selected Regions in the Czech Republic. Energies. 2025; 18(7):1741. https://doi.org/10.3390/en18071741
Chicago/Turabian StylePoul, David, Xuexiu Jia, Martin Pavlas, and Petr Stehlík. 2025. "Model Development and Implementation of Techno-Economic Assessment of Hydrogen Logistics Value Chain: A Case Study of Selected Regions in the Czech Republic" Energies 18, no. 7: 1741. https://doi.org/10.3390/en18071741
APA StylePoul, D., Jia, X., Pavlas, M., & Stehlík, P. (2025). Model Development and Implementation of Techno-Economic Assessment of Hydrogen Logistics Value Chain: A Case Study of Selected Regions in the Czech Republic. Energies, 18(7), 1741. https://doi.org/10.3390/en18071741