A Multi-Level Perspective on Transition to Renewable Energy in the Indonesian Transport Sector
Abstract
1. Introduction
2. Literature Review
2.1. Historical Institutionalism Approach
2.2. Multi-Level Perspective Framework
3. Materials and Methods
3.1. Data Collection
3.2. Analysis
4. Results
4.1. Socio-Technical Landscape Dynamics
4.2. Socio-Technical Regime Evolvement
- First phase: Development of energy institutions and infrastructure that fostered dependence on fuel oil (1970–2003).
- Second phase: Encouragement of energy diversification through cleaner fuels, especially natural gas and biofuels (2004–2014).
- Third phase: Development of affordable and clean energy, focusing on biofuels and electrification (2015 to present).
4.2.1. First Phase: Development of Energy Institutions and Infrastructure That Fostered Dependence on Fuel Oil (1970–2003)
“The development during the Soeharto administration [was intensive]. As we began building infrastructure, we were introduced to personal vehicle technology… We recognized the importance of mobility, …but we became accustomed to relying on private cars. At that time, many of our graduates were influenced by the US, where the use of private vehicles was predominant.” (Respondent 10, Academic).
4.2.2. Second Phase: Encouragement of Energy Diversification Through Cleaner Fuels, Especially Natural Gas and Biofuels (2004–2014)
4.2.3. Third Phase: Development of Affordable and Clean Energy, Focusing on Biofuels and Electrification (2015 to Present)
4.3. Niche Innovations in Low-Carbon Mobilities
4.3.1. Advancing Biofuels for Alternative Vehicle Fuels
“Between 2015 and 2017, [the coalition of automotive industry leaders] united to resist the adoption of EVs. Consequently, to stay in business, they shifted their focus to biofuels” (Respondent 18, NGO).
“The mandatory biofuels program will help reduce petrol imports and save foreign exchange… The B40 program has brought important benefits for society and the environment. It has raised the value of CPO, …created over 14,000 off-farm jobs, and provided about 1.95 million off-farm jobs. It has also helped cut GHG emissions by 41.46 million tons of CO2 equivalent annually.”[95].
“In its implementation, there are still many challenges, including the limited production of bioethanol and the absence of incentives to address the price difference between the Market Index Price of gasoline and bioethanol.”[96].
4.3.2. Natural Gas Utilization
“The development of cars with CNG engines is currently hindered by three main obstacles: unclear government regulations, a lack of infrastructure, and the price difference between gasoline and CNG.”[99].
4.3.3. Electric Vehicles Diffusion
4.3.4. Hydrogen Fuel Cell Vehicle Innovation
4.4. TCO Comparison
5. Discussion
5.1. Synthesizing Historical Institutionalism and Multi-Level Perspective in the Context of Indonesia’s Political Economy of Transport
5.2. Comparative Insights from Global and Regional Transitions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, J.F.; Reyes, R.S. The history of net zero: Can we move from concepts to practice? Clim. Policy 2023, 23, 901–915. [Google Scholar] [CrossRef]
- Fankhauser, S.; Smith, S.M.; Allen, M.; Axelsson, K.; Hale, T.; Hepburn, C.; Kendall, J.M.; Khosla, R.; Lezaun, J.; Mitchell-Larson, E.; et al. The meaning of net zero and how to get it right. Nat. Clim. Change 2022, 12, 15–21. [Google Scholar] [CrossRef]
- Schrijver, N. Managing the global commons: Common good or common sink? Third World Q. 2016, 37, 1252–1267. [Google Scholar] [CrossRef]
- Astari, A.J.; Lovett, J.C.; Wasesa, M. Sustainable pathways in Indonesia’s palm oil industry through historical institutionalism. World Dev. Sustain. 2025, 6, 100200. [Google Scholar] [CrossRef]
- North, D.C. Institutional change: A framework of analysis. In Institutional Change: Theory and Empirical Findings; Routledge: New York, NY, USA, 1993; pp. 35–46. [Google Scholar]
- Thelen, K. Historical institutionalism in comparative politics. Annu. Rev. Political Sci. 1999, 2, 369–404. [Google Scholar] [CrossRef]
- Williamson, O.E. Nobel Prize Lecture Presentation: Transaction Cost Economics, the Natural Progression Stockholm: Nobel Prize. 2009. Available online: https://www.nobelprize.org/prizes/economic-sciences/2009/williamson/lecture/ (accessed on 26 March 2024).
- March, J.G.; Olsen, J.P. Elaborating the “New Institutionalism”; Rhodes, R.A.W., Binder, S.A., Rockman, B.A., Eds.; Oxford University Press: Oxford, UK, 2006; pp. 3–20. [Google Scholar]
- Immergut, E.M. Historical-institutionalism in political science and the problem of change. In Understanding Change; Palgrave Macmillan: London, UK, 2006; pp. 237–259. [Google Scholar]
- Pierson, P.; Skocpol, T. Historical institutionalism in contemporary political science. Political Sci. State Discip. 2002, 3, 1–32. [Google Scholar]
- Thelen, K.; Steinmo, S. Historical institutionalism in comparative politics. In Structuring Politics: Historical Institutionalism in Comparative Analysis; Steinmo, S., Thelen, K., Longstreth, F., Eds.; Cambridge University Press: Cambridge, UK, 1992; pp. 1–15. [Google Scholar]
- Official Journal of the European Union (European Union). Council Implementing Regulation (EU) No 1194/2013 of 19 November 2013 Imposing a Definitive Anti-Dumping Duty and Collecting Definitively the Provisional Duty Imposed on Imports of Biodiesel Originating in Argentina and Indonesia; European Union: Brussels, Belgium, 2013. [Google Scholar]
- Lovett, J.C.; Hofman, P.S.; Morsink, K.; Clancy, J. Technology transfer and global markets. In Low-Carbon Technology Transfer from Rhetoric to Reality; Ockwell, D., Mallett, A., Eds.; Routledge: Oxford, UK, 2012; pp. 322–339. [Google Scholar]
- Obidzinski, K.; Andriani, R.; Komarudin, H.; Andrianto, A. Environmental and social impacts of oil palm plantations and their implications for biofuel production in Indonesia. Ecol. Soc. 2012, 17, 1–21. [Google Scholar] [CrossRef]
- al Irsyad, M.I.; Firmansyah, A.I.; Harisetyawan, V.T.F.; Supriatna, N.K.; Gunawan, Y.; Jupesta, J.; Yaumidin, U.K.; Purwanto, J.; Inayah, I. Comparative total cost assessments of electric and conventional vehicles in ASEAN: Commercial vehicles and motorcycle conversion. Energy Sustain. Dev. 2025, 85, 101599. [Google Scholar] [CrossRef]
- Yuniaristanto; Afraah, S.M.; Sutopo, W.; Hisjam, M. (Eds.) The Sustainability-Oriented Total Cost of Ownership Model of the Electric Motorcycle; Springer Nature: Singapore, 2023; pp. 365–373. [Google Scholar]
- Eitan, A.; Hekkert, M.P. Locked in transition? Towards a conceptualization of path-dependence lock-ins in the renewable energy landscape. Energy Res. Soc. Sci. 2023, 106, 103316. [Google Scholar] [CrossRef]
- Hall, P.A.; Taylor, R.C.R. Political science and the three new institutionalisms. Political Stud. 1996, XLIV, 936–957. [Google Scholar] [CrossRef]
- Pierson, P. Not just what, but when: Timing and sequence in political processes. Stud. Am. Political Dev. 2000, 14, 72–92. [Google Scholar] [CrossRef]
- Eckersley, P. Cities and climate change: How historical legacies shape policy-making in English and German municipalities. Politics 2017, 37, 151–166. [Google Scholar] [CrossRef]
- Streeck, W.; Thelen, K.A. Beyond continuity: Institutional change in advanced political economies. In Beyond Continuity: Change in Advanced Political Economies; Streeck, W., Thelen, K.A., Eds.; Oxford University Press: Oxford, UK, 2005; pp. 1–39. [Google Scholar]
- Van der Heijden, J. Institutional layering: A review of the use of the concept. Politics 2011, 31, 9–18. [Google Scholar] [CrossRef]
- Fioretos, K.O.; Falleti, T.G.; Sheingate, A.D. The Oxford Handbook of Historical Institutionalism; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Capoccia, G. When do institutions “bite”? Historical institutionalism and the politics of institutional change. Comp. Political Stud. 2016, 49, 1095–1127. [Google Scholar] [CrossRef]
- Thoenig, J.-C. Institutional theories and public institutions: Traditions and appropriateness. In Handbook of Public Administration; Peters, G.B., Pierre, J., Eds.; SAGE Publishing: London, UK, 2003; pp. 127–137. [Google Scholar]
- Collier, D.; Collier, R.B.; Hershberg, E. Shaping the political arena: Critical junctures, the labor movement, and regime dynamics in Latin America. Can. J. Lat. Am. Caribb. Stud. 2004, 29, 327. [Google Scholar]
- Mahoney, J.; Thelen, K.A. Explaining Institutional Change: Ambiguity, Agency, and Power; Mahoney, J., Thelen, K.A., Eds.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Greif, A.; Laitin, D.D. A Theory of Endogenous Institutional Change. Am. Political Sci. Rev. 2004, 98, 633–652. [Google Scholar] [CrossRef]
- Lockwood, M.; Kuzemko, C.; Mitchell, C.; Hoggett, R. Historical institutionalism and the politics of sustainable energy transitions: A research agenda. Environ. Plan. C Politics Space 2017, 35, 312–333. [Google Scholar] [CrossRef]
- Ichsan, M.; Pye, O.; Saputra, W.; Bakhtiar, I. Institutional change and the framing of palm oil-based biofuel development in Indonesia: In the national interest? South East Asia Res. 2025, 33, 183–204. [Google Scholar] [CrossRef]
- OECD. A Growth-Friendly and Inclusive Green Transition Strategy for Thailand; OECD: Paris, France, 2024. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2024; IEA: Paris, France, 2024; Available online: https://iea.blob.core.windows.net/assets/6a25abba-1973-4580-b6e3-ba014a81b458/WorldEnergyOutlook2024.pdf (accessed on 20 November 2024).
- Carvalho, A.D.P.; Cunha, S.K.d.; Lima, L.F.d.; Carstens, D.D. The role and contributions of sociological institutional theory to the socio-technical approach to innovation theory. RAI Revista de Administração e Inovação. 2017, 14, 250–259. [Google Scholar] [CrossRef]
- Geels, F.W. The Multi-Level Perspective on Sustainability Transitions: Background, overview, and current research topics. Camb. Open Engag. 2024. [Google Scholar] [CrossRef]
- Hansmeier, H.; Schiller, K.; Rogge, K.S. Towards methodological diversity in sustainability transitions research? Comparing recent developments (2016–2019) with the past (before 2016). Environ. Innov. Soc. Transit. 2021, 38, 169–174. [Google Scholar] [CrossRef]
- Klitkou, A.; Bolwig, S.; Hansen, T.; Wessberg, N. The role of lock-in mechanisms in transition processes: The case of energy for road transport. Environ. Innov. Soc. Transit. 2015, 16, 22–37. [Google Scholar] [CrossRef]
- Męczyński, M.; Ciesiółka, P. Toward a Green Transformation Based on Eco-Innovations of Enterprises in Old Industrial Areas: The Case of Silesia Province. In The Changing Economic Geography of Companies and Regions in Times of Risk, Uncertainty, and Crisis; Routledge: Milton Park, UK, 2024; pp. 105–127. [Google Scholar]
- Helmrich, A.; Chester, M.; Miller, T.R.; Allenby, B. Lock-in: Origination and significance within infrastructure systems. Environ. Res. Infrastruct. Sustain. 2023, 3, 32001. [Google Scholar] [CrossRef]
- Geels, F.W. Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics and neo-institutional theory. Technol. Forecast. Soc. Change 2020, 152, 119894. [Google Scholar] [CrossRef]
- Hidayat, R.; Cowie, J. A framework to explore policy to support the adoption of electric vehicles in developing nations: A case study of Indonesia. Transp. Res. Procedia 2023, 70, 364–371. [Google Scholar] [CrossRef]
- Novizayanti, D.; Prasetio, E.A.; Siallagan, M.; Santosa, S.P. Agent-based modeling framework for electric vehicle adoption transition in Indonesia. World Electr. Veh. J. 2021, 12, 73. [Google Scholar] [CrossRef]
- Mohamad, M.; Songthaveephol, V. Clash of titans: The challenges of socio-technical transitions in the electrical vehicle technologies—The case study of Thai automotive industry. Technol. Forecast. Soc. Change 2020, 153, 119772. [Google Scholar] [CrossRef]
- Cameron, R.; Geels, F.W. Conditions for politically accelerated transitions: Historical institutionalism, the multi-level perspective, and two historical case studies in transport and agriculture. Technol. Forecast. Soc. Change 2019, 140, 221–240. [Google Scholar] [CrossRef]
- Ydersbond, I.M. (Ed.) Aiming to be environmental leaders, but struggling to go forward: Sweden and Norway on energy system transformation. In Proceedings of the Renewable Energy Research Conference, RERC 2014, Oslo, Norway, 16–18 June 2014; pp. 16–23. [Google Scholar]
- Nikas, A.; Koasidis, K.; Köberle, A.C.; Kourtesi, G.; Doukas, H. A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective. Renew. Sustain. Energy Rev. 2022, 156, 112022. [Google Scholar] [CrossRef]
- Farrell, H.; Newman, A.L. Making global markets: Historical institutionalism in international political economy. Rev. Int. Political Econ. 2010, 17, 609–638. [Google Scholar] [CrossRef]
- Smith, A.K.; Ayanian, J.Z.; Covinsky, K.E.; Landon, B.E.; McCarthy, E.P.; Wee, C.C.; Steinman, M.A. Conducting high-value secondary dataset analysis: An introductory guide and resources. J. Gen. Intern. Med. 2011, 26, 920–929. [Google Scholar] [CrossRef]
- Wallace Foundation. Workbook B: Conducting Secondary Research; Wallace Foundation: New York, NY, USA, 2015. [Google Scholar]
- Heaton, J. Reworking Qualitative Data; SAGE: London, UK, 2004. [Google Scholar]
- Fielding, N. Getting the most from archived qualitative data: Epistemological, practical and professional obstacles. Int. J. Soc. Res. Methodol. 2004, 7, 97–104. [Google Scholar] [CrossRef]
- Johnston, M.P. Secondary data analysis: A method of which the time has come. Qual. Quant. Methods Libr. 2017, 3, 619–626. [Google Scholar]
- Hinds, P.S.; Vogel, R.J.; Clarke-Steffen, L. The possibilities and pitfalls of doing a secondary analysis of a qualitative data set. Qual. Health Res. 1997, 7, 408–424. [Google Scholar] [CrossRef]
- Woody, M.; Adderly, S.A.; Bohra, R.; Keoleian, G.A. Electric and gasoline vehicle total cost of ownership across US cities. J. Ind. Ecol. 2024, 28, 194–215. [Google Scholar] [CrossRef]
- Sasongko, T.W.; Ciptomulyono, U.; Wirjodirdjo, B.; Prastawa, A. Identification of electric vehicle adoption and production factors based on an ecosystem perspective in Indonesia. Cogent Bus. Manag. 2024, 11, 2332497. [Google Scholar] [CrossRef]
- Wróblewski, P.; Drożdż, W.; Lewicki, W.; Dowejko, J. Total Cost of Ownership and Its Potential Consequences for the Development of the Hydrogen Fuel Cell Powered Vehicle Market in Poland. Energies 2021, 14, 2131. [Google Scholar] [CrossRef]
- Creswell, J.W.; Poth, C.N. Qualitative Inquiry and Research Design: Choosing Among Five Approaches, 4th ed.; Sage Publications: Los Angeles, CA, USA, 2018. [Google Scholar]
- Creswell, J.W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 4th ed.; Sage Publications, Inc.: Los Angeles, CA, USA, 2014. [Google Scholar]
- Yin, R.K. Case Study Research and Applications: Design and Methods, 6th ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Bowen, G.A. Document Analysis as a Qualitative Research Method. Qual. Res. J. 2009, 9, 27–40. [Google Scholar] [CrossRef]
- IEA. Global EV Outlook 2025; IEA: Paris, France, 2025; Available online: https://iea.blob.core.windows.net/assets/7ea38b60-3033-42a6-9589-71134f4229f4/GlobalEVOutlook2025.pdf (accessed on 14 August 2025).
- Reddy, V.J.; Hariram, N.P.; Maity, R.; Ghazali, M.F.; Kumarasamy, S. Sustainable Vehicles for Decarbonizing the Transport Sector: A Comparison of Biofuel, Electric, Fuel Cell and Solar-Powered Vehicles. World Electr. Veh. J. 2024, 15, 93. [Google Scholar] [CrossRef]
- Uwe, F. The Sage Handbook of Qualitative Research Quality; SAGE Publications: London, UK, 2024. [Google Scholar]
- Wright, R.; Chapla, K.; Booth, A.; Nelson, K.E.; Peeler, A.; Swain, C.; Won, S.; Wu, D.S. Enhancing Rigor, Quality, and Patient Engagement in Qualitative Research: A Step-By-Step Guide to Applying Reflexive Thematic Analysis to the Experience-Based Co-Design Methodology. Qual. Health Res. 2024, 16, 10497323241291798. [Google Scholar] [CrossRef]
- Kontan. Understanding the History and Revitalisation of Indonesia’s Railway System Jakarta: Kontan. 2024. Available online: https://jelajahekonomi.kontan.co.id/ekonomi-infrastruktur/news/mengenal-sejarah-hingga-pembenahan-wajah-baru-kereta-api-di-indonesia (accessed on 23 April 2025).
- KAI. Raliways History Jakarta: KAI. 2017. Available online: https://www.kai.id/corporate/about_kai/#tabs-1-item-0 (accessed on 17 July 2020).
- Kompas. The Last Steam Train Jakarta: Kompas. 2010. Available online: https://travel.kompas.com/read/2010/06/19/17304062/Kereta.Uap.Terakhir (accessed on 12 March 2025).
- Lindblad, J.T. The Indonesian Economy in the Early Independence Period. Itinerario 2010, 34, 7–8. [Google Scholar] [CrossRef]
- Corsello, F.; Gomellini, M.; Pellegrino, D. Inflation and energy price shocks: Lessons from the 1970s. Bank Italy Occas. Pap. 2023. [Google Scholar] [CrossRef]
- Grandis, A.; Fortirer, J.; Pagliuso, D.; Buckeridge, M. Scientific Research on Bioethanol in Brazil: History and Prospects for Sustainable Biofuel. Sustainability 2024, 16, 4167. [Google Scholar] [CrossRef]
- Sajid, Z.; da Silva, M.A.B.; Danial, S.N. Historical Analysis of the Role of Governance Systems in the Sustainable Development of Biofuels in Brazil and the United States of America (USA). Sustainability 2021, 13, 6881. [Google Scholar] [CrossRef]
- Shamsapour, N.; Hajinezhad, A.; Noorollahi, Y. Developing a system dynamics approach for CNG vehicles for low-carbon urban transport: A case study. Int. J. Low-Carbon Technol. 2020, 16, 577–591. [Google Scholar] [CrossRef]
- Heinrichs, H.; Martens, P.; Michelsen, G.; Wiek, A. Sustainability Science; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–4. [Google Scholar]
- BPPT. Indonesia Energy Outlook 2018: Sustainable Energy for Land Transportation Jakarta: PPIPE BPPT. 2018. Available online: https://doi.org/10.5281/zenodo.8216479 (accessed on 6 June 2019).
- U.S. Energy Information Administration. Indonesian Petroleum Infographic; U.S. Energy Information Administration: Washington, DC, USA, 2020. Available online: https://www.eia.gov/international/data/country/IDN/infographic/petroleum-infographic?pd=44&p=00000000000000000000000000000000000000000000000000000000024&u=0&f=A&v=mapbubble&a=-&i=none&vo=value&t=C&g=none&l=249--104&s=315532800000&e=1483228800000 (accessed on 15 July 2020).
- ERIA. Review of Biofuels Sustainability Assessment and Sustainability Indicators in East Asia Summit Countries; ERIA: Jakarta, Indonesia, 2021; Available online: https://www.eria.org/uploads/media/Research-Project-Report/2021-18-Analysis-of-Future-Mobility-Fuel-Scenarios-/8_ch.3-Review-Biofuel-Sustainability-Assessment.pdf (accessed on 6 May 2025).
- Kalthaus, M.; Sun, J. Determinants of electric vehicle diffusion in China. Environ. Resour. Econ. 2021, 80, 473–510. [Google Scholar] [CrossRef]
- Zhuge, C.; Dong, C.; Wei, B.; Shao, C. Exploring the role of technology innovations in the diffusion of electric vehicle with an agent-based spatial integrated model. Resour. Conserv. Recycl. 2021, 174, 105806. [Google Scholar] [CrossRef]
- IEA. Global EV Outlook 2024; IEA: Paris, France, 2024; Available online: https://iea.blob.core.windows.net/assets/a9e3544b-0b12-4e15-b407-65f5c8ce1b5f/GlobalEVOutlook2024.pdf (accessed on 20 November 2024).
- Ehsani, M.; Gao, Y.; Longo, S.; Ebrahimi, K. Modern Electric, Hybrid Electric, And Fuel Cell Vehicles, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Fang, T.; Vairin, C.; von Jouanne, A.; Agamloh, E.; Yokochi, A. Review of Fuel-Cell Electric Vehicles. Energies 2024, 17, 2160. [Google Scholar] [CrossRef]
- Trencher, G.; Wesseling, J. Roadblocks to fuel-cell electric vehicle diffusion: Evidence from Germany, Japan and California. Transp. Res. Part D Transp. Environ. 2022, 112, 103458. [Google Scholar] [CrossRef]
- Link, S.; Stephan, A.; Speth, D.; Plötz, P. Rapidly declining costs of truck batteries and fuel cells enable large-scale road freight electrification. Nat. Energy 2024, 9, 1032–1039. [Google Scholar] [CrossRef]
- MEMR. Handbook of Energy and Economic Statistics of Indonesia 2024; MEMR: Jakarta, Indonesia, 2025. Available online: https://www.esdm.go.id/assets/media/content/content-handbook-of-energy-and-economic-statistics-of-indonesia-2024.pdf (accessed on 13 June 2025).
- Pertamina. Milestone PT Pertamina (Persero). 2020. Available online: https://www.pertamina.com/en/milestone-pt-pertamina-persero (accessed on 7 July 2020).
- Sunarya, W.; Taufik, G.A. Introduction to Indonesian Oil and Gas Law; Wibowo & Rekan Law Firm: Jakarta, Indonesia, 2018. [Google Scholar]
- Pertamina Geothermal Energy. PT Pertamina Geothermal Energy Profile. 2019. Available online: https://www.pge.pertamina.com/en/energizing-green-future (accessed on 7 July 2020).
- BPS. Development of the Number of Motor Vehicles by Type (Unit), 2015–2022; BPS: Jakarta, Indonesia, 2024; Available online: https://www.bps.go.id/assets/statistics-table/2/NTcjMg==/perkembangan-jumlah-kendaraan-bermotor-menurut-jenis--unit-.html (accessed on 29 July 2025).
- OECD/IEA. Energy Policies Beyond IEA Countries: Indonesia 2015; OECD/IEA: Paris, France, 2015; Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2015/02/energy-policies-beyond-iea-countries-indonesia-2015_g1g4f6ea/9789264065277-en.pdf (accessed on 12 April 2025).
- OECD-FAO. OECD-FAO Agricultural Outlook 2017–2026 Paris: OECD-FAO. 2024. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=HIGH_AGLINK_2017# (accessed on 5 March 2024).
- CIFOR. Bioenergy Development in Indonesia: Opportunities and Challenges for Biodiesel Industry Policy: CIFOR. 2018. Available online: https://www.cifor.org/publications/pdf_files/WPapers/WP242Dharmawan.pdf (accessed on 21 May 2020).
- DEN. Indonesia Energy Outlook 2024; DEN: Jakarta, Indonesia, 2024; Available online: https://www.esdm.go.id/assets/media/content/content-laporan-kinerja-sekjen-den-tahun-2024.pdf (accessed on 4 March 2025).
- GAIKINDO. Hydrogen Car Prices in Indonesia Remain High; GAIKINDO: Jakarta, Indonesia, 2024; Available online: https://www.gaikindo.or.id/gaikindo-mobil-hidrogen-di-ri-harganya-masih-tinggi/ (accessed on 6 October 2025).
- APROBI. Finding the Ideal Biofuel Diversification in Indonesia Jakarta: APROBI. 2022. Available online: https://www.aprobi.or.id/mencari-diversifikasi-bahan-bakar-nabati-yang-ideal-di-indonesia/ (accessed on 29 July 2025).
- Indonesia Investments. Palm Oil 2017. Available online: https://www.indonesia-investments.com/id/bisnis/komoditas/minyak-sawit/item166 (accessed on 14 July 2020).
- DDTCNews. Mandatory Biodiesel 40 Percent to Take Effect in January 2025, Could Save Foreign Exchange Jakarta: DDTCNews. 2025. Available online: https://news.ddtc.co.id/berita/nasional/1808045/mandatory-biodiesel-40-persen-berlaku-januari-2025-bisa-hemat-devisa (accessed on 17 March 2025).
- Kontan. Market Test for 5% Bioethanol Content Fuel (E5) Will Be Conducted Mid-Year Jakarta: Kontan. 2023. Available online: https://newssetup.kontan.co.id/news/uji-pasar-bbm-kandungan-bioethanol-5-e5-bakal-di-lakukan-pada-tengah-tahun-ini (accessed on 17 May 2025).
- MEMR. Fuel to Gas Diversification in the Transport Sector; MEMR: Jakarta, Indonesia, 2013. Available online: https://www.migas.esdm.go.id/post/Diversifikasi-BBM-ke-Bahan-Bakar-Gas-Pada-Sektor-Transportasi (accessed on 12 June 2023).
- IEA. Final Consumption of Gas by Sector in Indonesia; IEA: Paris, France, 2023. [Google Scholar]
- Republika. Three Challenges Facing by CNG Cars in Indonesia Jakarta: Republika. 2013. Available online: https://republika.co.id/berita/otomotif/mobil/13/12/19/my1x6d-tiga-kendala-mobil-cng-di-indonesia (accessed on 8 May 2025).
- CNBC Indonesia. The Sad Story of Electric Cars Made in Indonesia: A Dream Unfulfilled! Jakarta: CNBC Indonesia. 2023. Available online: https://www.cnbcindonesia.com/news/20230206065851-4-411170/kisah-sedih-mobil-listrik-buatan-ri-mimpi-tak-kesampaian (accessed on 20 March 2025).
- BCG. Electrifying Indonesia’s Two-Wheeler Industry Jakarta: BCG AEML. 2022. Available online: https://www.bcg.com/publications/2022/electrifying-indonesias-two-wheeler-industry (accessed on 2 February 2024).
- Tempo. Outlook 2025: Awaiting the Development of Electric Vehicle Infrastructure Jakarta: Tempo. 2025. Available online: https://www.tempo.co/ekonomi/outlook-2025-menanti-perkembangan-infrastruktur-kendaraan-listrik-1196867 (accessed on 14 February 2025).
- Kompas. The Government Has Not yet Provided Incentives for Hybrid Cars, Says An Observer Jakarta: Kompas. 2024. Available online: https://otomotif.kompas.com/read/2024/07/30/150100515/pemerintah-belum-beri-insentif-mobil-hybrid-ini-kata-pengamat (accessed on 17 May 2025).
- PLN. 2024 Annual Report Jakarta: PLN. 2025. Available online: https://web.pln.co.id/statics/uploads/2025/07/AR-PLN-2024-1507.pdf (accessed on 28 July 2025).
- CNN Indonesia. Toyota Indonesia Builds Hydrogen Charging Station in Karawang Jakarta: CNN Indonesia. 2025. Available online: https://www.cnnindonesia.com/otomotif/20250211125054-603-1196944/toyota-indonesia-bangun-stasiun-pengisian-hidrogen-di-karawang (accessed on 22 September 2025).
- PGE. Pertamina Unveils Modern Electrolysis Technology for Green Hydrogen Production in Ulubelu. Jakarta: PGE2025. 2025. Available online: https://www.pge.pertamina.com/en/press-release/pertamina-unveils-modern-electrolysis-technology-for-green-hydrogen-production-in-ulubelu (accessed on 22 September 2025).
- PGE. Supporting Decarbonization, PGE and Pertagas Strengthen Synergy for Clean Energy through Green Hydrogen Study. Jakarta: PGE. 2025. Available online: https://www.pge.pertamina.com/en/press-release/supporting-decarbonization-pge-and-pertagas-strengthen-synergy-for-clean-energy-through-green-hydrogen-study (accessed on 22 September 2025).
- Hyundai Motor Group Presents Action Plans for Waste-To-Hydrogen Ecosystem in Indonesia; Hyundai: Jakarta, Indonesia, 2025.
- Jia, C.; Liu, W.; He, H.; Chau, K.T. Health-conscious energy management for fuel cell vehicles: An integrated thermal management strategy for cabin and energy source systems. Energy 2025, 333, 137330. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, J.; Ou, K.; Huang, Y.; Kang, Z.; Mao, X.; Zhou, Y.; Xuan, D. Deep reinforcement learning-based health-conscious energy management for fuel cell hybrid electric vehicles in model predictive control framework. Energy 2024, 304, 131769. [Google Scholar] [CrossRef]
- Sellali, M.; Ravey, A.; Betka, A.; Kouzou, A.; Benbouzid, M.; Djerdir, A.; Kennel, R.; Abdelrahem, M. Multi-Objective Optimization-Based Health-Conscious Predictive Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles. Energies 2022, 15, 1318. [Google Scholar] [CrossRef]
- Jia, C.; Liu, W.; He, H.; Chau, K.T. Superior energy management for fuel cell vehicles guided by improved DDPG algorithm: Integrating driving intention speed prediction and health-aware control. Appl. Energy 2025, 394, 126195. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Fan, R.; Deng, C.; Wan, S.; Chaoui, H. Energy management strategy for fuel cell vehicles via soft actor-critic-based deep reinforcement learning considering powertrain thermal and durability characteristics. Energy Convers. Manag. 2023, 283, 116921. [Google Scholar] [CrossRef]
- Indira Ayu, A.; Bambang, P.; Santoso, M.S.; Mohamed Yusuf Faridian, W.; Liane, O.; Prawira Fajarindra, B. Battery Electric Vehicle Adoption in Indonesia: Insights from Consumer Preferences and Stakeholder Perspectives. J. Civ. Eng. Forum 2025, 11, 334–350. [Google Scholar] [CrossRef]
- PwC. PwC: More Indonesians Interested in Buying Electric Vehicles Jakarta: PwC. 2025. Available online: https://www.pwc.com/id/en/media-centre/pwc-in-news/2023/indonesian/pwc-makin-banyak-orang-indonesia-minat-beli-kendaraan-listrik.html#:~:text=Angkanya%20pun%20lebih%20tinggi%20dibandingkan,72%25%20responden%20merupakan%20generasi%20milenial (accessed on 6 October 2025).
- Pierson, P. Increasing returns, path dependence, and the study of politics. Am. Political Sci. Rev. 2000, 94, 251–268. [Google Scholar] [CrossRef]
- Geels, F.W.; Turnheim, B. The Great Reconfiguration: A Socio-Technical Analysis of Low-Carbon Transitions in UK Electricity, Heat, and Mobility Systems; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- IEA. World Energy Outlook 2023; IEA: Paris, France, 2023; Available online: https://iea.blob.core.windows.net/assets/86ede39e-4436-42d7-ba2a-edf61467e070/WorldEnergyOutlook2023.pdf (accessed on 12 February 2024).
- Sembiring, M. Critical Geopolitics of Global Environmental Norms: Exploring Indonesia’s Response to Climate Mitigation Agenda. Geopolitics 2025, 30, 1–24. [Google Scholar] [CrossRef]
- Geels, F.W. Disruption and low-carbon system transformation: Progress and new challenges in socio-technical transitions research and the Multi-Level Perspective. Energy Res. Soc. Sci. 2018, 37, 224–231. [Google Scholar] [CrossRef]
- Astari, A.J.; Lovett, J.C. Does the rise of transnational governance ‘hollow-out’the state? Discourse analysis of the mandatory Indonesian sustainable palm oil policy. World Dev. 2019, 117, 1–12. [Google Scholar] [CrossRef]
- Choiruzzad, S.A.B. Save Palm Oil, Save the Nation: Palm Oil Companies and the Shaping of Indonesia’s National Interest. Asian Politics Policy 2019, 11, 8–26. [Google Scholar] [CrossRef]
- Wibisono, H.; Lovett, J.C.; Anindito, D.B. The contestation of ideas behind Indonesia’s rural electrification policies: The influence of global and national institutional dynamics. Dev. Policy Rev. 2023, 41, e12650. [Google Scholar] [CrossRef]
- Qadir, S.A.; Ahmad, F.; Al-Wahedi, A.M.A.B.; Iqbal, A.; Ali, A. Navigating the complex realities of electric vehicle adoption: A comprehensive study of government strategies, policies, and incentives. Energy Strategy Rev. 2024, 53, 101379. [Google Scholar] [CrossRef]
- IEA Bioenergy. Annual Report 2023 Paris: IEA Bioenergy. 2024. Available online: https://www.ieabioenergy.com/wp-content/uploads/2024/06/Annual-Report-2023.pdf (accessed on 20 July 2025).
- Giraudo, M.E.; Grugel, J. Imaginaries of Soy and the Costs of Commodity-led Development: Reflections from Argentina. Dev. Change 2022, 53, 796–826. [Google Scholar] [CrossRef]
- Farobie, O.; Hartulistiyoso, E. Palm oil biodiesel as a renewable energy resource in Indonesia: Current status and challenges. BioEnergy Res. 2022, 15, 93–111. [Google Scholar] [CrossRef]
- Xu, W.; Mo, W. Institutional unlocking or technological unlocking? The logic of carbon unlocking in the new energy vehicle industry in China. Energy Policy 2024, 195, 114369. [Google Scholar] [CrossRef]
- de Vos, R.E.; Suwarno, A.; Slingerland, M.; van der Meer, P.J.; Lucey, J.M. Pre-certification conditions of independent oil palm smallholders in Indonesia. Assessing prospects for RSPO certification. Land Use Policy 2023, 130, 106660. [Google Scholar] [CrossRef]
- Panoutsou, C.; Germer, S.; Karka, P.; Papadokostantakis, S.; Kroyan, Y.; Wojcieszyk, M.; Maniatis, K.; Marchand, P.; Landalv, I. Advanced biofuels to decarbonise European transport by 2030: Markets, challenges, and policies that impact their successful market uptake. Energy Strategy Rev. 2021, 34, 100633. [Google Scholar] [CrossRef]
- Suhara, A.; Karyadi; Herawan, S.G.; Tirta, A.; Idris, M.; Roslan, M.F.; Putra, N.R.; Hananto, A.L.; Veza, I. Biodiesel Sustainability: Review of Progress and Challenges of Biodiesel as Sustainable Biofuel. Clean Technol. 2024, 6, 886–906. [Google Scholar] [CrossRef]
- Mosquéra, L.R.; de Oliveira, M.N.; Martins, P.H.d.S.; Bispo, G.D.; Borges, R.V.; Serrano, A.L.M.; Pompermayer, F.M.; Neumann, C.; Gonçalves, V.P.; Bork, C.A.S. Biofuel Dynamics in Brazil: Ethanol–Gasoline Price Threshold Analysis for Consumer Preference. Energies 2024, 17, 5265. [Google Scholar] [CrossRef]
- Agrawal, R.; Agrawal, S.; Samadhiya, A.; Kumar, A.; Luthra, S.; Jain, V. Adoption of green finance and green innovation for achieving circularity: An exploratory review and future directions. Geosci. Front. 2024, 15, 101669. [Google Scholar] [CrossRef]
- Sadiq, M.; Le-Dinh, T.; Tran, T.K.; Chien, F.; Phan, T.T.H.; Quang Huy, P. The role of green finance, eco-innovation, and creativity in the sustainable development goals of ASEAN countries. Econ. Res. Ekon. Istraz. 2023, 36, 2175010. [Google Scholar] [CrossRef]



| Parameter | Value | Parameter | Value (USD) |
|---|---|---|---|
| Exchange rate USD to IDR | 16,600 | Maintenance cost per km for gasoline ICE | 0.04 |
| Annual mileage (km) | 15,000 | Maintenance cost per km for HEVs | 0.04 |
| Discount rate | 10% | Maintenance cost per km for diesel ICE | 0.05 |
| Motor vehicle tax rate annual | 1.50% | Maintenance cost per km for BEVs | 0.02 |
| Insurance rate annual | 1.50% | Maintenance cost per km for FCVs | 0.05 |
| Resale year 5 (pct of OTR) | 55.00% | Non-subsidized gasoline (per liter) | 0.78 |
| Resale year 10 (pct of OTR) | 30.00% | Non-subsidized diesel (per liter) | 0.84 |
| BEV battery replacement year | 8 | Home charging (per kwh) | 0.10 |
| HEV battery replacement year | 7 | Public charging (per kwh) | 0.21 |
| Admin insurance per year (USD) | 10 | Fast charging (per kwh) | 0.24 |
| Battery pack cost per kWh (USD) | 115 | Hydrogen liquid (per kg est) | 14.50 |
| HEV aux batt replacement (USD) | 900 |
| Vehicle | Type | OPEX Cost (USD/km) | Upfront Purchase (USD) | TCO NPV 10 y (USD) | TCO per km 10 y (USD per km) |
|---|---|---|---|---|---|
| Daihatsu Ayla 1.2 | ICE Petrol | 0.09 | 9789 | 14,682 | 0.098 |
| BYD Atto 1 | BEV | 0.04 | 12,952 | 15,860 | 0.106 |
| Toyota Avanza | CNG | 0.08 | 16,438 | 19,524 | 0.130 |
| Suzuki Ertiga Hybrid | Hybrid Mild | 0.09 | 17,280 | 21,949 | 0.146 |
| Mitsubishi Xpander | ICE Petrol | 0.12 | 19,053 | 24,530 | 0.164 |
| Toyota Innova Reborn | ICE Diesel | 0.14 | 26,114 | 31,989 | 0.213 |
| Honda HR-V e:HEV | Hybrid | 0.09 | 26,744 | 31,035 | 0.207 |
| Toyota Innova Zenix | ICE Petrol | 0.13 | 27,672 | 32,883 | 0.219 |
| BYD Atto 3 | BEV | 0.05 | 29,819 | 32,311 | 0.215 |
| Hyundai Kona Electric | BEV | 0.05 | 37,795 | 39,574 | 0.264 |
| Toyota Mirai (import est.) | FCEV | 0.26 | 93,012 | 103,719 | 0.691 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathoni, F.; Lovett, J.C.; Rifansha, M.M. A Multi-Level Perspective on Transition to Renewable Energy in the Indonesian Transport Sector. Energies 2025, 18, 5723. https://doi.org/10.3390/en18215723
Fathoni F, Lovett JC, Rifansha MM. A Multi-Level Perspective on Transition to Renewable Energy in the Indonesian Transport Sector. Energies. 2025; 18(21):5723. https://doi.org/10.3390/en18215723
Chicago/Turabian StyleFathoni, Ferry, Jon C. Lovett, and Muhammad Mufti Rifansha. 2025. "A Multi-Level Perspective on Transition to Renewable Energy in the Indonesian Transport Sector" Energies 18, no. 21: 5723. https://doi.org/10.3390/en18215723
APA StyleFathoni, F., Lovett, J. C., & Rifansha, M. M. (2025). A Multi-Level Perspective on Transition to Renewable Energy in the Indonesian Transport Sector. Energies, 18(21), 5723. https://doi.org/10.3390/en18215723

