Power-to-Heat and Seasonal Thermal Energy Storage: Pathways Toward a Low-Carbon Future for District Heating
Abstract
1. Introduction
- Examining the technical principles and current state of the art of existing P2H and TES technologies, including innovative approaches to integrating VRE systems (photovoltaics and wind energy) with STES;
- Analyzing the strategic role of these technologies in decarbonizing residential and district heating systems through enhanced flexibility and renewable integration;
- Identifying and discussing numerical and experimental studies that propose and validate novel configurations tailored to NZEBs and NZEDs.
2. Methodology
2.1. Criteria Applied to Ensure the Credibility and Clarity of the Review
- preference was given to peer-reviewed journal articles and conference proceedings—152 (98.7% of all references);
- articles published in the last 10 years were primarily considered for a total of 147, including 110 articles published in the period of 2020–2025 and 37 articles published in the period of 2015–2019;
- articles from leading editorial sources were mainly cited, including Elsevier, MDPI, Springer Nature, Taylor&Francis, Wiley, IEEE, Frontiers, ASCEE, and IOPscience.
2.2. The Main Stages of the Literature Review Process
- titles, keywords, and abstracts were first reviewed to evaluate their relevance to the topic under consideration;
- full-text articles were assessed to identify relevant scientific and technical contributions, methodologies, and findings;
- the key findings were thematically organized and allocated to the appropriate sections.
2.3. Keyword Selection
2.4. Limitations of the Review
- the review focuses on journal articles and conference proceedings written in English and may overlook contributions written in other languages;
- the review includes scientific papers and may exclude those described in technical reports and other non-scientific works;
- the reliance on keyword searches may inadvertently exclude some relevant studies due to the variations in terminology.
3. P2H Technologies and Their Potential Integration with VRE and TES
3.1. Overview of P2H Technologies
3.2. Integration of P2H Technologies with VRE
- co-located systems in which PV panels and WTs are installed at the same site and share a grid connection, providing a steadier energy supply;
- microgrids in which hybrid solar–wind systems operate as stand-alone systems;
- integrated control in which advanced controllers balance solar and wind output by directing surplus energy to storage or immediate use;
- optimization algorithms that determine the optimal solar–wind mix based on weather, demand, and storage conditions;
3.3. Integration of P2H Technologies with TES Systems
3.3.1. Aquifer Thermal Energy Storage
3.3.2. Borehole Thermal Energy Storage
3.3.3. Pit Thermal Energy Storage
3.3.4. Tank Thermal Energy Storage
3.3.5. Packed Bed Thermal Energy Storage
3.3.6. Summary of the Discussed SHS Technologies
3.4. Potential for Further Development of P2H and STES Technologies
4. Pathways Toward Low-Carbon District Heating: Overview of the Numerical and Experimental Works
4.1. Selected Studies of the District Scale Systems Dedicated to the NZEBs and NZEDs
4.2. Selected Studies of the Island-Scale Systems Dedicated to the NZEBs and NZEDs
4.3. Selected Studies of the Testing Prototypes of Systems Dedicated to NZEBs and NZEDs
4.4. Case Studies of the Existing Seasonal Thermal Energy Storage Installations
4.5. Long-Term Outlook
5. Conclusions
Funding
Conflicts of Interest
References
- Energy Consumption in Households—Statistics Explained—Eurostat. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households (accessed on 29 August 2025).
- Buildings—Energy System—IEA. Available online: https://www.iea.org/energy-system/buildings (accessed on 29 August 2025).
- Harkouss, F.; Fardoun, F.; Biwole, P.H. Optimization Approaches and Climates Investigations in NZEB—A Review. Build. Simul. 2018, 11, 923–952. [Google Scholar] [CrossRef]
- Lou, H.L.; Hsieh, S.H. Towards Zero: A Review on Strategies in Achieving Net-Zero-Energy and Net-Zero-Carbon Buildings. Sustainability 2024, 16, 4735. [Google Scholar] [CrossRef]
- Baeuerle, Y.I.; Arpagaus, C.; Haller, M.Y. A Review of Seasonal Energy Storage for Net-Zero Industrial Heat: Thermal and Power-to-X Storage Including the Novel Concept of Renewable Metal Energy Carriers. Energies 2025, 18, 2204. [Google Scholar] [CrossRef]
- Cardoso, J.; Leal, V.; Azevedo, I.; Silva, M.C. Designing Carbon Neutral, Net-Zero, Nearly-Zero and Positive Energy Districts or Neighbourhoods: Current Approaches and Solutions. Adv. Build. Energy Res. 2024, 18, 602–640. [Google Scholar] [CrossRef]
- Elnagar, E.; Köhler, B. Reduction of the Energy Demand with Passive Approaches in Multifamily Nearly Zero-Energy Buildings Under Different Climate Conditions. Front. Energy Res. 2020, 8, 545272. [Google Scholar] [CrossRef]
- Jin, B.; Bae, Y. Prospective Research Trend Analysis on Zero-Energy Building (ZEB): An Artificial Intelligence Approach. Sustainability 2023, 15, 13577. [Google Scholar] [CrossRef]
- Lyden, A.; Brown, C.S.; Kolo, I.; Falcone, G.; Friedrich, D. Seasonal Thermal Energy Storage in Smart Energy Systems: District-Level Applications and Modelling Approaches. Renew. Sustain. Energy Rev. 2022, 167, 112760. [Google Scholar] [CrossRef]
- Wang, Q.; Hou, Z.; Guo, Y.; Huang, L.; Fang, Y.; Sun, W.; Ge, Y. Enhancing Energy Transition through Sector Coupling: A Review of Technologies and Models. Energies 2023, 16, 5226. [Google Scholar] [CrossRef]
- Bloess, A.; Schill, W.P.; Zerrahn, A. Power-to-Heat for Renewable Energy Integration: A Review of Technologies, Modeling Approaches, and Flexibility Potentials. Appl. Energy 2018, 212, 1611–1626. [Google Scholar] [CrossRef]
- Werner, M.; Muschik, S.; Ehrenwirth, M.; Trinkl, C.; Schrag, T. Sector Coupling Potential of a District Heating Network by Consideration of Residual Load and CO2 Emissions. Energies 2022, 15, 6281. [Google Scholar] [CrossRef]
- Beck, A.; Sevault, A.; Sijm, J.; Drexler-Schmid, G.; Schöny, M.; Kauko, H. Optimal Selection of Thermal Energy Storage Technology for Fossil-Free Steam Production in the Processing Industry. Appl. Sci. 2021, 11, 1063. [Google Scholar] [CrossRef]
- Ashabi, A.; Mostafa, M.; Hryshchenko, A.; Bruton, K.; O’sullivan, D.T.J. Assessing Power-to-Heat Technologies for Industrial Electrification: A Multi-Criteria Decision Analysis Approach. Energy Convers. Manag. X 2025, 25, 100882. [Google Scholar] [CrossRef]
- Bühler, F.; Zühlsdorf, B.; Van Nguyen, T.; Elmegaard, B. A Comparative Assessment of Electrification Strategies for Industrial Sites: Case of Milk Powder Production. Appl. Energy 2019, 250, 1383–1401. [Google Scholar] [CrossRef]
- Chowdhury, N.I.; Gopalakrishnan, B.; Adhikari, N.; Li, H.; Liu, Z. Evaluating Electrification of Fossil-Fuel-Fired Boilers for Decarbonization Using Discrete-Event Simulation. Energies 2024, 17, 2882. [Google Scholar] [CrossRef]
- Jibran, M.; Hasanbeigi, A.; Morrow, W. Bottom-up Assessment of Industrial Heat Pump Applications in U.S. Food Manufacturing. Energy Convers. Manag. 2022, 272, 116349. [Google Scholar] [CrossRef]
- Ochs, F.; Magni, M.; Dermentzis, G. Integration of Heat Pumps in Buildings and District Heating Systems—Evaluation on a Building and Energy System Level. Energies 2022, 15, 3889. [Google Scholar] [CrossRef]
- Arpagaus, C.; Bless, F.; Uhlmann, M.; Schiffmann, J.; Bertsch, S.S. High Temperature Heat Pumps: Market Overview, State of the Art, Research Status, Refrigerants, and Application Potentials. Energy 2018, 152, 985–1010. [Google Scholar] [CrossRef]
- Lygnerud, K.; Ottosson, J.; Kensby, J.; Johansson, L. Business Models Combining Heat Pumps and District Heating in Buildings Generate Cost and Emission Savings. Energy 2021, 234, 121202. [Google Scholar] [CrossRef]
- Karim, A.; Fratianni, A.; Cárcel, J.A.; Uzzal, M.; Joardder, H.; Jin, W.; Zhang, M.; Mujumdar, A.S. A High-Efficiency Radio-Frequency-Assisted Hot-Air Drying Method for the Production of Restructured Bitter Melon and Apple Chips. Foods 2024, 13, 197. [Google Scholar] [CrossRef]
- Baroudi, U. Robot-Assisted Maintenance of Wireless Sensor Networks Using Wireless Energy Transfer. IEEE Sens. J. 2017, 17, 4661–4671. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.W. Energy Adaptive MAC for Wireless Sensor Networks with RF Energy Transfer: Algorithm, Analysis, and Implementation. Telecommun. Syst. 2017, 64, 293–307. [Google Scholar] [CrossRef]
- Arrutia, F.; Adam, M.; Calvo-Carrascal, M.Á.; Mao, Y.; Binner, E. Development of a Continuous-Flow System for Microwave-Assisted Extraction of Pectin-Derived Oligosaccharides from Food Waste. Chem. Eng. J. 2020, 395, 125056. [Google Scholar] [CrossRef]
- Costa, H.C.d.B.; Siguemoto, É.S.; Cavalcante, T.A.B.B.; de Oliveira Silva, D.; Vieira, L.G.M.; Gut, J.A.W. Effect of Microwave-Assisted Processing on Polyphenol Oxidase and Peroxidase Inactivation Kinetics of Açai-Berry (Euterpe Oleracea) Pulp. Food Chem. 2021, 341, 128287. [Google Scholar] [CrossRef] [PubMed]
- Aboud, S.A.; Altemimi, A.B.; Al-HiIphy, A.R.S.; Yi-Chen, L.; Cacciola, F. A Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules 2019, 24, 4125. [Google Scholar] [CrossRef]
- Riadh, M.H.; Ahmad, S.A.B.; Marhaban, M.H.; Soh, A.C. Infrared Heating in Food Drying: An Overview. Dry. Technol. 2015, 33, 322–335. [Google Scholar] [CrossRef]
- Lee, E.H.; Yoon, J.W.; Yang, D.Y. Study on Springback from Thermal-Mechanical Boundary Condition Imposed to V-Bending and L-Bending Processes Coupled with Infrared Rays Local Heating. Int. J. Mater. Form. 2018, 11, 417–433. [Google Scholar] [CrossRef]
- Fakayode, O.A.; Ojoawo, O.O.; Zhou, M.; Wahia, H.; Ogunlade, C.A. Revolutionizing Food Processing with Infrared Heating: New Approaches to Quality and Efficiency. Food Phys. 2025, 2, 100046. [Google Scholar] [CrossRef]
- Noutfia, Y.; Ropelewska, E. Exploration of Convective and Infrared Drying Effect on Image Texture Parameters of ‘Mejhoul’ and ‘Boufeggous’ Date Palm Fruit Using Machine Learning Models. Foods 2024, 13, 1602. [Google Scholar] [CrossRef]
- Szychta, E.; Szychta, L. Comparative Analysis of Effectiveness of Resistance and Induction Turnout Heating. Energies 2020, 13, 5262. [Google Scholar] [CrossRef]
- Hawryluk, M.; Rychlik, M.; Pietrzak, M.; Górski, P.; Marzec, J. Development of Induction Heating System Ensuring Increased Heating Efficiency of the Charge Material in a Forging. Materials 2022, 15, 1516. [Google Scholar] [CrossRef]
- Baricová, D.; Demeter, P.; Dzuř, R.; Cižmár, M.; Variny, M.; Kurák, T. Determining Operating Parameters of an Electric Furnace for Casting of Bronze Age Replicas. Eng. Proc. 2024, 64, 4. [Google Scholar] [CrossRef]
- Shyamal, S.; Swartz, C.L.E. Real-Time Energy Management for Electric Arc Furnace Operation. J. Process Control 2019, 74, 50–62. [Google Scholar] [CrossRef]
- Li, J.; Wei, G.; Han, C. Fundamental Study on Electric Arc Furnace Steelmaking with Submerged Carbon Powder Injection with CO2-O2 Mixed Gas. Metals 2023, 13, 1602. [Google Scholar] [CrossRef]
- Kovačič, M.; Stopar, K.; Vertnik, R.; Šarler, B. Comprehensive Electric Arc Furnace Electric Energy Consumption Modeling: A Pilot Study. Energies 2019, 12, 2142. [Google Scholar] [CrossRef]
- Feliu-Batlle, V.; Rivas-Perez, R.; Borges-Rivero, R.A.; Misa-Llorca, R. System Identification for Robust Control of an Electrode Positioning System of an Industrial Electric Arc Melting Furnace. Processes 2024, 12, 2509. [Google Scholar] [CrossRef]
- Di Foggia, G.; Hasanbeigi, A.; Jibran, M.; Zuberi, S. Electrification of Steam and Thermal Oil Boilers in the Textile Industry: Techno-Economic Analysis for China, Japan, and Taiwan. Energies 2022, 15, 9179. [Google Scholar] [CrossRef]
- Capone, M.; Guelpa, E.; Verda, V. Optimal Installation of Heat Pumps in Large District Heating Networks. Energies 2023, 16, 1448. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Wang, S.; Ling, B. Radio Frequency Treatment in Food Processing: A Review of Its Recent Applications in Fluid and Semifluid Foods. Food Phys. 2025, 2, 100043. [Google Scholar] [CrossRef]
- Wu, J.; Ma, Y.; Yin, S.; Yin, C.; Yin, K.; Yang, Y.; Zhu, H. Compact Microwave Continuous-Flow Heater. Processes 2024, 12, 1895. [Google Scholar] [CrossRef]
- Wang, T.; Xia, L.; Ni, M.; Pan, S.; Luo, C. Fundamentals of Infrared Heating and Their Application in Thermosetting Polymer Curing: A Review. Coatings 2024, 14, 875. [Google Scholar] [CrossRef]
- Dong, B.; Ma, H.; Wang, J.; Chen, X. Temperature Control in Electric Furnaces: Methods, Applications, and Challenges. J. Phys. Conf. Ser. 2023, 2649, 012032. [Google Scholar] [CrossRef]
- Vishnuram, P.; Ramachandiran, G.; Babu, T.S.; Nastasi, B. Induction Heating in Domestic Cooking and Industrial Melting Applications: A Systematic Review on Modelling, Converter Topologies and Control Schemes. Energies 2021, 14, 6634. [Google Scholar] [CrossRef]
- Zhuo, Q.; Al-Harbi, M.N.; Pistorius, P.C. Feature Engineering to Embed Process Knowledge: Analyzing the Energy Efficiency of Electric Arc Furnace Steelmaking. Metals 2024, 15, 13. [Google Scholar] [CrossRef]
- Javanshir, N.; Syri, S. Techno-Economic Analysis of a Highly Renewable and Electrified District Heating Network Operating in the Balancing Markets. Energies 2023, 16, 8117. [Google Scholar] [CrossRef]
- Impram, S.; Varbak Nese, S.; Oral, B. Challenges of Renewable Energy Penetration on Power System Flexibility: A Survey. Energy Strategy Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Carmona-Martínez, A.A.; Fresneda-Cruz, A.; Rueda, A.; Birgi, O.; Khawaja, C.; Janssen, R.; Davidis, B.; Reumerman, P.; Vis, M.; Karampinis, E.; et al. Renewable Power and Heat for the Decarbonisation of Energy-Intensive Industries. Processes 2022, 11, 18. [Google Scholar] [CrossRef]
- Belloni, E.; Bianchini, G.; Casini, M.; Faba, A.; Intravaia, M.; Laudani, A.; Lozito, G.M. An Overview on Building-Integrated Photovoltaics: Technological Solutions, Modeling, and Control. Energy Build. 2024, 324, 114867. [Google Scholar] [CrossRef]
- Cheikh-Mohamad, S.; Celik, B.; Sechilariu, M.; Locment, F. PV-Powered Charging Station with Energy Cost Optimization via V2G Services. Appl. Sci. 2023, 13, 5627. [Google Scholar] [CrossRef]
- Sekkal, M.C.; Ziani, Z.; Mahdad, M.Y.; Meliani, S.M.; Baghli, M.H.; Bessenouci, M.Z. Assessing the Wind Power Potential in Naama, Algeria to Complement Solar Energy through Integrated Modeling of the Wind Resource and Turbine Wind Performance. Energies 2024, 17, 785. [Google Scholar] [CrossRef]
- Li, L.; Lin, J.; Wu, N.; Xie, S.; Meng, C.; Zheng, Y.; Wang, X.; Zhao, Y. Review and Outlook on the International Renewable Energy Development. Energy Built Environ. 2022, 3, 139–157. [Google Scholar] [CrossRef]
- Memon, S.A.; Upadhyay, D.S.; Patel, R.N. Optimal Configuration of Solar and Wind-Based Hybrid Renewable Energy System with and without Energy Storage Including Environmental and Social Criteria: A Case Study. J. Energy Storage 2021, 44, 103446. [Google Scholar] [CrossRef]
- Mossa, M.A.; Gam, O.; Bianchi, N. Performance Enhancement of a Hybrid Renewable Energy System Accompanied with Energy Storage Unit Using Effective Control System. Int. J. Robot. Control. Syst. 2022, 2, 140–171. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. A Review of Hybrid Renewable Energy Systems: Solar and Wind-Powered Solutions: Challenges, Opportunities, and Policy Implications. Results Eng. 2023, 20, 101621. [Google Scholar] [CrossRef]
- Acakpovi, A.; Adjei, P.; Nwulu, N.; Asabere, N.Y. Optimal Hybrid Renewable Energy System: A Comparative Study of Wind/Hydrogen/Fuel-Cell and Wind/Battery Storage. J. Electr. Comput. Eng. 2020, 2020, 1756503. [Google Scholar] [CrossRef]
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; De Souza Noel Simas Barbosa, L.; et al. Low-Cost Renewable Electricity as the Key Driver of the Global Energy Transition towards Sustainability. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Raboaca, M.S.; Badea, G.; Enache, A.; Filote, C.; Rasoi, G.; Rata, M.; Lavric, A.; Felseghi, R.A. Concentrating Solar Power Technologies. Energies 2019, 12, 1048. [Google Scholar] [CrossRef]
- Ferruzzi, G.; Delcea, C.; Barberi, A.; Di Dio, V.; Di Somma, M.; Catrini, P.; Guarino, S.; Rossi, F.; Parisi, M.L.; Sinicropi, A.; et al. Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives. Energies 2023, 16, 8082. [Google Scholar] [CrossRef]
- Ross, K.; Matuszewska, D.; Olczak, P. Analysis of Using Hybrid 1 MWp PV-Farm with Energy Storage in Poland. Energies 2023, 16, 7654. [Google Scholar] [CrossRef]
- Malik, F.H.; Hussain, G.A.; Alsmadi, Y.M.S.; Haider, Z.M.; Mansoor, W.; Lehtonen, M. Integrating Energy Storage Technologies with Renewable Energy Sources: A Pathway Toward Sustainable Power Grids. Sustainability 2025, 17, 4097. [Google Scholar] [CrossRef]
- Saha, S.; Basu, P.K.; Ustun, J.B.; Hernández-Callejo, L.; Aguilar Jiménez, A.; Meza Benavides, C.; Chakraborty, M.R.; Dawn, S.; Saha, P.K.; Basu, J.B.; et al. A Comparative Review on Energy Storage Systems and Their Application in Deregulated Systems. Batteries 2022, 8, 124. [Google Scholar] [CrossRef]
- Subasinghage, K.; Gunawardane, K. Supercapacitor-Assisted Energy Harvesting Systems. Energies 2024, 17, 3853. [Google Scholar] [CrossRef]
- Jankowski, M.; Pałac, A.; Sornek, K.; Goryl, W.; Żołądek, M.; Homa, M.; Filipowicz, M. Status and Development Perspectives of the Compressed Air Energy Storage (CAES) Technologies—A Literature Review. Energies 2024, 17, 2064. [Google Scholar] [CrossRef]
- Nikolaos, P.C.; Marios, F.; Dimitris, K. A Review of Pumped Hydro Storage Systems. Energies 2023, 16, 4516. [Google Scholar] [CrossRef]
- Aggarwal, A.; Goyal, N.; Kumar, A. Thermal Characteristics of Sensible Heat Storage Materials Applicable for Concentrated Solar Power Systems. Mater. Today Proc. 2021, 47, 5812–5817. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Luo, Z.; Wang, K.; Shah, S.P. A Critical Review on Phase Change Materials (PCM) for Sustainable and Energy Efficient Building: Design, Characteristic, Performance and Application. Energy Build. 2022, 260, 111923. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef]
- Behzadi, A.; Holmberg, S.; Duwig, C.; Haghighat, F.; Ooka, R.; Sadrizadeh, S. Smart Design and Control of Thermal Energy Storage in Low-Temperature Heating and High-Temperature Cooling Systems: A Comprehensive Review. Renew. Sustain. Energy Rev. 2022, 166, 112625. [Google Scholar] [CrossRef]
- Khan, M.I.; Asfand, F.; Al-Ghamdi, S.G. Progress in Research and Technological Advancements of Thermal Energy Storage Systems for Concentrated Solar Power. J. Energy Storage 2022, 55, 105860. [Google Scholar] [CrossRef]
- Yang, T.; Liu, W.; Kramer, G.J.; Sun, Q. Seasonal Thermal Energy Storage: A Techno-Economic Literature Review. Renew. Sustain. Energy Rev. 2021, 139, 110732. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Assadi, M.; Kalantar, A.; Sliwa, T.; Sapińska-śliwa, A. A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes. Energies 2022, 15, 4281. [Google Scholar] [CrossRef]
- Lu, H.; Tian, P.; He, L. Evaluating the Global Potential of Aquifer Thermal Energy Storage and Determining the Potential Worldwide Hotspots Driven by Socio-Economic, Geo-Hydrologic and Climatic Conditions. Renew. Sustain. Energy Rev. 2019, 112, 788–796. [Google Scholar] [CrossRef]
- Bonte, M.; van Breukelen, B.M.; Stuyfzand, P.J. Temperature-Induced Impacts on Groundwater Quality and Arsenic Mobility in Anoxic Aquifer Sediments Used for Both Drinking Water and Shallow Geothermal Energy Production. Water Res. 2013, 47, 5088–5100. [Google Scholar] [CrossRef]
- Focaccia, S.; Tinti, F.; Monti, F.; Amidei, S.; Bruno, R. Shallow Geothermal Energy for Industrial Applications: A Case Study. Sustain. Energy Technol. Assess. 2016, 16, 93–105. [Google Scholar] [CrossRef]
- Gehlin, S. Borehole Thermal Energy Storage. In Advances in Ground-Source Heat Pump Systems; Elsevier: Amsterdam, The Netherlands, 2016; pp. 295–327. [Google Scholar] [CrossRef]
- Borko, K.; Brenčič, M.; Savšek, Z.; Knez, J.; Vozelj, A.; Kisel, G.; Rman, N. Insights into Aquifer and Borehole Thermal Energy Storage Systems for Slovenia’s Energy Transition. Energies 2025, 18, 1019. [Google Scholar] [CrossRef]
- Rivera, J.A.; Blum, P.; Bayer, P. Analytical Simulation of Groundwater Flow and Land Surface Effects on Thermal Plumes of Borehole Heat Exchangers. Appl. Energy 2015, 146, 421–433. [Google Scholar] [CrossRef]
- Ramos-Escudero, A.; Bloemendal, M. Assessment of Potential for Aquifer Thermal Energy Storage Systems for Spain. Sustain. Cities Soc. 2022, 81, 103849. [Google Scholar] [CrossRef]
- Hua, W.; Lv, X.; Zhang, X.; Ji, Z.; Zhu, J. Research Progress of Seasonal Thermal Energy Storage Technology Based on Supercooled Phase Change Materials. J. Energy Storage 2023, 67, 107378. [Google Scholar] [CrossRef]
- Hesaraki, A.; Holmberg, S.; Haghighat, F. Seasonal Thermal Energy Storage with Heat Pumps and Low Temperatures in Building Projects—A Comparative Review. Renew. Sustain. Energy Rev. 2015, 43, 1199–1213. [Google Scholar] [CrossRef]
- Pourahmadiyan, A.; Sadi, M.; Arabkoohsar, A. Seasonal Thermal Energy Storage. In Future Grid-Scale Energy Storage Solutions: Mechanical and Chemical Technologies and Principles; Elsevier: Amsterdam, The Netherlands, 2023; pp. 215–267. [Google Scholar] [CrossRef]
- Sifnaios, I.; Sneum, D.M.; Jensen, A.R.; Fan, J.; Bramstoft, R. The Impact of Large-Scale Thermal Energy Storage in the Energy System. Appl. Energy 2023, 349, 121663. [Google Scholar] [CrossRef]
- Formhals, J.; Kirschstein, X.; Dahash, A.; Seib, L.; Sass, I. Development, Validation and Demonstration of a New Modelica Pit Thermal Energy Storage Model for System Simulation and Optimization. Geotherm. Energy 2024, 12, 1–23. [Google Scholar] [CrossRef]
- Angelini, G.; Lucchini, A.; Manzolini, G. Comparison of Thermocline Molten Salt Storage Performances to Commercial Two-Tank Configuration. Energy Procedia 2014, 49, 694–704. [Google Scholar] [CrossRef]
- Hiris, D.; Balan, M.C.; Bode, F.I. A Comprehensive Review on Enhancing Seasonal Energy Storage Systems through Energy Efficiency Perspectives. Processes 2024, 12, 1623. [Google Scholar] [CrossRef]
- Dahash, A.; Ochs, F.; Tosatto, A.; Streicher, W. Toward Efficient Numerical Modeling and Analysis of Large-Scale Thermal Energy Storage for Renewable District Heating. Appl. Energy 2020, 279, 115840. [Google Scholar] [CrossRef]
- Dolgun, G.K.; Keçebaş, A.; Ertürk, M.; Daşdemir, A. Optimal Insulation of Underground Spherical Tanks for Seasonal Thermal Energy Storage Applications. J. Energy Storage 2023, 69, 107865. [Google Scholar] [CrossRef]
- Pérez-Gallego, D.; Gonzalez-Ayala, J.; Medina, A.; Calvo-Hernández, A. Comprehensive review of dynamical simulation models of packed-bed systems for thermal energy storage applications in renewable power production. Heliyon 2025, 11, e42803. [Google Scholar] [CrossRef]
- Rabi’, A.M.; Radulovic, J.; Buick, J.M. Investigation of the Charging and Discharging Cycle of Packed-Bed Storage Tanks for Energy Storage Systems: A Numerical Study. Thermo 2025, 5, 24. [Google Scholar] [CrossRef]
- Koçak, B.; Majó, M.; Barreneche, C.; Fernández, A.I.; Paksoy, H. Performance Analysis of a Molten Salt Packed-Bed Thermal Energy Storage System Using Three Different Waste Materials. Sol. Energy Mater. Sol. Cells 2024, 278, 113199. [Google Scholar] [CrossRef]
- Beernink, S.; Hartog, N.; Vardon, P.J.; Bloemendal, M. Heat Losses in ATES Systems: The Impact of Processes, Storage Geometry and Temperature. Geothermics 2024, 117, 102889. [Google Scholar] [CrossRef]
- Ma, J.; Wang, H.; Li, Y.; Ren, J.; Sun, H.; Du, S.; Wen, H. Heating and Storage of Medium-Deep Borehole Heat Exchangers: Analysis of Operational Characteristics via an Optimized Analytical Solution Model. J. Energy Storage 2024, 90, 111760. [Google Scholar] [CrossRef]
- Sadeghi, H.; Jalali, R.; Singh, R.M. A review of borehole thermal energy storage and its integration into district heating systems. Renew. Sustain. Energy Rev. 2024, 192, 114236. [Google Scholar] [CrossRef]
- Dahash, A.; Ochs, F.; Janetti, M.B.; Streicher, W. Advances in Seasonal Thermal Energy Storage for Solar District Heating Applications: A Critical Review on Large-Scale Hot-Water Tank and Pit Thermal Energy Storage Systems. Appl. Energy 2019, 239, 296–315. [Google Scholar] [CrossRef]
- Al-Azawii, M.M.S.; Alhamdi, S.F.H.; Braun, S.; Hoffmann, J.F.; Calvet, N.; Anderson, R. Thermocline in Packed Bed Thermal Energy Storage during Charge-Discharge Cycle Using Recycled Ceramic Materials—Commercial Scale Designs at High Temperature. J. Energy Storage 2023, 64, 107209. [Google Scholar] [CrossRef]
- Vigna, I.; Pernetti, R.; Pasut, W.; Lollini, R. New Domain for Promoting Energy Efficiency: Energy Flexible Building Cluster. Sustain. Cities Soc. 2018, 38, 526–533. [Google Scholar] [CrossRef]
- Zhang, X.; Lovati, M.; Vigna, I.; Widén, J.; Han, M.; Gal, C.; Feng, T. A Review of Urban Energy Systems at Building Cluster Level Incorporating Renewable-Energy-Source (RES) Envelope Solutions. Appl. Energy 2018, 230, 1034–1056. [Google Scholar] [CrossRef]
- Zygmunt, M.; Gawin, D. Application of the Renewable Energy Sources at District Scale—A Case Study of the Suburban Area. Energies 2022, 15, 473. [Google Scholar] [CrossRef]
- Wyrwa, A.; Raczyński, M.; Kulik, M.; Oluwapelumi, O.; Mateusiak, L.; Zhang, H.; Kempka, M. Greening of the District Heating Systems—Case Study of Local Systems. Energies 2022, 15, 3165. [Google Scholar] [CrossRef]
- Komninos, N. Net Zero Energy Districts: Connected Intelligence for Carbon-Neutral Cities. Land. 2022, 11, 210. [Google Scholar] [CrossRef]
- Tulus, V.; Abokersh, M.H.; Cabeza, L.F.; Vallès, M.; Jiménez, L.; Boer, D. Economic and Environmental Potential for Solar Assisted Central Heating Plants in the EU Residential Sector: Contribution to the 2030 Climate and Energy EU Agenda. Appl. Energy 2019, 236, 318–339. [Google Scholar] [CrossRef]
- Renaldi, R.; Friedrich, D. Techno-Economic Analysis of a Solar District Heating System with Seasonal Thermal Storage in the UK. Appl. Energy 2019, 236, 388–400. [Google Scholar] [CrossRef]
- Janus, J.; Filipowska, M.; Jabłoński, H.; Wieliński, M.; Sornek, K. Overview of Technologies for Solar Systems and Heat Storage: The Use of Computational Fluid Dynamics for Performance Analysis and Optimization. Energies 2024, 17, 6001. [Google Scholar] [CrossRef]
- Penttinen, P.; Vimpari, J.; Junnila, S. Optimal Seasonal Heat Storage in a District Heating System with Waste Incineration. Energies 2021, 14, 3522. [Google Scholar] [CrossRef]
- Rasku, T.; Kiviluoma, J. A Comparison of Widespread Flexible Residential Electric Heating and Energy Efficiency in a Future Nordic Power System. Energies 2018, 12, 5. [Google Scholar] [CrossRef]
- Hirvonen, J.; Kosonen, R. Waste Incineration Heat and Seasonal Thermal Energy Storage for Promoting Economically Optimal Net-Zero Energy Districts in Finland. Buildings 2020, 10, 205. [Google Scholar] [CrossRef]
- Maruf, M.N.I.; Morales-España, G.; Sijm, J.; Helistö, N.; Kiviluoma, J. Classification, Potential Role, and Modeling of Power-to-Heat and Thermal Energy Storage in Energy Systems: A Review. Sustain. Energy Technol. Assess. 2022, 53, 102553. [Google Scholar] [CrossRef]
- Jin, T. Estimating the Potential of Power-to-Heat (P2H) in 2050 Energy System for the Net-Zero of South Korea. Energy 2025, 314, 134206. [Google Scholar] [CrossRef]
- Adesanya, M.A.; Rabiu, A.; Ogunlowo, Q.O.; Kim, M.H.; Akpenpuun, T.D.; Na, W.H.; Grewal, K.S.; Lee, H.W. Experimental Evaluation of Hybrid Renewable and Thermal Energy Storage Systems for a Net-Zero Energy Greenhouse: A Case Study of Yeoju-Si. Energies 2025, 18, 2635. [Google Scholar] [CrossRef]
- Todorov, O.; Alanne, K.; Virtanen, M.; Kosonen, R. A Method and Analysis of Aquifer Thermal Energy Storage (ATES) System for District Heating and Cooling: A Case Study in Finland. Sustain. Cities Soc. 2020, 53, 101977. [Google Scholar] [CrossRef]
- Rosato, A.; Ciervo, A.; Ciampi, G.; Sibilio, S. Effects of Solar Field Design on the Energy, Environmental and Economic Performance of a Solar District Heating Network Serving Italian Residential and School Buildings. Renew. Energy 2019, 143, 596–610. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, D.; Heo, J.; Lee, D.W. Techno-Economic Analysis of Hybrid Renewable Energy System with Solar District Heating for Net Zero Energy Community. Energy 2019, 187, 115916. [Google Scholar] [CrossRef]
- Pastore, L.M.; Groppi, D.; Feijoo, F. District Heating Deployment and Energy-Saving Measures to Decarbonise the Building Stock in 100% Renewable Energy Systems. Buildings 2024, 14, 2267. [Google Scholar] [CrossRef]
- Nematchoua, M.K. European Union 2050 Vision on Building Nearly Zero Energy Neighbourhoods for the Future. Environ. Dev. Sustain. 2025, 27, 1–28. [Google Scholar] [CrossRef]
- Sihvonen, V.; Ollila, I.; Jaanto, J.; Grönman, A.; Honkapuro, S.; Riikonen, J.; Price, A. Role of Power-to-Heat and Thermal Energy Storage in Decarbonization of District Heating. Energy 2024, 305, 132372. [Google Scholar] [CrossRef]
- Hennessy, J.; Li, H.; Wallin, F.; Thorin, E. Flexibility in Thermal Grids: A Review of Short-Term Storage in District Heating Distribution Networks. Energy Procedia 2019, 158, 2430–2434. [Google Scholar] [CrossRef]
- Guelpa, E.; Verda, V. Thermal Energy Storage in District Heating and Cooling Systems: A Review. Appl. Energy 2019, 252, 113474. [Google Scholar] [CrossRef]
- Leone, F.; Reda, F.; Hasan, A.; ur Rehman, H.; Nigrelli, F.C.; Nocera, F.; Costanzo, V. Lessons Learned from Positive Energy District (PED) Projects: Cataloguing and Analysing Technology Solutions in Different Geographical Areas in Europe. Energies 2022, 16, 356. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. Optimization of Seasonal Storage for Community-Level Energy Systems: Status and Needs. Energy Ecol. Environ. 2017, 2, 169–181. [Google Scholar] [CrossRef][Green Version]
- Żołądek, M.; Kafetzis, A.; Figaj, R.; Panopoulos, K. Energy-Economic Assessment of Islanded Microgrid with Wind Turbine, Photovoltaic Field, Wood Gasifier, Battery, and Hydrogen Energy Storage. Sustainability 2022, 14, 12470. [Google Scholar] [CrossRef]
- Panno, D.; Buscemi, A.; Beccali, M.; Chiaruzzi, C.; Cipriani, G.; Ciulla, G.; Di Dio, V.; Lo Brano, V.; Bonomolo, M. A Solar Assisted Seasonal Borehole Thermal Energy System for a Non-Residential Building in the Mediterranean Area. Sol. Energy 2019, 192, 120–132. [Google Scholar] [CrossRef]
- D’amico, A.; Panno, D.; Ciulla, G.; Messineo, A. Multi-Energy School System for Seasonal Use in the Mediterranean Area. Sustainability 2020, 12, 8458. [Google Scholar] [CrossRef]
- Roumpakias, E.; Zogou, O.; Stamatellou, A.M. Optimization of Electrical and Thermal Storage in a High School Building in Central Greece. Energies 2024, 17, 1966. [Google Scholar] [CrossRef]
- Nhut, L.M.; Raza, W.; Park, Y.C. A Parametric Study of a Solar-Assisted House Heating System with a Seasonal Underground Thermal Energy Storage Tank. Sustainability 2020, 12, 8686. [Google Scholar] [CrossRef]
- Ju, Y.; Jokisalo, J.; Kosonen, R. Peak Shaving of a District Heated Office Building with Short-Term Thermal Energy Storage in Finland. Buildings 2023, 13, 573. [Google Scholar] [CrossRef]
- Kasperski, J.; Oladipo, O. Energy, Volume and Cost Analyses of High Temperature Seasonal Thermal Storage for Plus Energy House. Energies 2023, 16, 4568. [Google Scholar] [CrossRef]
- Gagliano, A.; Tina, G.M.; Aneli, S. Improvement in Energy Self-Sufficiency in Residential Buildings Using Photovoltaic Thermal Plants, Heat Pumps, and Electrical and Thermal Storage. Energies 2025, 18, 1159. [Google Scholar] [CrossRef]
- Pazold, M.; Radon, J.; Kersken, M.; Künzel, H.; Antretter, F.; Sinnesbichler, H. Development and Verification of Novel Building Integrated Thermal Storage System Models. Energies 2023, 16, 2889. [Google Scholar] [CrossRef]
- Dec, K.; Broniewicz, E.; Broniewicz, M. The Possibility Analysis of Adapting a Public Building to the Standard of a Building with a Zero Energy Balance. Energies 2020, 13, 6389. [Google Scholar] [CrossRef]
- Sornek, K.; Figaj, R.; Papis-Frączek, K. Development and Tests of the Novel Configuration of the Solar Chimney with Sensible Heat Storage. Appl. Therm. Eng. 2025, 258, 124515. [Google Scholar] [CrossRef]
- Lindholm, O.; Weiss, R.; Hasan, A.; Pettersson, F.; Shemeikka, J. A MILP Optimization Method for Building Seasonal Energy Storage: A Case Study for a Reversible Solid Oxide Cell and Hydrogen Storage System. Buildings 2020, 10, 123. [Google Scholar] [CrossRef]
- Hailu, G.; Hayes, P.; Masteller, M. Long-Term Monitoring of Sensible Thermal Storage in an Extremely Cold Region. Energies 2019, 12, 1821. [Google Scholar] [CrossRef]
- Homa, M.; Sornek, K.; Goryl, W.; Papis-Frączek, K.; Żak, P.L.; Dańko, R. Numerical Analysis of the Prototype of the High-Temperature Thermal Energy Storage Based on Sand Bed. Energy 2025, 333, 137472. [Google Scholar] [CrossRef]
- Trevisan, S.; Wang, W.; Guedez, R.; Laumert, B. Experimental Evaluation of an Innovative Radial-Flow High-Temperature Packed Bed Thermal Energy Storage. Appl. Energy 2022, 311, 118672. [Google Scholar] [CrossRef]
- Abrha, A.K.; Teklehaymanot, M.K.; Kahsay, M.B.; Nydal, O.J. Charging of an Air–Rock Bed Thermal Energy Storage under Natural and Forced Convection. Energies 2024, 17, 4952. [Google Scholar] [CrossRef]
- Cascetta, M.; Serra, F.; Arena, S.; Casti, E.; Cau, G.; Puddu, P. Experimental and Numerical Research Activity on a Packed Bed TES System. Energies 2016, 9, 758. [Google Scholar] [CrossRef]
- Jafari, F.; Semprini, G.; Bonoli, A. Evaluating Thermal Storage Capability of Recycled Construction Materials: An Experimental Approach. Mater. Renew. Sustain. Energy 2025, 14, 1–13. [Google Scholar] [CrossRef]
- Anagnostopoulos, A.; Elena Navarro, M.; Sharma, S.; Ahmad, A.; Maksum, Y.; Ding, Y. From Waste to Value: Utilising Waste Foundry Sand in Thermal Energy Storage as a Matrix Material in Composites. Sol. Energy 2024, 268, 112294. [Google Scholar] [CrossRef]
- Tetteh, S.; Juul, G.; Järvinen, M.; Santasalo-Aarnio, A. Improved Effective Thermal Conductivity of Sand Bed in Thermal Energy Storage Systems. J. Energy Storage 2024, 86, 111350. [Google Scholar] [CrossRef]
- Schlipf, D.; Schicktanz, P.; Maier, H.; Schneider, G. Using Sand and Other Small Grained Materials as Heat Storage Medium in a Packed Bed HTTESS. Energy Procedia 2015, 69, 1029–1038. [Google Scholar] [CrossRef]
- Diago, M.; Iniesta, A.C.; Soum-Glaude, A.; Calvet, N. Characterization of Desert Sand to Be Used as a High-Temperature Thermal Energy Storage Medium in Particle Solar Receiver Technology. Appl. Energy 2018, 216, 402–413. [Google Scholar] [CrossRef]
- Niksiar, P.; Rogillio, C.; Torab, H.; Tiari, S. Experimental Study of a Silica Sand Sensible Heat Storage System Enhanced by Fins. Energies 2024, 17, 5402. [Google Scholar] [CrossRef]
- Ananth, S.; Selvakumar, P. Experimental Investigation of Sand-Based Sensible Heat Energy Storage System. Appl. Therm. Eng. 2025, 264, 125390. [Google Scholar] [CrossRef]
- Paksoy, H.O.; Andersson, O.; Abaci, S.; Evliya, H.; Turgut, B. Heating and Cooling of a Hospital Using Solar Energy Coupled with Seasonal Thermal Energy Storage in an Aquifer. Renew. Energy 2000, 19, 117–122. [Google Scholar] [CrossRef]
- Vanhoudt, D.; Desmedt, J.; Van Bael, J.; Robeyn, N.; Hoes, H. An Aquifer Thermal Storage System in a Belgian Hospital: Long-Term Experimental Evaluation of Energy and Cost Savings. Energy Build. 2011, 43, 3657–3665. [Google Scholar] [CrossRef]
- Guo, F.; Zhu, X.; Zhang, J.; Yang, X. Large-Scale Living Laboratory of Seasonal Borehole Thermal Energy Storage System for Urban District Heating. Appl. Energy 2020, 264, 114763. [Google Scholar] [CrossRef]
- Giordano, N.; Comina, C.; Mandrone, G.; Cagni, A. Borehole Thermal Energy Storage (BTES). First Results from the Injection Phase of a Living Lab in Torino (NW Italy). Renew. Energy 2016, 86, 993–1008. [Google Scholar] [CrossRef]
- Zhu, N.; Wang, J.; Liu, L. Performance Evaluation before and after Solar Seasonal Storage Coupled with Ground Source Heat Pump. Energy Convers. Manag. 2015, 103, 924–933. [Google Scholar] [CrossRef]
- Hesaraki, A.; Halilovic, A.; Holmberg, S. Low-Temperature Heat Emission Combined with Seasonal Thermal Storage and Heat Pump. Sol. Energy 2015, 119, 122–133. [Google Scholar] [CrossRef]
- Bauer, D.; Marx, R.; Drück, H. Solar District Heating for the Built Environment-Technology and Future Trends within the European Project EINSTEIN. Energy Procedia 2014, 57, 2716–2724. [Google Scholar] [CrossRef]
- Sambo, S.N.; Hockaday, L.; Seodigeng, T.; Reynolds, Q.G. Numerical and Experimental Study of Packed Bed Heat Transfer on the Preheating of Manganese Ore with Air up to 600 °C. Metals 2025, 15, 269. [Google Scholar] [CrossRef]
- Szewerda, K.; Michalak, D.; Matusiak, P.; Kowol, D. Concept of Adapting the Liquidated Underground Mine Workings into High-Temperature Sand Thermal Energy Storage. Appl. Sci. 2025, 15, 3868. [Google Scholar] [CrossRef]
- Serrano-Arévalo, T.I.; Ochoa-Barragán, R.; Ramírez-Márquez, C.; El-Halwagi, M.; Abdel Jabbar, N.; Ponce-Ortega, J.M. Energy Storage: From Fundamental Principles to Industrial Applications. Processes 2025, 13, 1853. [Google Scholar] [CrossRef]













| Technology | Brief Characterization | Typical Applications | Sources |
|---|---|---|---|
| Electric boilers | Electric boilers use electric resistance to heat water or generate steam. They are commonly used for district heating and industrial applications. | District heating, hot water supply, and industrial steam systems | [38] |
| Heat pumps | Heat pumps are devices that use electricity to extract heat from a source, such as the air, ground, or water. Then, they amplify and transfer that heat to a sink. This method is highly efficient for space and water heating. | Residential/commercial heating, district heating | [39] |
| High-frequency heaters | High-frequency heaters, also known as radio-frequency heaters, use electromagnetic fields at radio frequencies to generate heat within materials. They are often used for drying and curing. | Textile, paper, food drying, and composite curing | [40] |
| Microwave heaters | Microwave heaters utilize microwave radiation to heat dielectric materials directly. They are typically used in food and material processing. | Food processing, chemical synthesis, drying | [41] |
| Infrared heaters | Infrared heaters emit infrared radiation that heats surfaces directly. They are suitable for surface drying and heating applications. | Commercial heating, plastic forming, and drying processes | [42] |
| Resistance furnaces | Resistance furnaces use resistive elements to reach high temperatures for industrial heating and material processing. | Glass, ceramics, and metal heating | [43] |
| Induction furnaces | Induction furnaces use electromagnetic induction to heat conductive materials. They are widely used in metalworking. | Steel hardening, forging, and metal melting | [44] |
| Electric arc furnaces | Electric arc furnaces utilize an electric arc between electrodes to melt metals, particularly to produce steel. | Steelmaking, scrap metal recycling | [45] |
| Parameter | Photovoltaics | Wind Turbines |
|---|---|---|
| Strengths |
|
|
| Weaknesses |
|
|
| Parameter | SHS | LHS | THS |
|---|---|---|---|
| Storage mechanism | Energy stored as a temperature difference in solid or liquid media | Energy stored using phase change materials | Energy stored in chemical bonds |
| Materials | Water, molten salts, oils, steel, iron, rocks, and concrete | Paraffins, salt hydrates, etc. | Metal oxides, ammonia-based, hydrothermal |
| Energy density | Moderate | High | Very high |
| Storage temperature | Moderate to high (90 °C for water, 500 °C for molten salts, and 1000 °C for rocks) | Low (20–150 °C) | Low to high (60–200 °C for adsorption or hydration, and >600 °C for redox reactions |
| Typical duration of energy storage | Short to medium-term (hours to days) | Medium to long-term (days to months) | Long-term (months to years) |
| Cycle efficiency | High | Moderate to high | High |
| Technical complexity | Simple | Medium | Complex |
| Maturity | Commercially available | Pilot scale | Laboratory stage |
| Typical applications | Residential heating, district heating, and industrial processes | Residential heating, solar thermal, industrial processes | Residential heating, industrial high-temperature processes, seasonal storage |
| Expected costs | Low to moderate (depending on materials) | Moderate to high (especially for organic PCMs) | High (materials and complexity) |
| Technology | Storage Medium | Temperature Range | Typical Applications | Sources |
|---|---|---|---|---|
| Aquifer Thermal Energy Storage (ATES) | Groundwater in an aquifer | 5–90 °C | District heating, industrial recovery | [92] |
| Borehole Thermal Energy Storage (BTES) | Soil/rock via vertical boreholes | 5–90 °C | Residential heating, solar storage | [93] |
| Pit Thermal Energy Storage (PTES) | Water in insulated pits | 5–95 °C | District heating, campuses | [5,94] |
| Tank Thermal Energy Storage (TTES) | Water in insulated tanks | 5–95 °C | Urban heating networks | [95] |
| Packed Bed Thermal Energy Storage (PBTES) | Silica sand, crushed rocks, alumina beads, steel slags, ceramics, and concrete blocks | 100–1000 °C | Industrial waste heat, solar thermal power, and long-duration storage | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sornek, K.; Homa, M.; Frigura-Iliasa, F.M.; Frigura-Iliasa, M.; Jankowski, M.; Papis-Frączek, K.; Katerla, J.; Janus, J. Power-to-Heat and Seasonal Thermal Energy Storage: Pathways Toward a Low-Carbon Future for District Heating. Energies 2025, 18, 5577. https://doi.org/10.3390/en18215577
Sornek K, Homa M, Frigura-Iliasa FM, Frigura-Iliasa M, Jankowski M, Papis-Frączek K, Katerla J, Janus J. Power-to-Heat and Seasonal Thermal Energy Storage: Pathways Toward a Low-Carbon Future for District Heating. Energies. 2025; 18(21):5577. https://doi.org/10.3390/en18215577
Chicago/Turabian StyleSornek, Krzysztof, Maksymilian Homa, Flaviu Mihai Frigura-Iliasa, Mihaela Frigura-Iliasa, Marcin Jankowski, Karolina Papis-Frączek, Jakub Katerla, and Jakub Janus. 2025. "Power-to-Heat and Seasonal Thermal Energy Storage: Pathways Toward a Low-Carbon Future for District Heating" Energies 18, no. 21: 5577. https://doi.org/10.3390/en18215577
APA StyleSornek, K., Homa, M., Frigura-Iliasa, F. M., Frigura-Iliasa, M., Jankowski, M., Papis-Frączek, K., Katerla, J., & Janus, J. (2025). Power-to-Heat and Seasonal Thermal Energy Storage: Pathways Toward a Low-Carbon Future for District Heating. Energies, 18(21), 5577. https://doi.org/10.3390/en18215577

