Increasing Economic Benefits in Renewable Energy Communities with Solar PV and Battery Storage Technologies: Insights from New Member Integration
Abstract
1. Introduction
1.1. Policy, Governance, and Social Implications
1.2. Renewable Energy Integration, Planning, and Storage
1.3. Economic Models, Optimization Strategies, and Broader Impacts
1.4. Research Contributions
- (a)
- Scalability and optimization: existing models provide limited insight into multi-member investment strategies during REC expansion. This research proposes a new optimization framework that dynamically evaluates new member integration, considering both economic and technical parameters, thereby supporting sustainable growth.
- (b)
- Economic fairness and pricing mechanisms: few studies analyze the role of internal electricity sharing prices in long-term REC viability. This study introduces an adaptive pricing mechanism ensuring fair and efficient energy trading among members.
- (c)
- Regulatory adaptability: current approaches insufficiently capture region-specific policy constraints. This study leverages multi-objective decision-making to design adaptive solutions aligned with evolving regulatory contexts.
- (d)
- Technology integration: the integration of smart grid coordination and advanced BESS strategies remains underexplored. Our model incorporates BESS optimization and energy-sharing enhancements to improve efficiency and resilience.
2. Methodology
3. Case Study
3.1. Input Data
3.2. Scenarios
- S1.
- Base case without PV and BESS: this is the base case scenario in which none of the members invest either in PV or in BESS. This scenario evaluates the costs of electricity supply of each member before engaging in any kind of self-consumption and integration in an REC.
- S2.
- ISC with PV: this scenario considers the investment in solar PV to individual self-consumption. The investment is upper limited to a bound set for each member presented.
- S3.
- ISC with PV and BESS: this scenario considers the investment in BESS, in addition to the investment is solar PV to individual self-consumption of the previous scenario.
- S4.
- 3-member REC/REC4 Prosumer: this scenario considers that REC1, REC2, and REC3 create an REC with investment in solar PV and BESS in a collective self-consumption setting, and REC4 keeps its individual setting with investment in solar PV and BESS, being therefore a prosumer.
- S5.
- 4-member REC/REC4 Prosumer: this scenario considers that the 3-member REC of the previous scenario grows to integrate REC4 all investing in solar PV and BESS in a collective self-consumption setting.
- S6.
- 3-member REC/REC4 Consumer: this scenario considers that REC1, REC2, and REC3 create an REC with investment in solar PV and BESS in a collective self-consumption setting, and REC4 do not invest neither in solar PV nor in BESS, being therefore a (pure) consumer.
- S7.
- 4-member REC/REC4 Consumer: this scenario considers that the 3-member REC of the previous scenario grows to integrate REC4 in a collective self-consumption setting, being REC4 a (pure) consumer without investing in solar PV and BESS.
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Indexes | |
REC member | |
RES technology | |
Time period (h) | |
Parameters | |
Discount rate (€) | |
(€/kW) | |
(€/kWh-storage) | |
(€) | |
(€) | |
(kWh) | |
(kWh) | |
(kWh) | |
(kW) | |
(kW) | |
(kW) | |
(kW) | |
(kWh) | |
(€) | |
(€) | |
DAM price for selling electricity to the grid (€) | |
(€) | |
(€) | |
(years) | |
(years) | |
Variables | |
(kWh) | |
(kWh) | |
(kWh) | |
(kWh) | |
Total annualized costs of electricity supplied to the overall REC members (€) | |
(kWh) | |
(kW) | |
(kW) | |
(kWh) | |
(kWh) | |
(kWh) | |
Binary Variables | |
Dis |
References
- European Commission. Directorate-General for Energy, Clean Energy for All Europeans; Publications Office: Luxembourg, 2019. [Google Scholar]
- European Parliament, Council of the European Union. European Parliament Directive (EU) 2018/2001; Council on the Promotion of the Use of Energy from Renewable; Sources; European Union Publications Office: Luxembourg, 2018. [Google Scholar]
- European Parliament, Council of the European Union. European Parliament Directive (EU) 2019/944; Council on Common Rules for the Internal Market for Electricity and Amending Directive 2012/27; European Union Publications Office: Luxembourg, 2019. [Google Scholar]
- Presidency of the Council of Ministers. Decree Law n. 15/2022 de 14 de Janeiro. Republic Diary, Portugal. 2022. Available online: https://diariodarepublica.pt/dr/en/detail/decree-law/15-2022-177634016 (accessed on 4 August 2025).
- Ahmed, S.; Ali, A.; Ciocia, A.; D’Angola, A. Technological Elements behind the Renewable Energy Community: Current Status, Existing Gap, Necessity, and Future Perspective—Overview. Energies 2024, 17, 3100. [Google Scholar] [CrossRef]
- De Vidovich, L.; Tricarico, L.; Zulianello, M. How Can We Frame Energy Communities’ Organisational Models? Insights from the Research ‘Community Energy Map’ in the Italian Context. Sustainability 2023, 15, 1997. [Google Scholar] [CrossRef]
- Hanke, F.; Guyet, R.; Feenstra, M. Do Renewable Energy Communities Deliver Energy Justice? Exploring Insights from 71 European Cases. Energy Res. Soc. Sci. 2021, 80, 102244. [Google Scholar] [CrossRef]
- Frieden, D.; Tuerk, A.; Antunes, A.R.; Athanasios, V.; Chronis, A.G.; D’herbemont, S.; Kirac, M.; Marouço, R.; Neumann, C.; Catalayud, E.P.; et al. Are We on the Right Track? Collective Self-Consumption and Energy Communities in the European Union. Sustainability 2021, 13, 12494. [Google Scholar] [CrossRef]
- Frieden, D.; Tuerk, A.; Neumann, C. Collective Self-Consumption and Energy Communities: Trends and Challenges in the Transposition of the EU Framework; Technical Report, H2020 Compile Project; Integrating Community Power in Islands: Luče, Slovenia, 2020. [Google Scholar] [CrossRef]
- Gasca, M.V.; Rigo-Mariani, R.; Debusschere, V.; Sidqi, Y. Fairness in Energy Communities: Centralized and Decentralized Frameworks. Renew. Sustain. Energy Rev. 2025, 208, 115054. [Google Scholar] [CrossRef]
- Bauwens, T.; Schraven, D.; Drewing, E.; Radtke, J.; Holstenkamp, L.; Gotchev, B.; Yildiz, Ö. Conceptualizing Community in Energy Systems: A Systematic Review of 183 Definitions. Renew. Sustain. Energy Rev. 2022, 156, 111999. [Google Scholar] [CrossRef]
- Gržanić, M.; Capuder, T.; Zhang, N.; Huang, W. Prosumers as Active Market Participants: A Systematic Review of Evolution of Opportunities, Models and Challenges. Renew. Sustain. Energy Rev. 2022, 154, 111859. [Google Scholar] [CrossRef]
- Lazdins, R.; Mutule, A.; Zalostiba, D. PV Energy Communities—Challenges and Barriers from a Consumer Perspective: A Literature Review. Energies 2021, 14, 4873. [Google Scholar] [CrossRef]
- Gianaroli, F.; Preziosi, M.; Ricci, M.; Sdringola, P.; Ancona, M.A.; Melino, F. Exploring the Academic Landscape of Energy Communities in Europe: A Systematic Literature Review. J. Clean Prod. 2024, 451, 141932. [Google Scholar] [CrossRef]
- Esposito, P.; Marrasso, E.; Martone, C.; Pallotta, G.; Roselli, C.; Sasso, M.; Tufo, M. A Roadmap for the Implementation of a Renewable Energy Community. Heliyon 2024, 10, e28269. [Google Scholar] [CrossRef]
- Belmar, F.; Baptista, P.; Neves, D. Modelling Renewable Energy Communities: Assessing the Impact of Different Configurations, Technologies and Types of Participants. Energy Sustain. Soc. 2023, 13, 18. [Google Scholar] [CrossRef]
- Karunathilake, H.; Perera, P.; Ruparathna, R.; Hewage, K.; Sadiq, R. Renewable Energy Integration into Community Energy Systems: A Case Study of New Urban Residential Development. J. Clean Prod. 2018, 173, 292–307. [Google Scholar] [CrossRef]
- Botsaris, P.N.; Giourka, P.; Papatsounis, A.; Dimitriadou, P.; Goitia-Zabaleta, N.; Patsonakis, C. Developing a Business Case for a Renewable Energy Community in a Public Housing Settlement in Greece—The Case of a Student Housing and Its Challenges, Prospects and Barriers. Sustainability 2021, 13, 3792. [Google Scholar] [CrossRef]
- Battaglia, V.; Vanoli, L.; Zagni, M. Economic Benefits of Renewable Energy Communities in Smart Districts: A Comparative Analysis of Incentive Schemes for NZEBs. Energy Build 2024, 305, 113911. [Google Scholar] [CrossRef]
- Lode, M.L.; te Boveldt, G.; Coosemans, T.; Ramirez Camargo, L. A Transition Perspective on Energy Communities: A Systematic Literature Review and Research Agenda. Renew. Sustain. Energy Rev. 2022, 163, 112479. [Google Scholar] [CrossRef]
- Mussawar, O.; Mayyas, A.; Azar, E. Energy Storage Enabling Renewable Energy Communities: An Urban Context-Aware Approach and Case Study Using Agent-Based Modeling and Optimization. Sustain. Cities Soc. 2024, 115, 105813. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, B.; Wang, J.; Liu, H.; Wang, J.; Liu, C.; Zhao, J.; Sun, Y.; Zhai, R.; Zhu, Y. Optimal Configuration of Wind-PV and Energy Storage in Large Clean Energy Bases. Sustainability 2023, 15, 12895. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Y.; Xiao, Y.; Lan, X. Optimized Configuration and Operation Model and Economic Analysis of Shared Energy Storage Based on Master-Slave Game Considering Load Characteristics of PV Communities. J. Energy Storage 2024, 76, 109841. [Google Scholar] [CrossRef]
- Perinhas, S.M.d.O.; de Sousa, J.A.M.; Viveiros, C.S.P.C.; Barata, F.A. de S.F. Techno-Economic Assessment of Battery Energy Storage Systems in Renewable Energy Communities. Int. J. Sustain. Energy Plan. Manag. 2025, 44, 59–72. [Google Scholar]
- Ahmed, S.; Ali, A.; D’Angola, A. A Review of Renewable Energy Communities: Concepts, Scope, Progress, Challenges, and Recommendations. Sustainability 2024, 16, 1749. [Google Scholar] [CrossRef]
- Mikulik, J.; Niekurzak, M. Assessment of the Profitability of a Photovoltaic Installation Cooperating with Energy Storage Using an Example of a Medium-Sized Production Company. Energies 2024, 17, 4740. [Google Scholar] [CrossRef]
- Lima, M.; Perinhas, S.; Sousa, J.; Viveiros, C.; Barata, F. Integration of Solar PV and Battery Energy Storage Systems Towards a Sustainable Street Lighting. In Proceedings of the International Conference on the European Energy Market, EEM, Lisbon, Portugal, 27–29 May 2025; IEEE Computer Society: Washington, DC, USA, 2025. [Google Scholar]
- Khan, S.A.; Tao, Z.; Agyekum, E.B.; Fahad, S.; Tahir, M.; Salman, M. Sustainable Rural Electrification: Energy-Economic Feasibility Analysis of Autonomous Hydrogen-Based Hybrid Energy System. Int. J. Hydrog. Energy 2025, 141, 460–473. [Google Scholar] [CrossRef]
- Bartolini, A.; Carducci, F.; Muñoz, C.B.; Comodi, G. Energy Storage and Multi Energy Systems in Local Energy Communities with High Renewable Energy Penetration. Renew. Energy 2020, 159, 595–609. [Google Scholar] [CrossRef]
- Faria, J.; Marques, C.; Pombo, J.; Mariano, S.; Calado, M.d.R. Optimal Sizing of Renewable Energy Communities: A Multiple Swarms Multi-Objective Particle Swarm Optimization Approach. Energies 2023, 16, 7227. [Google Scholar] [CrossRef]
- Piazza, G.; Delfino, F.; Bergero, S.; Di Somma, M.; Graditi, G.; Bracco, S. Economic and Environmental Optimal Design of a Multi-Vector Energy Hub Feeding a Local Energy Community. Appl. Energy 2023, 347, 121259. [Google Scholar] [CrossRef]
- Minetti, M.; Bonfiglio, A.; Procopio, R.; Petronijevic, M.P.; Radonjic, I. Optimal Sizing of Battery Energy Storage Systems for Renewable Energy Integration in Energy Communities; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Cruz-De-Jesús, E.; Marano-Marcolini, A.; Martínez-Ramos, J.L. Participation of Energy Communities in Electricity Markets and Ancillary Services: An Overview of Successful Strategies. Energies 2024, 17, 4631. [Google Scholar] [CrossRef]
- Ahmed, S.; Măgurean, A.M. Renewable Energy Communities: Towards a New Sustainable Model of Energy Production and Sharing. Energy Strategy Rev. 2024, 55, 101522. [Google Scholar] [CrossRef]
- Llera-Sastresa, E.; Gimeno, J.Á.; Osorio-Tejada, J.L.; Portillo-Tarragona, P. Effect of Sharing Schemes on the Collective Energy Self-Consumption Feasibility. Energies 2023, 16, 6564. [Google Scholar] [CrossRef]
- Ferreira, E.; Sequeira, M.M.; Gouveia, J.P. Sharing Is Caring: Exploring Distributed Solar Photovoltaics and Local Electricity Consumption through a Renewable Energy Community. Sustainability 2024, 16, 2777. [Google Scholar] [CrossRef]
- Gianaroli, F.; Ricci, M.; Sdringola, P.; Alessandra Ancona, M.; Branchini, L.; Melino, F. Development of Dynamic Sharing Keys: Algorithms Supporting Management of Renewable Energy Community and Collective Self Consumption. Energy Build 2024, 311, 114158. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Rezaee Jordehi, A.; Hasanien, H.M.; Khosravi, N.; Mansouri, S.A.; Jurado, F. On Different Collective Storage Schemes in Energy Communities with Internal Market. J. Energy Storage 2024, 75, 109699. [Google Scholar] [CrossRef]
- Radl, J.; Fleischhacker, A.; Revheim, F.H.; Lettner, G.; Auer, H. Comparison of Profitability of PV Electricity Sharing in Renewable Energy Communities in Selected European Countries. Energies 2020, 13, 5007. [Google Scholar] [CrossRef]
- Gjorgievski, V.Z.; Velkovski, B.; Francesco Demetrio, M.; Cundeva, S.; Markovska, N. Energy Sharing in European Renewable Energy Communities: Impact of Regulated Charges. Energy 2023, 281, 128333. [Google Scholar] [CrossRef]
- Neri, J.; Corsetti, E. Business Model for Renewable Energy Communities. In Proceedings of the 2024 AEIT International Annual Conference (AEIT), Trento, Italy, 25–27 September 2024. [Google Scholar]
- Sassone, A.; Ahmed, S.; D’Angola, A. A Profit Optimization Model for Renewable Energy Communities Based on the Distribution of Participants. In Proceedings of the Proceedings—24th EEEIC International Conference on Environment and Electrical Engineering and 8th I and CPS Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2024, Rome, Italy, 17–20 June 2024; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2024. [Google Scholar]
- Elshazly, A.A.; Badr, M.M.; Mahmoud, M.; Eberle, W.; Alsabaan, M.; Ibrahem, M.I. Reinforcement Learning for Fair and Efficient Charging Coordination for Smart Grid. Energies 2024, 17, 4557. [Google Scholar] [CrossRef]
- Carvalho, I.; Sousa, J.; Villar, J.; Lagarto, J.; Viveiros, C.; Barata, F. Optimal Investment and Sharing Decisions in Renewable Energy Communities with Multiple Investing Members. Energies 2025, 18, 1920. [Google Scholar] [CrossRef]
- Dioba, A.; Giannakopoulou, A.; Struthers, D.; Stamos, A.; Dewitte, S.; Fróes, I. Identifying Key Barriers to Joining an Energy Community Using AHP. Energy 2024, 299, 131478. [Google Scholar] [CrossRef]
- Mariuzzo, I.; Fina, B.; Stroemer, S.; Corinaldesi, C.; Raugi, M. Grid-Friendly Optimization of Energy Communities through Enhanced Multiple Participation. Renew. Sustain. Energy Rev. 2025, 208, 115028. [Google Scholar] [CrossRef]
- Lage, M.; Castro, R.; Manzolini, G.; Casalicchio, V.; Sousa, T. Techno-Economic Analysis of Self-Consumption Schemes and Energy Communities in Italy and Portugal. Sol. Energy 2024, 270, 112407. [Google Scholar] [CrossRef]
- Tomin, N.; Shakirov, V.; Kozlov, A.; Sidorov, D.; Kurbatsky, V.; Rehtanz, C.; Lora, E.E.S. Design and Optimal Energy Management of Community Microgrids with Flexible Renewable Energy Sources. Renew. Energy 2022, 183, 903–921. [Google Scholar] [CrossRef]
- Hupez, M.; Toubeau, J.F.; De Greve, Z.; Vallee, F. A New Cooperative Framework for a Fair and Cost-Optimal Allocation of Resources within a Low Voltage Electricity Community. IEEE Trans. Smart Grid. 2021, 12, 2201–2211. [Google Scholar] [CrossRef]
- Gomes, L.; Vale, Z. Costless Renewable Energy Distribution Model Based on Cooperative Game Theory for Energy Communities Considering Its Members’ Active Contributions. Sustain. Cities Soc. 2024, 101, 105060. [Google Scholar] [CrossRef]
- Guedes, W.; Oliveira, C.; Soares, T.A.; Dias, B.H.; Matos, M. Collective Asset Sharing Mechanisms for PV and BESS in Renewable Energy Communities. IEEE Trans. Smart Grid. 2024, 15, 607–616. [Google Scholar] [CrossRef]
- Khayyat, M.M.; Sami, B. Energy Community Management Based on Artificial Intelligence for the Implementation of Renewable Energy Systems in Smart Homes. Electronics 2024, 13, 380. [Google Scholar] [CrossRef]
- Barabino, E.; Fioriti, D.; Guerrazzi, E.; Mariuzzo, I.; Poli, D.; Raugi, M.; Razaei, E.; Schito, E.; Thomopulos, D. Energy Communities: A Review on Trends, Energy System Modelling, Business Models, and Optimisation Objectives. Sustain. Energy Grids Netw. 2023, 36, 101187. [Google Scholar] [CrossRef]
- Tomin, N.; Shakirov, V.; Kurbatsky, V.; Muzychuk, R.; Popova, E.; Sidorov, D.; Kozlov, A.; Yang, D. A Multi-Criteria Approach to Designing and Managing a Renewable Energy Community. Renew. Energy 2022, 199, 1153–1175. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Le, T. Evaluating Strategies for Developing Renewable Energies Considering Economic, Social, and Environmental Aspects: A Case Study. Environ. Sci. Pollut. Res. 2024, 31, 23697–23718. [Google Scholar] [CrossRef]
- Mustika, A.D.; Rigo-Mariani, R.; Debusschere, V.; Pachurka, A. New Members Selection for the Expansion of Energy Communities. Sustainability 2022, 14, 11257. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Koh, S.C.L.; Vigiano, A. Lighting the Future of Sustainable Cities with Energy Communities: An Economic Analysis for Incentive Policy. Cities 2024, 147, 104828. [Google Scholar] [CrossRef]
- Villar, C.H.; Neves, D.; Silva, C.A. Solar PV Self-Consumption: An Analysis of Influencing Indicators in the Portuguese Context. Energy Strategy Rev. 2017, 18, 224–234. [Google Scholar] [CrossRef]
- Hannan, M.A.; Wali, S.B.; Ker, P.J.; Rahman, M.S.A.; Mansor, M.; Ramachandaramurthy, V.K.; Muttaqi, K.M.; Mahlia, T.M.I.; Dong, Z.Y. Battery Energy-Storage System: A Review of Technologies, Optimization Objectives, Constraints, Approaches, and Outstanding Issues. J. Energy Storage 2021, 42, 103023. [Google Scholar] [CrossRef]
- Chatzigeorgiou, N.G.; Theocharides, S.; Makrides, G.; Georghiou, G.E. A Review on Battery Energy Storage Systems: Applications, Developments, and Research Trends of Hybrid Installations in the End-User Sector. J. Energy Storage 2024, 86, 111192. [Google Scholar] [CrossRef]
- Petrovich, B.; Kubli, M. Energy Communities for Companies: Executives’ Preferences for Local and Renewable Energy Procurement. Renew. Sustain. Energy Rev. 2023, 184, 113506. [Google Scholar] [CrossRef]
- Weckesser, T.; Dominković, D.F.; Blomgren, E.M.V.; Schledorn, A.; Madsen, H. Renewable Energy Communities: Optimal Sizing and Distribution Grid Impact of Photo-Voltaics and Battery Storage. Appl. Energy 2021, 301, 117408. [Google Scholar] [CrossRef]
- Sousa, J.; Lagarto, J.; Camus, C.; Viveiros, C.; Barata, F.; Silva, P.; Alegria, R.; Paraíba, O. Renewable Energy Communities Optimal Design Supported by an Optimization Model for Investment in PV/Wind Capacity and Renewable Electricity Sharing. Energy 2023, 283, 128464. [Google Scholar] [CrossRef]
- Faia, R.; Lezama, F.; Soares, J.; Pinto, T.; Vale, Z. Local Electricity Markets: A Review on Benefits, Barriers, Current Trends and Future Perspectives. Renew. Sustain. Energy Rev. 2024, 190, 114006. [Google Scholar] [CrossRef]
- GAMS Development Corporation. General Algebraic Modeling System (GAMS); GAMS Development Corp: Frechen, Germany, 2006. [Google Scholar]
Technology | CAPEX | Lifetime | α | EFF |
---|---|---|---|---|
PV | 1100 €/kW | 25 years | 5% | - |
BESS | 200 €/kWh | 15 years | 5% | 90% |
Member | PV (kW) |
---|---|
REC1 | 800 |
REC2 | 1400 |
REC3 | 400 |
REC4 | 300 |
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
---|---|---|---|---|---|---|---|
COSTS (kEUR) | |||||||
REC1 | 228 | 193 | 193 | 190 | 189 | 190 | 184 |
REC2 | 810 | 689 | 688 | 684 | 685 | 684 | 681 |
REC3 | 82 | 77 | 76 | 75 | 74 | 75 | 68 |
REC4 | 147 | 118 | 118 | 118 | 116 | 147 | 133 |
TOTAL | 1267 | 1077 | 1076 | 1067 | 1064 | 1095 | 1066 |
PV (kW) | |||||||
REC1 | 0 | 526 | 555 | 692 | 756 | 692 | 800 |
REC2 | 0 | 1400 | 1400 | 1400 | 1400 | 1400 | 1400 |
REC3 | 0 | 173 | 209 | 371 | 386 | 371 | 400 |
REC4 | 0 | 300 | 300 | 300 | 300 | 0 | 0 |
TOTAL | 0 | 2399 | 2465 | 2763 | 2842 | 2463 | 2600 |
BESS (kWh) | |||||||
REC1 | 0 | 0 | 145 | 125 | 102 | 125 | 30 |
REC2 | 0 | 0 | 76 | 76 | 135 | 76 | 95 |
REC3 | 0 | 0 | 223 | 605 | 622 | 605 | 326 |
REC4 | 0 | 0 | 0 | 0 | 77 | 0 | 0 |
TOTAL | 0 | 0 | 444 | 806 | 935 | 806 | 450 |
Sharing (kWh) | |||||||
REC1 | 0 | 0 | 0 | 70,819 | 112,992 | 94,860 | 215,858 |
REC2 | 0 | 0 | 0 | −146,603 | −102,310 | −102,488 | 33,101 |
REC3 | 0 | 0 | 0 | 75,784 | 91,295 | 101,591 | 205,472 |
REC4 | 0 | 0 | 0 | 0 | −101,978 | −93,963 | −45,4431 |
TOTAL | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, J.; Perinhas, S.; Viveiros, C.; Barata, F. Increasing Economic Benefits in Renewable Energy Communities with Solar PV and Battery Storage Technologies: Insights from New Member Integration. Energies 2025, 18, 4815. https://doi.org/10.3390/en18184815
Sousa J, Perinhas S, Viveiros C, Barata F. Increasing Economic Benefits in Renewable Energy Communities with Solar PV and Battery Storage Technologies: Insights from New Member Integration. Energies. 2025; 18(18):4815. https://doi.org/10.3390/en18184815
Chicago/Turabian StyleSousa, Jorge, Sérgio Perinhas, Carla Viveiros, and Filipe Barata. 2025. "Increasing Economic Benefits in Renewable Energy Communities with Solar PV and Battery Storage Technologies: Insights from New Member Integration" Energies 18, no. 18: 4815. https://doi.org/10.3390/en18184815
APA StyleSousa, J., Perinhas, S., Viveiros, C., & Barata, F. (2025). Increasing Economic Benefits in Renewable Energy Communities with Solar PV and Battery Storage Technologies: Insights from New Member Integration. Energies, 18(18), 4815. https://doi.org/10.3390/en18184815