Research on the Response Characteristics of Core Grounding Current Signals in Power Transformers Under Different Operating Conditions
Abstract
1. Introduction
2. Modeling and Parameter Extraction
3. Simulation of Core Grounding Current Response Characteristics
3.1. Core Grounding Current Response Characteristics Under Lightning Impulse Voltage
3.2. Core Grounding Current Response Characteristics Under Switching Impulse Voltage
3.3. Core Grounding Current Response Characteristics Under Power-Frequency-Harmonic-Combined Voltage
3.4. Core Grounding Current Response Characteristics Under Partial Discharge Excitation
4. Experimental Verification of Core Grounding Current Response Characteristics
4.1. Experimental Results of Core Grounding Current Under Lightning Impulse Voltage
4.2. Experimental Results of Core Grounding Current Under Switching Impulse Voltage
4.3. Experimental Results of Core Grounding Current Under Power-Frequency Harmonics
4.4. Experimental Results of Core Grounding Current Under Partial Discharge Excitation
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bian, J.Y.; Qiu, G.Y. The Application of Power Electronic Transformer in Distribution Power System. In Proceedings of the 4th International Conference on Information Technology and Management Innovation, Shenzhen, China, 19–20 September 2015; Yang, S.F., Ed.; Atlantis Press: Paris, France, 2015; Volume 28, pp. 304–310. [Google Scholar]
- Wang, X.; He, A.; Li, Z.; Jiao, Z.; Lu, N. Reinforcement Learning Based Early Classification Framework for Power Transformer Differential Protection. Expert Syst. Appl. 2025, 292, 128632. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, T.; Wu, P.; Luo, Y.; Bai, J.; He, N.; Li, X. Analytical Modeling and Calculation of Core Grounding Current in Converter Transformer. Front. Energy Res. 2023, 10, 1074501. [Google Scholar] [CrossRef]
- Bai, H.; Chen, D.; Zhao, G.; Zhou, X.; Xin, Z.; Zheng, X. Grounding Current Mechanism of Converter Transformer Core and Clamp. In Proceedings of the 2024 IEEE 21st Biennial Conference on Electromagnetic Field Computation CEFC, Jeju, Republic of Korea, 2–5 June 2024; IEEE: New York, NY, USA, 2024. [Google Scholar]
- Wu, H.; Song, Y.; Liu, Y.; Ji, G. Heterogeneous Integration of Transformer Windings-Fundamentals, Principles, and Implementations. IEEE Trans. Power Electron. 2025, 40, 11246–11256. [Google Scholar] [CrossRef]
- Raman, S.J.; Mukherjee, P.; Panda, S.K. Modelling Transformer Core with Appropriate Boundary Conditions for Partial Discharge Studies. In Proceedings of the 2019 IEEE Electrical Insulation Conference (EIC), Calgary, AB, Canada, 16–19 June 2019; IEEE: New York, NY, USA, 2019; pp. 156–159. [Google Scholar]
- Bhuyan, K.; Chatterjee, S. Electric Stresses on Transformer Winding Insulation under Standard and Non-Standard Impulse Voltages. Electr. Power Syst. Res. 2015, 123, 40–47. [Google Scholar] [CrossRef]
- Hui, M.; Liu, C.-X. Effect of Power Frequency Excitation Character on Ferroresonance in Neutral-Grounded System. Chin. Phys. B 2010, 19, 120509. [Google Scholar] [CrossRef]
- Zhou, L.; Jiang, J.; Liu, H.; Gao, S.; Li, W.; Zhang, C. Homogenisation Model for Calculating Multi-Point Grounding Current of Transformer Core. IET Electr. Power Appl. 2019, 13, 243–250. [Google Scholar] [CrossRef]
- van der Walt, F.; Doorsamy, W. Analytical Condition Monitoring System for Liquid-Immersed Transformers. In Proceedings of the 2018 IEEE PES/IAS Powerafrica Conference, Cape Town, South Africa, 28–29 June 2018; IEEE: New York, NY, USA, 2018; pp. 396–401. [Google Scholar]
- Jin, L.; Kim, D.; Abu-Siada, A.; Kumar, S. Oil-Immersed Power Transformer Condition Monitoring Methodologies: A Review. Energies 2022, 15, 3379. [Google Scholar] [CrossRef]
- McGrail, T.; Borcham, P.; Sutton, S.; Rowbottom, M.; Beardsall, J.; Prout, P.; Rhoads, S. Practical Condition Monitoring: Experiences with Large Power Transformers. In Proceedings of the 2022 9th International Conference on Condition Monitoring and Diagnosis (CMD), Kitakyushu, Japan, 13–18 November 2022; IEEE: New York, NY, USA; 2022; pp. 351–354. [Google Scholar]
- de Faria, H.; Spir Costa, J.G.; Mejia Olivas, J.L. A Review of Monitoring Methods for Predictive Maintenance of Electric Power Transformers Based on Dissolved Gas Analysis. Renew. Sustain. Energy Rev. 2015, 46, 201–209. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, H. Research Progress on Oil-Immersed Transformer Mechanical Condition Identification Based on Vibration Signals. Renew. Sustain. Energy Rev. 2024, 196, 114327. [Google Scholar] [CrossRef]
- Balabantaraya, R.; Sahoo, A.K.; Sahoo, P.K.; Abir, C.M.; Panda, M.K. A Novel Infrared Thermography Image Analysis for Transformer Condition Monitoring. e-Prime-Adv. Electr. Eng. Electron. Energy 2024, 10, 100758. [Google Scholar] [CrossRef]
- Rostaminia, R.; Saniei, M.; Vakilian, M.; Mortazavi, S.S. Evaluation of Transformer Core Contribution to Partial Discharge Electromagnetic Waves Propagation. Int. J. Electr. Power Energy Syst. 2016, 83, 40–48. [Google Scholar] [CrossRef]
- Barkas, D.A.; Chronis, I.; Psomopoulos, C. Failure Mapping and Critical Measurements for the Operating Condition Assessment of Power Transformers. Energy Rep. 2022, 8, 527–547. [Google Scholar] [CrossRef]
- Dhara, S.; Koley, C.; Chakravorti, S. An Ultrawideband Partial Discharge Sensor for High-Voltage Power Transformers. IEEE Sens. J. 2024, 24, 16261–16269. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, T.; Wu, P.; Luo, Y.; Bai, J.; He, N.; Li, X. Mathematical Modeling and Experimental Research on Grounding Current Calculation of Converter Transformer Core. Meas. Control 2024, 57, 68–76. [Google Scholar] [CrossRef]
- Hettiwatte, S.N.; Crossley, P.A.; Wang, Z.D.; Darwin, A.; Edwards, G. Simulation of a Transformer Winding for Partial Discharge Propagation Studies. In Proceedings of the 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309), New York, NY, USA, 27–31 January 2002; Volume 2, pp. 1394–1399. [Google Scholar] [CrossRef]
- Jafari, A.M.; Akbari, A. Partial Discharge Localization in Transformer Windings Using Multi-Conductor Transmission Line Model. Electr. Power Syst. Res. 2008, 78, 1028–1037. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, T.; Wu, P.; Luo, Y.; Bai, J.; He, N.; Li, X.; Chen, D.; Bai, H. Research on Finite Element Simulation of Converter Transformer Core under Multi-Point Grounding Fault. Energy Rep. 2023, 9, 449–457. [Google Scholar] [CrossRef]
- Sun, L.; Xu, M.; Ren, H.; Hu, S.; Feng, G. Multi-Point Grounding Fault Diagnosis and Temperature Field Coupling Analysis of Oil-Immersed Transformer Core Based on Finite Element Simulation. Case Stud. Therm. Eng. 2024, 55, 104108. [Google Scholar] [CrossRef]
- Yang, W.; Pan, Y.; Qiu, Z.; Zhai, G. Electromagnetic Transient Model and Field-Circuit Coupling Numerical Calculation of Sen Transformer Based on Finite-Element Method. Electr. Power Syst. Res. 2023, 214, 108941. [Google Scholar] [CrossRef]
- IEC 60060-1:2010; High-Voltage test Techniques—Part 1: General Definitions and Test Requirements. IEC: Geneva, Switzerland, 2010.
- IEC 60270; High-Voltage Test Techniques—Partial Discharge Measurements. IEC: Geneva, Switzerland, 2015.
- GB/T 24846-2018; Preventive Test Standards of 1 000 kV AC Electric Equipments. China Electric Power Press: Beijing, China, 2018.
Capacitors | Ck | CZ | CD | CWC | CWD |
---|---|---|---|---|---|
Value | 7.1 nF | 6.9 nF | 2.5 nF | 273.92 pF | 180.90 pF |
Winding Phase | Harmonic Frequency | Amplitude | Upper Cutoff Frequency |
---|---|---|---|
A-phase | 22.5 kHz | 15.1 V | 1.5 MHz |
B-phase | 25.0 kHz | 14.4 V | 1.4 MHz |
C-phase | 10.0 kHz, 1.1 MHz | 12.7 V | 1.5 MHz |
Winding Phase | Amplitude | Upper Cutoff Frequency |
---|---|---|
A-phase | 22.1 mV | 8.6 kHz |
B-phase | 20.1 mV | 8.7 kHz |
C-phase | 21.3 mV | 9.0 kHz |
Winding Phase | Main Frequency | Amplitude |
---|---|---|
A-phase | 50 Hz | 1.6 mV |
B-phase | 50 Hz | 1.5 mV |
C-phase | 50 Hz | 1.5 mV |
Winding Phase | Main Frequency | PD Amplitude | PD Band |
---|---|---|---|
A-phase | 50 Hz | 31.2 mV | 0.2–1.4 MHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Ding, H.; Cai, D.; Liu, Y.; Du, P.; Dai, X.; Sha, Z.; Han, X. Research on the Response Characteristics of Core Grounding Current Signals in Power Transformers Under Different Operating Conditions. Energies 2025, 18, 4365. https://doi.org/10.3390/en18164365
Wang L, Ding H, Cai D, Liu Y, Du P, Dai X, Sha Z, Han X. Research on the Response Characteristics of Core Grounding Current Signals in Power Transformers Under Different Operating Conditions. Energies. 2025; 18(16):4365. https://doi.org/10.3390/en18164365
Chicago/Turabian StyleWang, Li, Hongwei Ding, Dong Cai, Yu Liu, Peng Du, Xiankang Dai, Zhenghai Sha, and Xutao Han. 2025. "Research on the Response Characteristics of Core Grounding Current Signals in Power Transformers Under Different Operating Conditions" Energies 18, no. 16: 4365. https://doi.org/10.3390/en18164365
APA StyleWang, L., Ding, H., Cai, D., Liu, Y., Du, P., Dai, X., Sha, Z., & Han, X. (2025). Research on the Response Characteristics of Core Grounding Current Signals in Power Transformers Under Different Operating Conditions. Energies, 18(16), 4365. https://doi.org/10.3390/en18164365