Suitability Evaluation of Site-Level CO2 Geo-Storage in Saline Aquifers of Ying–Qiong Basin, South China Sea
Abstract
1. Introduction
2. Regional Geological Features of the Ying–Qiong Basin
2.1. Geological Setting
2.2. Carbon Storage Conditions
2.3. Evaluation of CO2 Storage Potential
3. Methods for Evaluating the Suitability of CO2 Storage
3.1. Analytic Hierarchy Process
3.2. Fuzzy Comprehensive Evaluation
3.3. Evaluation Methodology and Steps
3.3.1. Establishment of a System of Evaluation Indicators
3.3.2. Constructing a Judgment Matrix
3.3.3. Calculation of Weights for Each Indicator
3.3.4. Consistency Test
3.3.5. Construction of the Fuzzy Matrix
3.3.6. Analysis of Integrated Evaluation Results
4. Evaluation of the CO2 Geo-Storage Suitability
4.1. Robustness Analysis
4.2. Establishment of the Indicator System
4.3. Suitability Evaluation of the Ying–Qiong Basin
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, T.; Tian, H.; Zhu, H.; Cai, J.G. China actively promotes CO2 capture, utilization and storage research to achieve carbon peak and carbon neutrality. Adv. Geo-Energy Res. 2022, 6, 1–3. [Google Scholar] [CrossRef]
- Mahjour, S.K.; Faroughi, S.A. Risks and uncertainties in carbon capture, transport, and storage projects: A comprehensive review. Gas Sci. Eng. 2023, 119, 205117. [Google Scholar] [CrossRef]
- Leng, J.; Bump, A.; Hosseini, S.A.; Meckel, T.A.; Wang, Z.; Wang, H. A comprehensive review of efficient capacity estimation for large-scale CO2 geological storage. Gas Sci. Eng. 2024, 126, 205339. [Google Scholar] [CrossRef]
- Qin, J.; Zhong, Q.; Tang, Y.; Rui, Z.; Qiu, S.; Chen, H. CO2 storage potential assessment of offshore saline aquifers in China. Fuel 2023, 341, 127681. [Google Scholar] [CrossRef]
- Lin, Z.; Kuang, Y.; Li, W.; Zheng, Y. Research status and prospects of CO2 geological sequestration technology from onshore to offshore: A review. Earth-Sci. Rev. 2024, 258, 104928. [Google Scholar] [CrossRef]
- Ahmed, S.; Khan, M.K.; Kim, J. Revolutionary advancements in carbon dioxide valorization via metal-organic framework-based strategies. Carbon Capture Sci. Technol. 2025, 15, 100405. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.N.; Lim, L.L.; Owen, B.; Sausen, R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef]
- Levy, P.E.; Cannell, M.G.R.; Friend, A.D. Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Glob. Environ. Change 2004, 14, 21–30. [Google Scholar] [CrossRef]
- Aminu, M.D.; Nabavi, S.A.; Rochelle, C.A.; Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef]
- Massarweh, O.; Abushaikha, A.S. CO2 sequestration in subsurface geological formations: A review of trapping mechanisms and monitoring techniques. Earth-Sci. Rev. 2024, 253, 104793. [Google Scholar] [CrossRef]
- Bachu, S. Review of CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Control 2015, 40, 188–202. [Google Scholar] [CrossRef]
- Tian, Y.; Du, Z.; Zhang, L.; Zhang, L.; Xu, G.; Chen, J. Research on Evaluation of the carbon dioxide sequestration potential in saline aquifers in the Qiongdongnan-Yinggehai Basin. J. Mar. Sci. Eng. 2024, 12, 997. [Google Scholar] [CrossRef]
- Bachu, S.; Shaw, J. Evaluation of the CO2 sequestration capacity in Alberta’s oil and gas reservoirs at depletion and the effect of underlying aquifers. J. Can. Pet. Technol. 2003, 42, PETSOC-03-09-02. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Y.; Jia, X.; Li, X.; Jia, X.; Guo, S. A Method for Evaluating the Suitability of CO2 Geological Storage in Deep Saline Aquifers. Acta Geol. Sin.-Engl. Ed. 2016, 90, 1838–1851. [Google Scholar] [CrossRef]
- Carlotto, V.; Dueñas, A.; Ingol-Blanco, E.; Santa-Cruz, S. A multi-criteria approach to the selection of geological storage of CO2 sites in Peru. Int. J. Greenh. Gas Control 2022, 114, 103600. [Google Scholar] [CrossRef]
- Deveci, M.; Demirel, N.Ç.; John, R.; Özcan, E. Fuzzy multi-criteria decision making for carbon dioxide geological storage in Turkey. J. Nat. Gas Sci. Eng. 2015, 27, 692–705. [Google Scholar] [CrossRef]
- Derse, O. CO2 capture, utilization, and storage (CCUS) storage site selection using DEMATEL-based Grey Relational Analysis and evaluation of carbon emissions with the ARIMA method. Environ. Sci. Pollut. Res. 2023, 30, 14353–14364. [Google Scholar] [CrossRef]
- He, H.; Tian, C.; Jin, G.; Han, K. Evaluating the CO2 geological storage suitability of coal-bearing sedimentary basins in China. Environ. Monit. Assess. 2020, 192, 1–13. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, Y.; Chen, J.; Zhang, W.; Zhang, J.; Liang, J.; Zhang, Y. Geological conditions and suitability evaluation for CO2 geological storage in deep saline aquifers of the Beibu Gulf Basin (South China). Energies 2023, 16, 2360. [Google Scholar] [CrossRef]
- Xiang, W.; Sang, S.; Han, S.; Liu, S.; Zhou, X.; Wang, D. Assessment of CO2 geological sequestration potential in the Northern Jiangsu-Southern yellow Sea Basin via AHP-CRITIC methodology. Int. J. Greenh. Gas Control 2025, 142, 104321. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, S.; Bosin, A.; Chen, Y.; Fang, X.; Zhu, L. Evaluation of CO2 hydrate storage potential in the Qiongdongnan Basin via combining the phase equilibrium mechanism and the volumetric method. Adv. Geo-Energy Res. 2024, 11, 220–229. [Google Scholar] [CrossRef]
- Liu, J.; Sun, L.; Wu, X.; Yao, J. Feasibility of combination of CO2 geological storage with geothermal-type water-soluble gas recovery in Yinggehai Basin, China. Int. J. Greenh. Gas Control 2016, 45, 139–149. [Google Scholar] [CrossRef]
- Xia, C.; Ye, B.; Jiang, J.; Hou, Z. Review of natural origin, distribution, and long-term conservation of CO2 in sedimentary basins of China. Earth-Sci. Rev. 2022, 226, 103953. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, D.; Li, P.; Li, F.; Zhang, Y.; Sun, Z.; Zhao, Z. CO2 storage potential of the Qiongdongnan Basin, northwestern South China Sea. Greenh. Gases Sci. Technol. 2014, 4, 691–706. [Google Scholar] [CrossRef]
- Yu, L.; Li, S.; Wu, K.; Zhao, Y.; Liu, L.; Liu, N.; Pang, K. A natural analogue for carbon capture and storage: Petrographic and geochemical changes in sandstone after CO2 emplacement in the Yinggehai Basin, South China Sea. AAPG Bull. 2023, 107, 643–683. [Google Scholar] [CrossRef]
- Liu, R.; Heinemann, N.; Liu, J.; Zhu, W.; Wilkinson, M.; Xie, Y.; Wang, Z.; Wen, T.; Hao, F.; Haszeldine, R.S. CO2 sequestration by mineral trapping in natural analogues in the Yinggehai Basin, South China Sea. Mar. Pet. Geol. 2019, 104, 190–199. [Google Scholar] [CrossRef]
- Bradshaw, J.; Bachu, S.; Bonijoly, D.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M. CO2 storage capacity estimation: Issues and development of standards. Int. J. Greenh. Gas Control 2007, 1, 62–68. [Google Scholar] [CrossRef]
- Ding, S.; Li, Y.; Zhang, M.; Xu, C.; Wang, S.; Gao, Y.; Yu, H.; Du, Y.; Ma, J. Holistic review on CO2 geological storage potential evaluation. Energy Fuels 2024, 38, 19946–19965. [Google Scholar] [CrossRef]
- Ye, J.; Afifi, A.; Rowaihy, F.; Baby, G.; De Santiago, A.; Tasianas, A.; Hamieh, A.; Khodayeva, A.; Al-Juaied, M.; Meckel, T.A.; et al. Evaluation of geological CO2 storage potential in Saudi Arabian sedimentary basins. Earth-Sci. Rev. 2023, 244, 104539. [Google Scholar] [CrossRef]
- Yao, Y.; Guo, S.; Li, X.; Zhao, X.; He, S. Geological Structure and Dynamics of the Yinggehai Active Rift Basin, South China Sea. J. Earth Sci. 2023, 34, 1732–1743. [Google Scholar] [CrossRef]
- Huang, Y.; Kane, I.A.; Zhao, Y. Effects of sedimentary processes and diagenesis on reservoir quality of submarine lobes of the Huangliu Formation in the Yinggehai Basin, China. Mar. Pet. Geol. 2020, 120, 104526. [Google Scholar] [CrossRef]
- Duan, W.; Li, C.-F.; Chen, X.-G.; Luo, C.-F.; Tuo, L.; Liu, J.-Z. Diagenetic differences caused by gas charging with different compositions in the XF13 block of the Yinggehai Basin, South China Sea. AAPG Bull. 2020, 104, 735–765. [Google Scholar] [CrossRef]
- Wu, S.; Qiu, X.; Zhou, D.; Zeng, G.; Xia, K.; Ye, S. Crustal structure beneath Yinggehai basin and adjacent Hainan Island, and its tectonic implications. J. Earth Sci. 2009, 20, 13–26. [Google Scholar] [CrossRef]
- Lv, X.; Fu, M.; Zhang, S.; Liu, Y.; Ding, X.; Meng, X.; Yin, S.; Sun, T. The effect of thermal fluid derived from mud diapir on sandstone reservoirs in the Yinggehai Basin, South China Sea. Energy Geosci. 2022, 3, 473–484. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Z.; Sun, L.; Wang, Z.; Sun, Z. Cenozoic tectonic subsidence in the Qiongdongnan Basin, northern South China Sea. Basin Res. 2018, 30, 269–288. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Z.; Wang, Z.; Sun, Z.; Liu, J.; Zhang, C. The high resolution sedimentary filling in Qiongdongnan Basin, Northern South China Sea. Mar. Geol. 2015, 361, 11–24. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, X.; Yang, J.; Huang, B.; Sun, Z.; Wang, Y.; Jiang, H.; Yu, C.; Yang, X. Analyses on the tectonic thermal evolution and influence factors in the deep-water Qiongdongnan Basin. Acta Oceanol. Sin. 2014, 33, 107–117. [Google Scholar] [CrossRef]
- Zhou, Q.; Birkholzer, J.T. On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2. Greenh. Gases Sci. Technol. 2011, 1, 11–20. [Google Scholar] [CrossRef]
- Eigbe, P.A.; Ajayi, O.O.; Olakoyejo, O.T.; Fadipe, O.L.; Efe, S.; Adelaja, A.O. A general review of CO2 sequestration in underground geological formations and assessment of depleted hydrocarbon reservoirs in the Niger Delta. Appl. Energy 2023, 350, 121723. [Google Scholar] [CrossRef]
- Maalim, A.A.; Ben Mahmud, H.; Seyyedi, M. Assessing roles of geochemical reactions on CO2 plume, injectivity and residual trapping. Energy Geosci. 2021, 2, 327–336. [Google Scholar] [CrossRef]
- Abuov, Y.; Seisenbayev, N.; Lee, W. CO2 storage potential in sedimentary basins of Kazakhstan. Int. J. Greenh. Gas Control 2020, 103, 103186. [Google Scholar] [CrossRef]
- Span, R.; Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [Google Scholar] [CrossRef]
- Kopp, A. Evaluation of CO2 Injection Processes in Geological Formations for Site Screening; Online Publications of University Stuttgart: Stuttgart, Germany, 2009. [Google Scholar]
- Raza, A.; Rezaee, R.; Gholami, R.; Bing, C.H.; Nagarajan, R.; Hamid, M.A. A screening criterion for selection of suitable CO2 storage sites. J. Nat. Gas Sci. Eng. 2016, 28, 317–327. [Google Scholar] [CrossRef]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Ma, J.; Gennaro, V.D.; Tan, B. Using AHP and stochastic TOPSIS for carbon storage screening and ranking with uncertainty analysis. In Proceedings of the International Petroleum Technology Conference, Dhahran, Saudi Arabia, 12 February 2024; p. IPTC-24150-MS. [Google Scholar] [CrossRef]
- Guo, T.; Tang, S.; Sun, J.; Gong, F.; Liu, X.; Qu, Z.; Zhang, W. A coupled thermal-hydraulic-mechanical modeling and evaluation of geothermal extraction in the enhanced geothermal system based on analytic hierarchy process and fuzzy comprehensive evaluation. Appl. Energy 2020, 258, 113981. [Google Scholar] [CrossRef]
- He, Y.; Zhao, G.; Tang, Y.; Song, J.; Chen, Y. Available target evaluation of underground gas storage based on AHP-FCE methods. Geoenergy Sci. Eng. 2024, 242, 213255. [Google Scholar] [CrossRef]
- Park, K.; Kim, C.Y.; Kirk, M.F.; Chae, G.; Kwon, M.J. Effects of natural non-volcanic CO2 leakage on soil microbial community composition and diversity. Sci. Total Environ. 2023, 862, 160754. [Google Scholar] [CrossRef]
- Fu, M.; Jiang, J.; Wang, D.; Fu, G.; Song, Y.; Wang, H.; Zhang, D. Assessment of the community status of seagrass bed and its relationship with environmental characteristics in Wenchang, Hainan Island, China. Front. Mar. Sci. 2024, 11, 1433104. [Google Scholar] [CrossRef]
Basin | Reservoir | Area (km2) | Volume (m3) | Burial Depth (m) | Sequence | Porosity (%) | Permeability (mD) |
---|---|---|---|---|---|---|---|
Yinggehai Basin | HK-A | 57.30 | 8.11 × 109 | 1202.9–1464.5 | T30–T31 | 28.73 | 800.0 |
DF-A | 273.0 | 1.1 × 109 | 1408.9–1547.2 | T27–T28 | 23.7 | 412.3 | |
DF-B | 276.0 | 4.13 × 109 | 1484.9–1738.4 | T27–T28 | 29.3 | 600.0 | |
DF-C | 332.0 | 4.99 × 109 | 1962.7–2206.7 | T28–T29 | 14.32 | 272.4 | |
DF-D | 27.30 | 1.12 × 109 | 3026.8–3273.9 | T30–T31 | 15.6 | 248.5 | |
DF-E | 332.0 | 1.66 × 1010 | 1967.3–2513.9 | T28–T29 | 17.85 | 535.0 | |
DF-F | 58.90 | 1.93 × 109 | 2495.4–2673.3 | T29–T30 | 17.95 | 4.3 | |
DF-G | 128.0 | 3.42 × 109 | 2387.4–2663.7 | T29–T30 | 17.95 | 4.3 | |
DF-H | 128.0 | 3.42 × 109 | 2476.8–2682.2 | T29–T30 | 17.95 | 4.3 | |
DF-I | 1350.0 | 3.67 × 1010 | 602.5–1359.5 | T20–T27 | 24.4 | 500.0 | |
DF-J | 38.50 | 7.75 × 108 | 2615.2–2792.2 | T29–T30 | 21.0 | 550.0 | |
DF-K | 42.80 | 1.26 × 109 | 2448.8–2536.9 | T29–T30 | 21.0 | 550.0 | |
DF-L | 34.90 | 4.92 × 108 | 2633.4–2786.9 | T29–T30 | 21.0 | 550.0 | |
Qiongdongnan Basin | CC-A | 147.46 | 3.88 × 109 | 932.8–973.2 | T41–T50 | 32.0 | 20.1 |
CC-B | 187.77 | 7.12 × 109 | 787.8–945.9 | T41–T50 | 22.0 | 13.4 | |
YC-A | 6.78 | 1.05 × 109 | 2733.8–2934.1 | T50–T52 | 13.0 | 284.5 | |
CC-C | 35.98 | 2.51 × 109 | 989.0–1081.6 | T50–T60 | 23.0 | 13.7 | |
ST-A | 9.51 | 2.84 × 108 | 3046.4–3108.4 | T52–T60 | 16.5 | 57.0 | |
BD-A | 62.13 | 9.96 × 109 | 1947.1–2377.9 | T52–T60 | 15.7 | 814.0 | |
Y-A | 46.78 | 7.52 × 109 | 2451.7–2841.3 | T62–T70 | 12.1 | 32.4 | |
YC-B | 38.89 | 9.80 × 109 | 2675.0–4180.2 | T62–T70 | 17.6 | 223.4 | |
ST-B | 25.52 | 3.42 × 109 | 2463.3–2876.9 | T62–T70 | 13.6 | 72.4 | |
ST-C | 44.80 | 1.23 × 1010 | 2633.2–3159.3 | T62–T70 | 14.9 | 126.7 | |
YC-C | 39.76 | 1.33 × 1010 | 2741.9–3137.4 | T62–T70 | 16.5 | 256.5 |
Basin | Reservoir | Temperature (°C) | Pressure (Mpa) | CO2 Density (kg/m³) | CO2 Solubility (mol/L) | Storage Potential (104 t) |
---|---|---|---|---|---|---|
Yinggehai Basin | HK-A | 53.35 | 14.67 | 574.40 | 1.01 | 2.77 × 103 |
DF-A | 59.12 | 16.26 | 634.69 | 1.03 | 3.61 × 102 | |
DF-B | 64.47 | 17.73 | 610.76 | 1.05 | 1.52 × 103 | |
DF-C | 83.39 | 22.93 | 607.82 | 1.12 | 1.09 × 103 | |
DF-D | 125.98 | 34.64 | 622.45 | 1.28 | 2.70 × 102 | |
DF-E | 89.60 | 24.64 | 630.67 | 1.15 | 4.44 × 103 | |
DF-F | 103.36 | 28.42 | 634.18 | 1.20 | 5.22 × 102 | |
DF-G | 101.00 | 27.78 | 625.59 | 1.19 | 9.13 × 102 | |
DF-H | 103.16 | 28.37 | 633.29 | 1.20 | 9.24 × 102 | |
DF-I | 39.22 | 10.79 | 562.25 | 0.96 | 1.09 × 104 | |
DF-J | 108.14 | 29.74 | 635.03 | 1.22 | 2.36 × 102 | |
DF-K | 99.68 | 27.41 | 614.71 | 1.19 | 3.72 × 102 | |
DF-L | 108.38 | 29.80 | 636.04 | 1.22 | 1.50 × 102 | |
Qiongdongnan Basin | CC-A | 38.10 | 10.48 | 548.16 | 0.95 | 1.36 × 103 |
CC-B | 34.64 | 9.53 | 503.98 | 0.94 | 1.78 × 103 | |
YC-A | 113.34 | 31.17 | 637.01 | 1.24 | 2.25 × 102 | |
CC-C | 41.40 | 11.39 | 589.39 | 0.97 | 7.50 × 102 | |
ST-A | 123.08 | 33.85 | 612.57 | 1.27 | 7.04 × 101 | |
BD-A | 86.48 | 23.78 | 624.95 | 1.14 | 2.40 × 103 | |
Y-A | 105.84 | 29.11 | 644.12 | 1.21 | 1.54 × 103 | |
YC-B | 137.10 | 37.70 | 615.65 | 1.33 | 2.57 × 103 | |
ST-B | 106.78 | 29.36 | 647.21 | 1.21 | 7.69 × 102 | |
ST-C | 115.84 | 31.86 | 644.95 | 1.25 | 2.96 × 103 | |
YC-C | 117.56 | 32.33 | 650.68 | 1.25 | 3.48 × 103 |
Category | Maximum Eigenvalue | CI Value | RI Value | CR Value |
---|---|---|---|---|
Indicator layer | 3.0822 | 0.0411 | 0.52 | 0.079 |
Engineering geological condition | 5.2288 | 0.0572 | 1.12 | 0.0511 |
Storage potential condition | 2 | 0 | 0 | 0 |
Socio-economic condition | 1 | 0 | 0 | 0 |
Geothermal condition | 3.0024 | 0.0012 | 0.52 | 0.0023 |
Fault condition | 2 | 0 | 0 | 0 |
Seismic condition | 2 | 0 | 0 | 0 |
Reservoir and caprock | 5.2382 | 0.05955 | 1.12 | 0.0532 |
Hydrogeological condition | 1 | 0 | 0 | 0 |
Caprock | 4.0127 | 0.0042 | 0.89 | 0.0047 |
Reservoir | 7.413 | 0.0688 | 1.36 | 0.0506 |
Economic suitability | 4.0053 | 0.0018 | 0.89 | 0.002 |
Indicator Layer | First-Level Indicators | Second-Level Indicators | Suitable | Generally Suitable | Unsuitable |
---|---|---|---|---|---|
Engineering geological condition | Geothermal condition | Geothermal heat flow (mW/m2) | <50 | 50~70 | >70 |
Geothermal gradient (°C/km) | <2.0 | 2.0~5.0 | >5 | ||
Surface temperature (°C) | <2 | 3~25 | >25 | ||
Fault condition | Development of active faults | No active fault, and no active faults within 25 km | No active faults, but there are active faults within 25 km | Unclear whether active faults developed | |
Development of faults and fractures | Limited fractures, no faults | Moderate fractures, no faults | Large fractures, moderate faults | ||
Seismic condition | Peak acceleration | <0.05 g | 0.05~0.10 g | >0.10 g | |
Historical earthquakes | No historical earthquake | M < 6.0 | M > 6.0 | ||
Reservoir and caprock | Lithology of caprock | Evaporite | Mudstone | Shale and dense limestone | |
Faults and fractures in caprock | Limited faults and fractures | Moderate faults and fractures | Large faults and fractures | ||
Lithology of reservoir | Clastic | Clastic and carbonate | Carbonate | ||
Sedimentary facies of reservoir | Continental facies: alluvial plain, delta plain, and submarine distributary channels of delta front Marine facies: intertidal zone in enclosed or semi-enclosed shallow-water carbonate platforms | Continental facies: alluvial fans, delta fronts, shore shallow lakes Marine facies: supratidal zone and subtidal zone | Continental facies: sublacustrine fans, shallow lakes, semi-deep sakes, and others Marine facies: thers | ||
Pressure coefficient of reservoir | <0.9 | 0.9~1.1 | >1.1 | ||
Hydrogeological conditions | Hydrodynamic action | Hydrodynamic sealing | Hydrodynamic plugging | Hydrodynamic migration | |
Storage potential Condition | Caprock | Burial depth (m) | <1000 | 1000~2700 | >2700 |
Thickness (m) | >20 | 10~20 | <10 | ||
Permeability (mD) | <0.0001 | 0.0001~0.01 | >0.01 | ||
Distribution continuity | Continuous distribution | General continuous distribution | Discontinuous and limited distribution | ||
Reservoir | Area (km2) | >50 | 5~50 | 1~5 | |
Thickness (m) | >80 | 30~80 | 10~30 | ||
Continuity of sand distribution (m) | >2000 | 600~2000 | <600 | ||
Storage potential (106 t) | >50 | 0.5~50 | <0.5 | ||
Porosity | >0.15 | 0.10~0.15 | <0.10 | ||
Permeability (mD) | >50 | 10~50 | <5 | ||
Salinity of formation water | 10.0~50.0 | 3.0~10.0 | <3.0, > 50 | ||
Socio-economic condition | Economic suitability | Water depth (m) | 0~100 | 100~300 | >300 |
Exploration and development degree | Sufficient exploration data | General exploration degree | Unexplored | ||
Offshore distance (km) | 0~100 | 100~200 | >200 | ||
Distance from drilling platform (km) | <20 | 20~50 | >50 |
Indicator Layer | Weight | First-Level Indicators | Weight | Second-Level Indicators | Weight |
---|---|---|---|---|---|
Engineering geological condition | 0.3183 | Geothermal condition | 0.0303 | Geothermal heat flow (mW/m2) | 0.0091 |
Geothermal gradient (°C/km) | 0.0152 | ||||
Surface temperature (°C) | 0.0061 | ||||
Fault condition | 0.0417 | Development of active faults | 0.0208 | ||
Development of faults and fractures | 0.0208 | ||||
Seismic condition | 0.0333 | Peak acceleration | 0.0200 | ||
Historical earthquakes | 0.0133 | ||||
Reservoir and caprock | 0.1842 | Lithology of caprock | 0.0357 | ||
Fault development in caprock | 0.0261 | ||||
Lithology of reservoir | 0.0587 | ||||
Sedimentary facies of reservoir | 0.0271 | ||||
Pressure coefficient of reservoir | 0.0365 | ||||
Hydrogeological condition | 0.0288 | Hydrodynamic action | 0.0288 | ||
Storage potential Condition | 0.4244 | Caprock | 0.1698 | Burial depth (m) | 0.0264 |
Thickness (m) | 0.0397 | ||||
Permeability (mD) | 0.0626 | ||||
Distribution continuity | 0.0411 | ||||
Reservoir | 0.2546 | Area (km2) | 0.0491 | ||
Thickness (m) | 0.0423 | ||||
Continuity of sand distribution (m) | 0.0165 | ||||
Storage potential (104 t) | 0.0695 | ||||
Porosity | 0.0340 | ||||
Permeability (mD) | 0.0324 | ||||
Salinity of formation water | 0.0107 | ||||
Socio-economic Condition | 0.2573 | Economic suitability | 0.2573 | Water depth (m) | 0.0266 |
Exploration and development degree | 0.1253 | ||||
Offshore distance (km) | 0.0577 | ||||
Distance from drilling platform (km) | 0.0478 |
Basin | Reservoir | Engineering Geological Condition | Storage Potential Condition | Socio-Economic Condition | Comprehensive Suitability |
---|---|---|---|---|---|
Yinggehai Basin | HK-A | 0.836 | 0.743 | 0.577 | 0.730 |
DF-A | 0.862 | 0.668 | 0.900 | 0.790 | |
DF-B | 0.877 | 0.755 | 0.900 | 0.831 | |
DF-C | 0.871 | 0.663 | 0.900 | 0.790 | |
DF-D | 0.865 | 0.574 | 0.855 | 0.739 | |
DF-E | 0.877 | 0.767 | 0.900 | 0.836 | |
DF-F | 0.846 | 0.480 | 0.818 | 0.684 | |
DF-G | 0.836 | 0.501 | 0.818 | 0.689 | |
DF-H | 0.840 | 0.498 | 0.818 | 0.689 | |
DF-I | 0.877 | 0.870 | 0.798 | 0.853 | |
DF-J | 0.871 | 0.679 | 0.798 | 0.771 | |
DF-K | 0.877 | 0.652 | 0.798 | 0.761 | |
DF-L | 0.862 | 0.646 | 0.764 | 0.745 | |
Qiongdongnan Basin | CC-A | 0.766 | 0.525 | 0.654 | 0.635 |
CC-B | 0.755 | 0.503 | 0.654 | 0.622 | |
YC-A | 0.848 | 0.574 | 0.721 | 0.699 | |
CC-C | 0.746 | 0.466 | 0.654 | 0.603 | |
ST-A | 0.839 | 0.458 | 0.736 | 0.651 | |
BD-A | 0.883 | 0.753 | 0.859 | 0.821 | |
Y-A | 0.846 | 0.519 | 0.557 | 0.633 | |
YC-B | 0.877 | 0.712 | 0.859 | 0.802 | |
ST-B | 0.838 | 0.543 | 0.598 | 0.651 | |
ST-C | 0.842 | 0.644 | 0.675 | 0.715 | |
YC-C | 0.877 | 0.686 | 0.777 | 0.770 |
Suitability Level | Engineering Geological Condition | Storage Potential Condition | Socio-Economic Condition | Comprehensive Suitability |
---|---|---|---|---|
Suitable | >0.87 | >0.75 | >0.75 | >0.80 |
Moderately suitable | 0.85~0.87 | 0.55~0.75 | 0.70~0.75 | 0.70~0.80 |
Unsuitable | <0.85 | <0.55 | <0.70 | <0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Li, C.; Yang, Q.; Sun, A.; Song, G.; Couchot, J.; Jin, A.; Wang, Q. Suitability Evaluation of Site-Level CO2 Geo-Storage in Saline Aquifers of Ying–Qiong Basin, South China Sea. Energies 2025, 18, 3388. https://doi.org/10.3390/en18133388
Liao J, Li C, Yang Q, Sun A, Song G, Couchot J, Jin A, Wang Q. Suitability Evaluation of Site-Level CO2 Geo-Storage in Saline Aquifers of Ying–Qiong Basin, South China Sea. Energies. 2025; 18(13):3388. https://doi.org/10.3390/en18133388
Chicago/Turabian StyleLiao, Jin, Cai Li, Qihui Yang, Aixia Sun, Guangze Song, Joaquin Couchot, Aohan Jin, and Quanrong Wang. 2025. "Suitability Evaluation of Site-Level CO2 Geo-Storage in Saline Aquifers of Ying–Qiong Basin, South China Sea" Energies 18, no. 13: 3388. https://doi.org/10.3390/en18133388
APA StyleLiao, J., Li, C., Yang, Q., Sun, A., Song, G., Couchot, J., Jin, A., & Wang, Q. (2025). Suitability Evaluation of Site-Level CO2 Geo-Storage in Saline Aquifers of Ying–Qiong Basin, South China Sea. Energies, 18(13), 3388. https://doi.org/10.3390/en18133388