Molecular Compositions of Hydrocarbons Within the Lower and Middle Carboniferous Shale Sequences from the Outcrops in the Piedmont of Southwestern Tarim Basin and the Possible Geochemical Implications
Abstract
:1. Introduction
2. Samples and Experiments
2.1. Rock Samples
2.2. Rock-Eval
2.3. X-Ray Fluorescence Spectrometer (XRF)
2.4. Gas Chromatography–Mass Spectrometry (GC–MS)
3. Results
3.1. General Geochemical Compositions of Carboniferous Source Rocks
3.2. n-Alkanes and Acyclic Isoprenoids
3.3. Terpanes and Steranes
3.4. Diamondoids
3.5. Aromatics
4. Discussion
4.1. Depositional Environments of Carboniferous Source Sequences
4.1.1. Molecular Markers
4.1.2. Quantitative Extended Diamondoid Analysis (QEDA)
4.2. Organic Matter Inputs of Carboniferous Source Sequences
4.3. Thermal Maturity of Carboniferous Source Sequences
4.3.1. The Polycyclic Aromatic Hydrocarbon Indices
4.3.2. The Diamondoids Parameters
5. Conclusions
- (1)
- The Carboniferous shale sequences contain abundant diamondoids with 2–4 cages with the predominance of methyldiamantanes, dimethyldiamantanes, and methyltriamantanes. The carbonate-rich and carbonate-poor organic facies were recognized for the first time in the PSTB by using the quantitative extended diamondoid analysis (QEDA) and further confirmed by the X-Ray fluorescence spectrometer analysis (XRF) of the whole rock samples. They were deposited in the anoxic and sulfur-poor marine setting, and the water was more salty and stratified during the deposition of carbonate-rich facies.
- (2)
- The organic matter inputs are dominated by marine aquatic algae with the contribution of terrestrial higher plants, resulting in the formation of Type II kerogen in the Carboniferous sources. Higher plants have a greater contribution in the carbonate-poor facies relative to that in the carbonate-rich organic facies as indicated by the enrichment of C29 ααα20R for the carbonate-poor samples.
- (3)
- Molecular compositions and associated parameters of polycyclic aromatic hydrocarbons and diamondoids with 2–4 cages suggest that the Carboniferous shale sequences have arrived at the late mature to highly mature stage. The Carboniferous source sequences on the Aitegou Outcrop are less matured than those on the Kushanhe and Altash outcrops. The Carboniferous source sequences on the Altash Outcrop are more matured than the others.
- (4)
- The clay catalysis effects in the carbonate-poor facies facilitate the isomerization of steranes and hence the generation of triamantane, and the presence of carbonates is feasible for the generation of alkylated triamantanes in the carbonate-rich facies. This is suggested by the fact that samples collected from the carbonate-rich facies are relatively depleted in C27 diasteranes and triamantane and rich in C27 regular steranes and alkylated triamantanes relative to those from the carbonate-poor facies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Yang, H.; Li, Y.; Cai, Z.; Yang, X.; Xu, Z.; Chen, C.; Sun, C. Major breakthrough in the Carboniferous-Permian in Well Qiatan 1 and exploration prospect in the piedmont southewestern Tarim Basin. China Pet. Exporation 2023, 28, 34–45. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, H.; Li, Y.; Cai, Z.; Yang, X.; Xie, H.; Chen, C.; Sun, C. Major oil and gas discovery and significance of Well Yetan 1 in the peripheral Kekeya area in the piedmont of southwestern Tarim Basin. China Pet. Exporation 2024, 29, 1–17. [Google Scholar] [CrossRef]
- Hu, J.; Cui, J. Geochemical Analysis of Crude Oils and Oil Sand in the Kashi Sag, Tarim Basin. Sci. Technol. Eng. 2015, 15, 122–129+142. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Chen, C.; Zhang, H.; Lu, Y. Geochemical characteristics and hydrocarbon generation potential of Permian Pusige formation calcareous mudstone in Tarim basin. Nat. Gas Geosci. 2025, 24, 1–21. [Google Scholar]
- Huang, W.; Pan, C.; Yu, S.; Zhang, H.; Xiao, Z.; Zhang, Z. Source and filling process of crude oil from Fusha 4 well in Kedong structural belt of the southwestern Tarim depression. Nat. Gas Geosci. 2022, 32, 1836–1847. [Google Scholar] [CrossRef]
- Liao, X.; Wang, Z.; Fan, C.; Yu, C. The comprehensive evaluation of source rock in low-exploration area: A case study on the Carboniferous source rock in southwest sag of Tarim Basin. J. Northwest Univ. (Nat. Sci. Ed.) 2018, 48, 261–267. [Google Scholar] [CrossRef]
- Li, X.; Xiao, X.; Tang, Y.; Xiao, Z.; Mi, J.; Tian, H.; Liu, D.; Shen, J.; Liu, J. Using Carbon Isotope Kinetics to Investigate the Origin of Natural Gas in the Ake-1 Gas Reservoir. Geochimica 2005, 5, 525–532. [Google Scholar] [CrossRef]
- Farouk, S.; Ahmed Saada, S.; Arafat, M.; Al-Kahtany, K.; Gentzis, T.; Zaky, A.S.; Jovane, L. Thermal maturity and gas generation in Upper Cretaceous formations of the Beni Suef Basin, Egypt: Insights from stable carbon isotopes and geochemical analysis of the Azhar-E1X well. Front. Earth Sci. 2025, 13, 1552662. [Google Scholar] [CrossRef]
- Han, W.; Tao, S.; Hu, G.; Ma, W.; Liu, D.; Pen, W.; Feng, Z. Geochemical characteristics of natural gas and its genesis in piedmont zone of southwest Tarim basin. J. China Univ. Min. Technol. 2017, 46, 121–130. [Google Scholar] [CrossRef]
- Meng, M.; Kang, Z.; Qiu, H.; Li, S.; Zhang, B. Controlling factors of permian hydrocarbon source rocks in the southwest depression of Tarim Basin. Bull. Mineral. Petrol. Geochem. 2016, 35, 344–352. [Google Scholar] [CrossRef]
- Peters, K.E. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull. 1986, 70, 318–329. [Google Scholar] [CrossRef]
- Yong, S.C.; Jong, Y.K.; Suk, B.Y.; Kyuseok, S.; Young, J.K. Determination of water content in silica nanopowder using wavelength-dispersive X-ray fluorescence spectrometer. Microchem. J. 2011, 99, 332–338. [Google Scholar] [CrossRef]
- Xiao, Q.; Sun, Y.; He, S.; Liu, J.; Zhu, C. Thermal stability of 2-thiadiamondoids determined by pyrolysis experiments in a closed system and its geochemical implications. Org. Geochem. 2019, 130, 14–21. [Google Scholar] [CrossRef]
- Farouk, S.; Saada, S.A.; Fagelnour, M.S.; Arafat, M. Petrophysical and Gas Chromatographic Analysis Integration for Hydrocarbon Identifications in Cretaceous Reservoirs, Azhar Field, Beni Suef Basin, Egypt. Egypt. J. Pet. 2024, 33, 7. [Google Scholar] [CrossRef]
- Connan, J.; Cassou, A.M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochim. Cosmochim. Acta 1980, 44, 1–23. [Google Scholar] [CrossRef]
- Sofer, Z. Stable carbon isotope compositions of crude oils; application to source depositional environments and petroleum alteration. AAPG Bull. 1984, 68, 31–49. [Google Scholar] [CrossRef]
- Shanmugam, G. Significance of Coniferous Rain Forests and Related Organic Matter in Generating Commercial Quantities of Oil, Gippsland Basin, Australia. AAPG Bull. 1985, 69, 1241–1254. [Google Scholar] [CrossRef]
- Xiao, H.; Li, M.; Nettersheim, B.J. Short chain tricyclic terpanes as organic proxies for paleo-depositional conditions. Chem. Geol. 2024, 652, 122023. [Google Scholar] [CrossRef]
- Hughes, W.B.; Holba, A.G.; Dzou, L.I.P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta 1995, 59, 3581–3598. [Google Scholar] [CrossRef]
- Moldowan, J.M.; Dahl, J.; Zinniker, D.; Barbanti, S.M. Underutilized advanced geochemical technologies for oil and gas exploration and production-1. The Diamondoids. J. Pet. Sci. Eng. 2015, 126, 87–96. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide; Cambridge University Press: Cambridge, UK, 2005; pp. 1–1155. [Google Scholar]
- Moldowan, J.M.; Sundararaman, P.; Schoell, M. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarician of SW-Germany. Org. Geochem. 1986, 10, 915–926. [Google Scholar] [CrossRef]
- Yurchenko, I.A.; Moldowan, J.M.; Peters, K.E.; Magoon, L.B.; Graham, S.A. The role of calcareous and shaly source rocks in the composition of petroleum expelled from the Triassic Shublik Formation, Alaska North Slope. Org. Geochem. 2018, 122, 52–67. [Google Scholar] [CrossRef]
- Atwah, I.; Moldowan, J.M.; Koskella, D.; Dahl, J. Application of higher diamondoids in hydrocarbon mudrock systems. Fuel 2021, 284, 118994. [Google Scholar] [CrossRef]
- Walters, C.C.; Sun, X.; Zhang, T. Geochemistry of oils and condensates from the lower Eagle Ford formation, south Texas. Part 4: Diamondoids. Mar. Pet. Geol. 2023, 154, 106308. [Google Scholar] [CrossRef]
- Fort, R.C.; von Rchleyer, P.R. Adamantane: Consequences of diamondoid structure. Chem. Rev. 1964, 64, 277–300. [Google Scholar] [CrossRef]
- McKervey, M.A. Synthetic approaches to large diamondoid hydrocarbons. Tetrahedron 1980, 36, 971–992. [Google Scholar] [CrossRef]
- Olah, G.A. Carbocation and electrophilic reactions of cage hydrocarbons. Chemlnform 1991, 22, 303. [Google Scholar] [CrossRef]
- Wei, Z.; Moldowan, J.M.; Dahl, J.; Goldstein, T.P.; Jarvie, D.M. The catalytic effects of minerals on the formation of diamondoids from kerogen macromolecules. Org. Geochem. 2006, 37, 1421–1436. [Google Scholar] [CrossRef]
- Lin, R.; Wilk, Z.A. Natural occurrence of tetramantane (C22H28), pentamantanes (C26H32) and hexamantane (C30H36) in a deep petroleum reservoir. Fuel 1995, 74, 1512–1521. [Google Scholar] [CrossRef]
- Farouk, S.; Sen, S.; Ahmed, F.; Qteishat, A.; Al-Kahtany, K.; Moreno, H.M.; Arafat, M. Assessment of the Upper Cretaceous Abu Roash carbonate source rocks from the Beni Suef field, Western Desert, Egypt. J. Afr. Earth Sci. 2024, 215, 105272. [Google Scholar] [CrossRef]
- Radke, M.; Welte, D.H. The Methylphenanthrene Index (MPI): A Maturity Parameter Based on Aromatic Hydrocarbons. In Advances in Organic Geochemistry; Bjoroy, M., Ed.; John Wiley and Sons Limited: Hoboken, NJ, USA, 1981; Volume 1983, pp. 504–512. [Google Scholar]
- Radke, M.; Welte, D.H.; Willsch, H. Geochemical study on a well in the Western Canada Basin: Relation of the aromatic distribution pattern to maturity of organic matter. Geochim. Cosmochim. Acta 1982, 46, 1–10. [Google Scholar] [CrossRef]
- Bao, J.; Wang, T. The relationship between methylphenanthrene ratios and the evolution of organic matter. J. Jianghan Pet. Inst. 1992, 14, 8–13, (In Chinese with English Abstract). [Google Scholar]
- Chen, J.; Fu, J.; Sheng, G.; Liu, D.; Zhang, J. Diamondoid hydrocarbon ratios: Novel maturity indices for highly mature crude oils. Org. Geochem. 1996, 25, 179–190. [Google Scholar] [CrossRef]
- Li, J.; Paul, P.; Cui, M. Methyl diamantane index (MDI) as a maturity parameter for Lower Palaeozoic carbonate rocks at high maturity and overmaturity. Org. Geochem. 2000, 31, 267–272. [Google Scholar] [CrossRef]
- Clark, T.; Knox, T.M.; Mckervey, M.A.; Mackle, H.; Jony, R.J. Thermochemistry of bridged-ring substance. Enthalpies of formation of some diamondoid hydrocarbons and of perhydroquinacene. Comparisons with data from empirical force filed calculations. J. Am. Chem. Soc. 1979, 101, 2404–2410. [Google Scholar] [CrossRef]
- Wingert, S.W. GC-MS analysis of diamondoids hydrocarbons in Smackover petroleums. Fuel 1992, 71, 37–43. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, H.; Xiao, Z.; Liang, D. Geochemistry of palaeozoic marine petroleum from the Tarim Basin, NW China. Part 2: Maturity assessment. Org. Geochem. 2005, 36, 1215–1225. [Google Scholar] [CrossRef]
- Xuan, Y.; Wang, W.; Li, Y.; Xiong, Y.; Jiang, W. Absolute quantitative analysis and thermal evolution of trimantanes and tetramantanes in crude oil and source rock. Geochemistry 2024, 53, 643–654. [Google Scholar] [CrossRef]
Outcrops | Sample | Depth (m) | Formation | Sedimentary Facies | Lithology | TOC% | S1 (mg/g) | S2 (mg/g) | Pg (mg/g) | HI | Tmax (°C) |
---|---|---|---|---|---|---|---|---|---|---|---|
Kushanhe | KSH1 | 2498.39 | C1h | Slope | Sandy Mudstone | 0.96 | 0.04 | 0.15 | 0.19 | 16 | 549 |
KSH2 | 2505.95 | C1h | Slope | Calcareous Mudstone | 0.95 | 0.05 | 0.11 | 0.16 | 12 | 572 | |
KSH3 | 2679.20 | C1h | Slope | Mudstone | 0.95 | 0.05 | 0.09 | 0.14 | 9 | 592 | |
KSH4 | 2680.20 | C1h | Slope | Calcareous Mudstone | 0.97 | 0.04 | 0.09 | 0.13 | 9 | 592 | |
KSH5 | 6311.38 | C1h | Open shelf | Calcareous Mudstone | 1.11 | 0.05 | 0.07 | 0.12 | 6 | 480 | |
KSH6 | 6327.14 | C1h | Open shelf | Calcareous Mudstone | 1.05 | 0.06 | 0.13 | 0.19 | 12 | 498 | |
Altash | ALT1 | 1082.26 | C2a | Platform margin | Mudstone | 0.98 | 0.03 | 0.08 | 0.11 | 8 | 553 |
ALT2 | 1258.25 | C2a | Platform margin | Mudstone | 2.00 | 0.08 | 0.22 | 0.30 | 11 | 591 | |
ALT3 | 1435.52 | C1k | Lagoon | Mudstone | 1.65 | 0.07 | 0.18 | 0.25 | 11 | 591 | |
ALT4 | 1884.49 | C1h | Platform margin | Mudstone | 2.10 | 0.29 | 0.61 | 0.90 | 29 | 461 | |
ALT5 | 2043.06 | C1h | Platform margin | Mudstone | 1.60 | 0.04 | 0.08 | 0.12 | 5 | 577 | |
Aitegou | ATG1 | 3685.44 | C2k | Lagoon | Mudstone | 0.96 | 0.04 | 0.20 | 0.24 | 21 | 584 |
ATG2 | 3914.10 | C2k | Lagoon | Mudstone | 0.95 | 0.04 | 0.15 | 0.19 | 16 | 558 | |
ATG3 | 3975.03 | C1h | Lagoon | Mudstone | 0.51 | 0.14 | 0.20 | 0.34 | 40 | 571 | |
ATG4 | 4104.81 | C1h | Lagoon | Calcareous Mudstone | 1.52 | 0.13 | 0.15 | 0.28 | 10 | 545 |
Outcrops | Samples | Depth(m) | Formation | SiO2 | Na2O | MgO | Al2O3 | P2O5 | K2O | CaO | TiO2 | MnO | Fe2O3-T | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kushanhe | KSH1 | 2498.39 | C1h | 61.70 | 0.45 | 2.26 | 17.40 | 0.16 | 1.71 | 1.22 | 0.77 | 0.035 | 6.50 | 7.40 |
KSH2 | 2505.95 | C1h | 48.00 | 0.32 | 2.45 | 11.50 | 0.37 | 0.99 | 14.00 | 0.53 | 0.07 | 6.12 | 15.20 | |
KSH3 | 2679.20 | C1h | 58.70 | 0.53 | 2.42 | 19.1 | 0.16 | 1.86 | 1.08 | 0.78 | 0.041 | 6.97 | 7.87 | |
KSH4 | 2680.20 | C1h | 34.20 | 0.59 | 3.39 | 12.50 | 0.06 | 3.20 | 20.10 | 0.52 | 0.046 | 5.52 | 18.90 | |
KSH5 | 6311.38 | C1h | 33.50 | 1.22 | 1.80 | 5.48 | 0.05 | 1.25 | 30.40 | 0.48 | 0.085 | 2.45 | 23.20 | |
KSH6 | 6327.14 | C1h | 31.00 | 0.44 | 3.49 | 7.43 | 0.14 | 1.01 | 27.80 | 0.30 | 0.074 | 3.77 | 24.30 | |
Altash | ALT1 | 1082.26 | C2a | 59.78 | 1.06 | 2.99 | 15.29 | 0.22 | 2.77 | 2.37 | 0.67 | 0.030 | 5.43 | 9.20 |
ALT2 | 1258.25 | C2a | 53.73 | 1.10 | 2.51 | 20.78 | 0.13 | 3.27 | 1.31 | 0.80 | 0.090 | 6.92 | 9.12 | |
ALT3 | 1435.52 | C1k | 67.84 | 0.54 | 1.47 | 14.54 | 0.06 | 1.94 | 0.26 | 0.86 | 0.040 | 5.01 | 7.63 | |
ALT4 | 1884.49 | C1h | 30.67 | 2.87 | 0.27 | 5.91 | 0.03 | 1.12 | 5.59 | 0.39 | 0.030 | 21.92 | 31.08 | |
ALT5 | 2043.06 | C1h | 48.11 | 0.34 | 2.87 | 14.87 | 0.14 | 1.96 | 0.71 | 0.52 | 0.280 | 20.85 | 8.89 | |
Aitegou | ATG1 | 3685.44 | C2k | 57.50 | 0.90 | 1.72 | 17.30 | 0.14 | 3.80 | 0.34 | 0.79 | 0.018 | 7.61 | 9.36 |
ATG2 | 3914.10 | C2k | 59.80 | 0.95 | 1.77 | 17.30 | 0.12 | 3.00 | 2.31 | 0.80 | 0.023 | 5.23 | 8.51 | |
ATG3 | 3975.03 | C1h | 52.10 | 0.91 | 2.32 | 22.20 | 0.14 | 4.08 | 0.42 | 0.91 | 0.053 | 7.86 | 8.40 | |
ATG4 | 4104.81 | C1h | 44.60 | 0.26 | 1.04 | 4.98 | 0.05 | 0.98 | 23.6 | 0.49 | 0.044 | 2.43 | 21.10 |
Parameter | KSH1 | KSH2 | KSH3 | KSH4 | KSH5 | KSH6 | ALT1 | ALT2 | ALT3 | ALT4 | ALT5 | ATG1 | ATG2 | ATG3 | ATG4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pr/n-C17 | 0.29 | 0.40 | 0.46 | 0.37 | 0.36 | 0.36 | 0.33 | 0.36 | 0.41 | 0.39 | 0.41 | 0.37 | 0.20 | 0.23 | 0.46 |
Ph/n-C18 | 0.38 | 0.52 | 0.68 | 0.53 | 0.51 | 0.48 | 0.54 | 0.54 | 0.60 | 0.45 | 0.50 | 0.60 | 0.38 | 0.43 | 0.51 |
Pr/Ph | 0.96 | 0.92 | 0.49 | 0.36 | 0.96 | 0.57 | 0.45 | 0.41 | 0.76 | 0.69 | 0.95 | 0.26 | 0.32 | 0.33 | 0.62 |
CPI | 1.06 | 1.13 | 1.11 | 1.13 | 1.15 | 1.10 | 1.10 | 1.10 | 1.00 | 1.11 | 1.10 | 1.03 | 1.09 | 1.12 | 1.15 |
OEP | 0.81 | 0.71. | 0.65 | 1.39 | 0.93 | 1.21 | 1.19 | 1.14 | 0.98 | 0.93 | 0.97 | 1.06 | 1.11 | 0.82 | 1.17 |
Σn-C21-/Σn-C22+ | 3.13 | 1.93 | 3.69 | 0.23 | 0.34 | 0.48 | 1.24 | 2.37 | 0.07 | 2.73 | 3.21 | 0.16 | 0.17 | 0.28 | 0.14 |
C19–20/C23TT | 0.33 | 0.19 | 0.17 | 0.06 | 0.08 | 0.24 | 0.04 | 0.11 | / | 0.14 | 0.32 | 0.13 | 0.06 | 0.07 | 0.06 |
C24Ter/C26TT | 0.56 | 0.45 | 0.40 | 0.50 | 0.58 | 0.55 | 0.66 | 0.62 | 1.05 | 1.02 | 0.51 | 0.65 | 0.70 | 0.75 | 0.58 |
Ts/(Ts + Tm) | 0.48 | 0.48 | 0.45 | 0.46 | 0.50 | 0.42 | 0.49 | 0.53 | 0.55 | 0.52 | 0.49 | 0.47 | 0.47 | 0.48 | 0.46 |
DiaC30H/C30H | 0.06 | 0.09 | 0.07 | 0.06 | 0.06 | 0.06 | 0.09 | 0.08 | 0.04 | 0.10 | / | 0.07 | 0.08 | 0.06 | 0.06 |
C19–23TT/C30H | 1.32 | 1.76 | 1.08 | 2.21 | 1.95 | 1.32 | 1.14 | 1.21 | 0.24 | 10.12 | 5.21 | 0.83 | 1.48 | 2.27 | 1.85 |
Ga/C30H | 0.11 | 0.20 | 0.12 | 0.29 | 0.26 | 0.24 | 0.12 | 0.11 | 0.06 | 0.14 | / | 0.21 | 0.23 | 0.15 | 0.27 |
C21–22 Pre/C29-ααα20R | 1.34 | 0.96 | 0.99 | 0.56 | 1.01 | 0.47 | 1.39 | 1.40 | 1.22 | 3.70 | 8.95 | 0.22 | 0.68 | 1.22 | 0.81 |
Dia/Regular C27 steranes | 3.52 | 1.98 | 2.32 | 0.41 | 0.96 | 0.51 | 1.77 | 2.39 | 1.96 | 2.52 | 2.99 | 0.28 | 0.76 | 1.09 | 0.66 |
C27-ααα 20R (%) | 22.37 | 27.13 | 26.44 | 39.46 | 29.34 | 36.33 | 27.38 | 31.90 | 28.51 | 33.60 | 30.18 | 40.29 | 32.79 | 30.08 | 33.47 |
C28-ααα 20R (%) | 34.74 | 31.86 | 31.63 | 27.71 | 30.84 | 29.28 | 33.72 | 28.59 | 25.30 | 26.22 | 28.95 | 28.09 | 30.82 | 31.95 | 31.36 |
C27-ααα 20R (%) | 42.89 | 41.01 | 41.93 | 32.83 | 39.82 | 34.39 | 38.90 | 39.51 | 46.19 | 40.18 | 40.87 | 31.62 | 36.39 | 37.97 | 35.17 |
C27-ααα 20R/C29-ααα 20R | 0.52 | 0.66 | 0.63 | 1.20 | 0.74 | 1.06 | 0.70 | 0.81 | 0.62 | 0.84 | 0.74 | 1.27 | 0.90 | 0.79 | 0.95 |
C29-ααα20S/(20S + 20R) | 0.38 | 0.36 | 0.38 | 0.30 | 0.40 | 0.33 | 0.42 | 0.45 | 0.30 | 0.33 | 0.28 | 0.38 | 0.38 | 0.40 | 0.38 |
C29-αββ/(αββ + ααα) | 0.39 | 0.38 | 0.39 | 0.30 | 0.36 | 0.35 | 0.39 | 0.38 | 0.46 | 0.38 | 0.38 | 0.28 | 0.36 | 0.36 | 0.35 |
Diamondoid Parameter | KSH2 | KSH3 | KSH4 | KSH5 | ALT1 | ALT2 | ALT3 | ALT4 | ALT5 | ATG4 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Relative percentage (%) | D | 3.95 | 0.64 | 0.67 | 10.04 | 0.13 | 0.84 | 9.39 | 4.31 | 12.23 | 1.33 |
C1-MDs | 7.06 | 3.54 | 3.97 | 16.94 | 0.94 | 4.13 | 29.82 | 10.41 | 26.26 | 6.60 | |
C2-DMDs | 7.99 | 3.04 | 5.11 | 24.09 | 2.43 | 4.12 | 29.33 | 8.54 | 20.02 | 7.91 | |
C3-TMDs | 2.82 | 0.87 | 1.98 | 9.10 | 1.41 | 1.08 | 10.42 | 2.64 | 4.73 | 2.69 | |
T | 5.65 | 25.45 | 10.07 | 4.01 | 11.66 | 19.69 | 4.77 | 17.55 | 8.43 | 5.67 | |
C1-MTs | 43.95 | 37.87 | 41.64 | 19.39 | 40.83 | 45.56 | 9.94 | 33.75 | 17.06 | 41.82 | |
C2-DMTs | 28.58 | 18.60 | 28.75 | 16.42 | 32.81 | 16.78 | 5.05 | 13.98 | 8.72 | 24.63 | |
a-Te | 0.00 | 0.65 | 1.56 | 0.00 | 1.30 | 1.34 | 0.15 | 1.11 | 0.43 | 1.53 | |
b-Te | 0.00 | 1.84 | 1.95 | 0.00 | 3.04 | 2.04 | 0.42 | 2.92 | 0.76 | 1.70 | |
c-Te | 0.00 | 0.60 | 1.22 | 0.00 | 0.85 | 1.25 | 0.18 | 1.06 | 0.31 | 1.00 | |
d-Mte | 0.00 | 1.95 | 1.23 | 0.00 | 1.34 | 1.34 | 0.17 | 1.12 | 0.41 | 2.04 | |
e-Mte | 0.00 | 4.94 | 1.85 | 0.00 | 3.24 | 1.82 | 0.37 | 2.60 | 0.65 | 3.08 | |
Diamondoid isomer ratio | MDI | 0.34 | 0.35 | 0.38 | 0.25 | 0.39 | 0.47 | 0.60 | 0.64 | 0.65 | 0.42 |
%Ro | 1.26 | 1.30 | 1.36 | 1.05 | 1.38 | 1.59 | 1.90 | 1.98 | 2.02 | 1.45 | |
DMDI-1 | 0.54 | 0.65 | 0.52 | 0.67 | 0.76 | 0.64 | 0.37 | 0.44 | 0.41 | 0.60 | |
DMDI-2 | 0.57 | 0.66 | 0.57 | 0.62 | 0.68 | 0.56 | 0.53 | 0.54 | 0.50 | 0.60 | |
%3,4-DMD | 33.60 | 38.60 | 31.38 | 43.42 | 51.13 | 43.54 | 21.60 | 26.79 | 25.85 | 37.49 | |
%4,9-DMD | 28.76 | 20.71 | 29.54 | 21.35 | 15.85 | 24.98 | 36.73 | 33.73 | 37.36 | 24.97 | |
%4,8-DMD | 37.64 | 40.69 | 39.08 | 35.23 | 33.02 | 31.47 | 41.67 | 39.48 | 36.79 | 37.53 | |
MTI | 0.33 | 0.58 | 0.25 | 0.22 | 0.62 | 0.69 | 0.71 | 0.60 | 0.46 | 0.40 | |
9/16-MT | 1.07 | 4.00 | 0.82 | 0.74 | 3.73 | 4.97 | 7.10 | 3.60 | 1.94 | 1.89 | |
DMTI | 0.25 | 0.28 | 0.21 | 0.19 | 0.27 | 0.19 | 0.32 | 0.26 | 0.22 | 0.21 | |
9,15/9,14-DMT | 1.51 | 3.58 | 1.65 | 1.49 | 1.71 | 1.07 | 2.40 | 1.56 | 1.14 | 1.37 | |
a/c-Te | n.a | 1.09 | 1.28 | n.a | 1.52 | 1.07 | 0.83 | 1.05 | 1.38 | 1.52 | |
TeMI | n.a | 0.21 | 0.33 | n.a | 0.25 | 0.29 | 0.20 | 0.22 | 0.29 | 0.36 | |
The Cx/Cx+1 compositional ratio | D/MDs | 0.56 | 0.18 | 0.17 | 0.59 | 0.14 | 0.20 | 0.31 | 0.41 | 0.47 | 0.20 |
MDs/DMDs | 0.88 | 1.16 | 0.78 | 0.70 | 0.39 | 1.00 | 1.02 | 1.22 | 1.31 | 0.83 | |
DMDs/TMDs | 2.83 | 3.50 | 2.58 | 2.65 | 1.73 | 3.81 | 2.81 | 3.23 | 4.24 | 2.95 | |
T/MTs | 0.13 | 0.67 | 0.24 | 0.21 | 0.29 | 0.43 | 0.48 | 0.52 | 0.49 | 0.14 | |
MTs/DMTs | 1.54 | 2.04 | 1.45 | 1.18 | 1.24 | 2.72 | 1.97 | 2.41 | 1.96 | 1.70 | |
The low to high cage number ratio | D/T | 0.70 | 0.03 | 0.07 | 2.50 | 0.01 | 0.04 | 1.97 | 0.25 | 1.45 | 0.24 |
MDs/MTs | 0.16 | 0.09 | 0.10 | 0.87 | 0.02 | 0.09 | 3.00 | 0.31 | 1.54 | 0.16 | |
DMDs/DMTs | 0.28 | 0.16 | 0.18 | 1.47 | 0.07 | 0.25 | 5.81 | 0.61 | 2.30 | 0.32 | |
Ds/Ts | 0.28 | 0.10 | 0.15 | 1.51 | 0.06 | 0.12 | 4.00 | 0.40 | 1.85 | 0.26 | |
T/Te | n.a | 8.23 | 2.13 | n.a | 2.24 | 4.25 | 6.45 | 3.45 | 5.61 | 1.34 |
Compounds | KSH1 | KSH2 | KSH3 | KSH4 | KSH5 | KSH6 | ALT1 | ALT2 | ALT3 | ALT4 | ALT5 | ATG1 | ATG2 | ATG3 | ATG4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 Rings | Biphenyls | 0.68 | 1.66 | 9.88 | 0.76 | 1.33 | 3.73 | 0.31 | 1.67 | 7.61 | 3.74 | 12.10 | 0.92 | 0.47 | 1.46 | 2.44 |
Naphthalenes | 0.14 | 0.20 | 13.50 | 0.22 | 0.72 | 2.48 | 0.16 | 2.02 | 1.61 | 4.81 | 14.50 | 0.20 | 0.12 | 0.54 | 1.18 | |
3 Rings | Phenanthrenes | 37.84 | 34.19 | 21.06 | 37.09 | 40.64 | 43.82 | 30.11 | 36.58 | 38.18 | 50.17 | 44.51 | 34.61 | 40.53 | 31.68 | 39.06 |
Anthracenes | 0.00 | 0.00 | 0.00 | 0.03 | 0.08 | 0.00 | 0.03 | 0.72 | 0.15 | 0.27 | 0.28 | 0.05 | 0.03 | 0.06 | 0.08 | |
Dibenzothiophenes | 1.51 | 1.00 | 0.00 | 4.53 | 3.66 | 7.74 | 1.10 | 3.73 | 5.37 | 3.46 | 5.32 | 4.30 | 4.08 | 4.03 | 3.45 | |
Dibenzofurans | 0.00 | 0.00 | 2.48 | 0.25 | 0.32 | 1.99 | 0.06 | 1.20 | 0.41 | 0.92 | 2.32 | 0.07 | 0.06 | 0.13 | 0.40 | |
Fluorenes | 3.82 | 5.17 | 0.00 | 3.00 | 4.46 | 9.69 | 0.26 | 1.20 | 5.93 | 3.61 | 6.41 | 1.22 | 0.96 | 1.38 | 1.68 | |
4 Rings | Triaromatic steranes | 0.04 | 0.05 | 0.36 | 0.02 | 0.05 | 0.11 | 0.01 | 0.02 | 0.01 | 0.00 | 0.00 | 0.07 | 0.03 | 0.06 | 0.07 |
Chrysenes | 15.30 | 12.95 | 8.65 | 15.49 | 10.66 | 1.61 | 23.86 | 16.42 | 10.61 | 6.66 | 2.54 | 17.08 | 17.35 | 15.89 | 15.71 | |
Benzofluorenes | 2.00 | 1.69 | 3.03 | 2.00 | 1.59 | 0.76 | 0.39 | 1.58 | 0.87 | 1.13 | 0.54 | 3.61 | 2.57 | 2.14 | 1.18 | |
Pyrenes | 12.20 | 14.98 | 21.96 | 16.37 | 18.27 | 21.59 | 8.35 | 14.13 | 10.03 | 13.88 | 6.97 | 17.41 | 14.68 | 18.13 | 15.74 | |
Benzoanthracenes | 0.74 | 0.51 | 0.60 | 0.88 | 0.78 | 0.24 | 0.74 | 0.81 | 0.59 | 0.52 | 0.18 | 0.66 | 0.58 | 0.55 | 0.89 | |
Fluoranthenes | 6.66 | 6.71 | 13.68 | 6.95 | 7.04 | 5.56 | 8.20 | 7.43 | 5.44 | 6.15 | 2.97 | 9.25 | 9.09 | 9.76 | 6.43 | |
5 Rings | Benzofluoranthene | 11.21 | 13.02 | 3.00 | 7.93 | 6.98 | 0.42 | 19.52 | 8.94 | 9.59 | 3.20 | 0.93 | 7.08 | 6.06 | 9.39 | 7.95 |
Benzopyrenes | 7.86 | 7.87 | 1.82 | 4.49 | 3.43 | 0.28 | 6.90 | 3.56 | 3.60 | 1.46 | 0.44 | 3.47 | 3.38 | 4.80 | 3.75 | |
DBT/P | 0.09 | 0.08 | 0.00 | 0.27 | 0.17 | 0.24 | 0.04 | 0.18 | 0.19 | 0.11 | 0.18 | 0.38 | 0.20 | 0.28 | 0.14 | |
MPI-1 | 0.84 | 1.10 | 0.56 | 0.94 | 0.74 | 0.40 | 0.10 | 0.58 | 0.32 | 0.45 | 0.40 | 1.32 | 0.79 | 0.83 | 0.50 | |
%Rc | 1.79 | 1.64 | 1.97 | 1.74 | 1.86 | 2.06 | 2.24 | 1.95 | 2.11 | 2.03 | 2.06 | 1.51 | 1.83 | 1.80 | 2.00 | |
F1 | 0.74 | 0.75 | 0.66 | 0.80 | 0.80 | 0.76 | 0.72 | 0.72 | 0.76 | 0.75 | 0.73 | 0.78 | 0.78 | 0.75 | 0.78 | |
F2 | 0.47 | 0.50 | 0.42 | 0.46 | 0.48 | 0.47 | 0.46 | 0.45 | 0.46 | 0.47 | 0.45 | 0.45 | 0.46 | 0.44 | 0.48 | |
3R/4R | 1.17 | 1.10 | 0.49 | 1.08 | 1.28 | 2.12 | 0.76 | 1.08 | 1.82 | 2.06 | 4.46 | 0.84 | 1.03 | 0.80 | 1.12 | |
3R/5R | 2.26 | 1.93 | 4.89 | 3.61 | 4.72 | 90.90 | 1.19 | 3.47 | 3.79 | 12.54 | 42.84 | 3.82 | 4.83 | 2.63 | 3.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X.; Ge, Z.; Cai, S.; Xiao, Q. Molecular Compositions of Hydrocarbons Within the Lower and Middle Carboniferous Shale Sequences from the Outcrops in the Piedmont of Southwestern Tarim Basin and the Possible Geochemical Implications. Energies 2025, 18, 2737. https://doi.org/10.3390/en18112737
Tan X, Ge Z, Cai S, Xiao Q. Molecular Compositions of Hydrocarbons Within the Lower and Middle Carboniferous Shale Sequences from the Outcrops in the Piedmont of Southwestern Tarim Basin and the Possible Geochemical Implications. Energies. 2025; 18(11):2737. https://doi.org/10.3390/en18112737
Chicago/Turabian StyleTan, Xueyou, Zhushi Ge, Suyang Cai, and Qilin Xiao. 2025. "Molecular Compositions of Hydrocarbons Within the Lower and Middle Carboniferous Shale Sequences from the Outcrops in the Piedmont of Southwestern Tarim Basin and the Possible Geochemical Implications" Energies 18, no. 11: 2737. https://doi.org/10.3390/en18112737
APA StyleTan, X., Ge, Z., Cai, S., & Xiao, Q. (2025). Molecular Compositions of Hydrocarbons Within the Lower and Middle Carboniferous Shale Sequences from the Outcrops in the Piedmont of Southwestern Tarim Basin and the Possible Geochemical Implications. Energies, 18(11), 2737. https://doi.org/10.3390/en18112737