Wind Mapping of Malaysia Using Ward’s Clustering Method
Abstract
:1. Introduction
2. Methodology
2.1. Wind Data Collection
2.1.1. Data Collection Procedure
2.1.2. Sample of Wind Data
2.1.3. Credibility of Data
2.2. The 95% Confidence Interval for Mean Data
2.3. Time-Series Clustering
2.3.1. Linkage-Ward Clustering Method
2.3.2. Hierarchical Clustering
2.4. Mapping of Wind Speed
3. Result and Discussion
3.1. Overall Mean Maximum Wind Speed
3.2. Clustering Analysis for Peninsula
3.3. Mapping of Peninsula Malaysia
3.4. Clustering Analysis for Borneo
3.5. Mapping of Borneo
3.6. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.X.; Hong, H.P. Estimating Quantiles of Extreme Wind Speed Using Generalized Extreme Value Distribution Fitted Based on the Order Statistics. Wind. Struct. 2022, 34, 469–482. [Google Scholar]
- Ashrafi, A.; Chowdhury, J.; Hangan, H. Comparison of aerodynamic loading of a high-rise building subjected to boundary layer and tornadic winds. Wind. Struct. 2022, 34, 395–405. [Google Scholar]
- Ah, C.J.; Mauricio, G.; Jeffrey, C.; Ellen, M.; Jonathan, C.; Ahmed, E. Structural Performance of an Electricity Tower under Extreme Loading Using the Applied Element Method—A Case Study. Wind. Struct. 2022, 34, 313–319. [Google Scholar]
- Why Clusters Matter. The UK Offshore. 2013. Available online: https://www.offshorewindus.org/wp-content/uploads/2013/08/UK-offshore-wind-supply-chain_why-clusters-matter.pdf (accessed on 15 February 2023).
- Kusiak, A.; Li, W. Short-term prediction of wind power with a clustering approach. Renew. Energy 2010, 35, 2362–2369. [Google Scholar]
- Angosto, J.M.; Elvira-Rendueles, B.; Bayo, J.; Moreno, J.; Vergara, N.; Moreno-Clavel, J.; Moreno-Grau, S. Wind Classification through Cluster Analysis for the Development of Predictive Statistical Models on Atmospheric Pollution. Adv. Air Pollut. 2002, 11, 635–644. [Google Scholar]
- Yesilbudak, M. Clustering Analysis of Multidimensional Wind Speed Data Using K-Means Approach. In Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications, ICRERA, Birmingham, UK, 20–23 November 2016; Volume 5, pp. 961–965. [Google Scholar]
- Van Vuuren, C.Y.J.; Vermeulen, H.J. Clustering of wind resource data for the South African renewable energy development zones. J. Energy South. Afr. 2019, 30, 126–143. [Google Scholar] [CrossRef]
- Clifton, A.; Lundquist, J.K. Data Clustering Reveals Climate Impacts on Local Wind Phenomena. J. Appl. Meteorol. Clim. 2012, 51, 1547–1557. [Google Scholar] [CrossRef]
- Malaysian Communications and Multimedia Commission (MCMC)|Suruhanjaya Komunikasi Dan Multimedia Malaysia (SKMM)—Menara Komunikasi Di Kg. Gelong Badak, Bachok Kelantan Tumbang Akibat Cuaca Buruk. 2021. Available online: https://www.mcmc.gov.my/ms/media/press-releases/menara-komunikasi-di-kg-gelong-badak-bachok-kelant (accessed on 14 February 2023).
- Zuhairi, H.; Hassan, A.; Rahulan, G. Malaysian Standard Code of Practice on Wind Loading for Building Structure. 2002. Available online: https://mysol.jsm.gov.my/getPdfFile/eyJpdiI6ImpzZUdWOEJjNTQ0VzRWVDNCcjZ0Snc9PSIsInZhbHVlIjoidDI0UlF6dFVzWEp0d1lXdWgvVjdkQT09IiwibWFjIjoiZjNiNzBlYzA5ZDc4ZDA0ZGZhMGJlZWJkNDhiYWQ4YTI4ZGE5NGJiZjE3NTc1MjYzNjczZWI2MjQzNmEwZGNlMCJ9 (accessed on 14 February 2023).
- Isyumov, N.; Case, P.; Ho, T.; Soegiarso, R. Wind tunnel model studies to predict the action of wind on the projected 558 m Jakarta Tower. Wind. Struct. 2001, 4, 299–314. [Google Scholar] [CrossRef]
- World Meteorological Organization. Standards and Recommended Practices. 2022. Available online: https://public.wmo.int/en/resources/standards-technical-regulations (accessed on 9 February 2023).
- Tiang, T.L.; Ishak, D. Technical review of wind energy potential as small-scale power generation sources in Penang Island Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 3034–3042. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, W.; Zang, H.; Yang, H. Wind Power Interval Forecasting Based on Confidence Interval Optimization. Energies 2018, 11, 3336. [Google Scholar] [CrossRef]
- Kristina, I.; Zucchi, D.; Znc, H. Lognormal and Normal Distribution. 2021. Available online: https://www.investopedia.com/articles/investing/102014/lognormal-and-normal-distribution.asp (accessed on 1 February 2023).
- Zheng, C.W.; Pan, J.; Li, J.X. Assessing the China Sea wind energy and wave energy resources from 1988 to 2009. Ocean Eng. 2013, 65, 39–48. [Google Scholar] [CrossRef]
- Javed, A.; Lee, B.S.; Rizzo, D.M. A Benchmark Study on Time Series Clustering. Mach. Learn. Appl. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef]
- Azizi, E.; Kharrati-Shishavan, H.; Mohammadi-Ivatloo, B.; Shotorbani, A.M. Wind Speed Clustering Using Linkage-Ward Method: A Case Study of Khaaf, Iran. Gazi Univ. J. Sci. 2019, 32, 945–954. [Google Scholar] [CrossRef]
- Sardá-Espinosa, A. Time-Series Clustering in R Using the Dtwclust Package. R J. 2019, 11, 22–43. [Google Scholar] [CrossRef]
- Kok, P.H.; Akhir, M.F.; Tangang, F.T. Thermal frontal zone along the east coast of Peninsular Malaysia. Cont. Shelf Res. 2015, 110, 1–15. [Google Scholar] [CrossRef]
- Masseran, N.; Razali, A.M.; Ibrahim, K.; Zin, W.Z.W.; Zaharim, A. On Spatial Analysis of Wind Energy Potential in Malaysia. WSEAS Trans. Math. 2012, 11, 467–477. [Google Scholar]
- Lawan, S.; Abidin, W.; Chai, W.; Baharun, A.; Masri, T. Wind Energy Potential in Kuching Areas of Sarawak for Small-Scale Power Application. Int. J. Eng. Res. Afr. 2015, 15, 1–10. [Google Scholar] [CrossRef]
No. | STATION NAME | STATE | LAT. °N | LONG. °E |
---|---|---|---|---|
1 | PULAU LANGKAWI | KEDAH | 6°20′ | 99°44′ |
2 | BAYAN LEPAS | P. PINANG | 5°17′49″ | 100°16′20″ |
3 | BUTTERWORTH | P. PINANG | 5°27′26″ | 100°23′18″ |
4 | ALOR SETAR | KEDAH | 6°12′ | 100°24′ |
5 | CHUPING | PERLIS | 6°29′ | 100°16′ |
6 | KOTA BHARU | KELANTAN | 6°09′49″ | 102°18′02″ |
7 | KUALA KRAI | KELANTAN | 5°32′ | 102°12′ |
8 | GONG KEDAK | KELANTAN | 5°47′48″ | 102°29′06″ |
9 | KUALA TERENGGANU | TERENGGANU | 5°23′ | 103°06′ |
10 | KERTEH | TERENGGANU | 4°32′14″ | 103°25′36″ |
11 | SITIAWAN | PERAK | 4°13′16″ | 100°42′04″ |
12 | LUBOK MERBAU | PERAK | 4°47′40″ | 100°53′50″ |
13 | IPOH | PERAK | 4°34′ | 101°06′ |
14 | CAMERON HIGHLANDS | PAHANG | 4°28′ | 101°22′ |
15 | BATU EMBUN | PAHANG | 3°58′ | 102°21′ |
16 | SUBANG | SELANGOR | 3°07′50″ | 101°33′09″ |
17 | PETALING JAYA | SELANGOR | 3°06′07″ | 101°38′42″ |
18 | MUADZAM SHAH | PAHANG | 3°03′ | 103°05′ |
19 | KLIA SEPANG | SELANGOR | 2°43′51″ | 101°42′11″ |
20 | KUALA PILAH | N SEMBILAN | 2°43′37″ | 102°14′56″ |
21 | TEMERLOH | PAHANG | 3°28′ | 102°23′ |
22 | KUANTAN | PAHANG | 3°46′20″ | 103°12′43″ |
23 | MELAKA | MELAKA | 2°16′ | 102°15′ |
24 | BATU PAHAT | JOHOR | 1°52′ | 102°59′ |
25 | KLUANG | JOHOR | 2°01′ | 103°19′ |
26 | MERSING | JOHOR | 2°26′42″ | 103°50′00″ |
27 | SENAI | JOHOR | 1°38′ | 103°40′ |
28 | KUCHING | SARAWAK | 1°29′25″ | 110°21′09″ |
29 | SRI AMAN | SARAWAK | 1°13′ | 111°27′ |
30 | KAPIT | SARAWAK | 2°00′31″ | 112°55′31″ |
31 | SIBU | SARAWAK | 2°15′ | 111°58′ |
32 | BINTULU | SARAWAK | 3°07′12″ | 113°01′29″ |
33 | MIRI | SARAWAK | 4°20′ | 113°59′ |
34 | LIMBANG | SARAWAK | 4°48′35″ | 115°00′15″ |
35 | LABUAN | SABAH | 5°18′27″ | 115°14′33″ |
36 | KENINGAU | SABAH | 5°20′14″ | 116°08′11″ |
37 | RANAU | SABAH | 5°57′21″ | 116°40′44″ |
38 | KOTA KINABALU | SABAH | 5°55′57″ | 116°02′51″ |
39 | KUDAT | SABAH | 6°55′ | 116°50′ |
40 | TAWAU | SABAH | 4°18′58″ | 118°07′08″ |
41 | SANDAKAN | SABAH | 5°53′57″ | 118°03′59″ |
42 | MULU | SARAWAK | 4°02′55″ | 114°48′36″ |
Month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |
1990 | 11.5 | 10 | 18.7 | 11 | 12.7 | 13.8 | 12.7 | 13.1 | 15.1 | 13.5 | 19 | 9.7 |
1991 | 7.7 | 9 | 9.4 | 14.8 | 11.5 | 12.4 | 17.3 | 17.9 | 13.4 | 14.5 | 13.5 | 14 |
1992 | 11.1 | 13 | 11.2 | 13 | 15.9 | 15.2 | 13.5 | 20.7 | 41.7 | 17 | 15.2 | 13.6 |
1993 | 13.9 | 13.7 | 18 | 15 | 12.8 | 13.9 | 14 | 19.7 | 13.5 | 14.9 | 12.3 | 16 |
1994 | 12 | 13.6 | 10.4 | 17 | 15.9 | 18.5 | 13.8 | 28.7 | 17.7 | 13.3 | 13.4 | 14.2 |
1995 | 12.2 | 12.1 | 10.7 | 16.1 | 14.6 | 12.8 | 14.3 | 16 | 15.7 | 13.7 | 17.2 | 18.5 |
1996 | 12.9 | 16.8 | 11.8 | 15.6 | 20.4 | 17.8 | 13.2 | 23 | 24.8 | 16.7 | 21.3 | 16.6 |
1997 | 10.8 | 12 | 13.8 | 13.4 | 18.2 | 20 | 11.3 | 13.6 | 14.2 | 15.5 | 16.4 | 14.4 |
1998 | 14.2 | 12.1 | 13.4 | 12.4 | 12 | 13.2 | 14.7 | 10.8 | 13.5 | 18.8 | 20.9 | 14 |
1999 | 13 | 13.4 | 14.8 | 15.1 | 15 | 12.8 | 16.5 | 17.6 | 11.6 | 11.5 | 18 | 13.9 |
2000 | 12.6 | 12 | 13.3 | 15.9 | 15.5 | 15 | 12.5 | 16 | 13 | 18 | 15.5 | 15.5 |
2001 | 10.5 | 13 | 15 | 15.9 | 15.5 | 14.3 | 12.5 | 11.7 | 10.7 | 14.8 | 14.3 | 12.8 |
2002 | 13.3 | 10.2 | 10.2 | 14.8 | 14.8 | 14.8 | 13.3 | 14.8 | 14.3 | 14.3 | 14.8 | 14.3 |
2003 | 13.3 | 13.8 | 14.3 | 14.8 | 13.8 | 11.2 | 11.7 | 13.8 | 21.4 | 14.8 | 9.7 | 10.7 |
2004 | 13.8 | 14.8 | 12.2 | 14.8 | 12.8 | 12.2 | 14.3 | 12.2 | 14.8 | 13.8 | 12.2 | 10.7 |
2005 | 12.8 | 9.2 | 9.7 | 14.8 | 17 | 14 | 15 | 16.3 | 14.8 | 17.9 | 16.6 | 16.2 |
2006 | 13.2 | 13.1 | 17.9 | 15.3 | 19.9 | 14.1 | 12.7 | 14 | 19.6 | 18.7 | 13.2 | 16.6 |
2007 | 18.7 | 11.5 | 13.9 | 11.2 | 23.4 | 15.6 | 14.9 | 18.6 | 19.6 | 13.3 | 12.1 | 13 |
2008 | 18.7 | 14.3 | 14.5 | 16 | 13.7 | 15 | 12.8 | 15.9 | 19.6 | 15.5 | 14.3 | 15.6 |
2009 | 12.9 | 11.1 | 16.8 | 20.3 | 15.6 | 16.3 | 15.1 | 14 | 15.7 | 19.2 | 17.3 | 13.4 |
2010 | 12.4 | 13.5 | 11.9 | 15.2 | 17.8 | 12.2 | 11.2 | 14.8 | 12.5 | 18.2 | 16.9 | 19.9 |
2011 | 12.9 | 10.1 | 13.6 | 15 | 14.6 | 15.2 | 13.9 | 16 | 13.2 | 14.9 | 19.3 | 13.2 |
2012 | 16.5 | 10.1 | 15 | 20.8 | 16.6 | 14.4 | 15.8 | 17.6 | 13.5 | 14.9 | 14.6 | 14.7 |
2013 | 13.6 | 10.1 | 15.9 | 20.8 | 14.7 | 18.7 | 17.1 | 24.8 | 20.7 | 18.1 | 15.3 | 15.9 |
2014 | 11.9 | 10.8 | 12 | 17 | 12.8 | 20.6 | 18 | 24.8 | 20.7 | 18.1 | 15.3 | 15.9 |
2015 | 14.6 | 10.6 | 11.1 | 12.8 | 17.5 | 20.6 | 15.9 | 16 | 16.2 | 17.9 | 12.6 | 13.4 |
2016 | 11.9 | 16.7 | 10.5 | 12.9 | 22 | 14.1 | 17.5 | 19 | 17.4 | 24.2 | 15.1 | 20.5 |
2017 | 14.5 | 15.5 | 16.8 | 17.4 | 18.3 | 20.3 | 25.3 | 19.9 | 31.5 | 28.6 | 23.5 | 19.4 |
2018 | 15.1 | 14 | 14.4 | 15.5 | 11.5 | 17.2 | 15.6 | 17.2 | 15.2 | 12.4 | 16.4 | 18.5 |
2019 | 10.7 | 11.7 | 13 | 12.2 | 13.4 | 21.4 | 21.3 | 18.7 | 13.7 | 16.3 | 16.2 | 11.5 |
95% Confidence Level | 12.3 | 11.7 | 12.6 | 14.4 | 14.6 | 14.6 | 13.9 | 15.8 | 15.1 | 15.2 | 14.7 | 13.9 |
Month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |
1990 | 14.5 | 15.1 | 16.5 | 17.5 | 19 | 14.5 | 14.7 | 12.5 | 17.8 | 18.4 | 14 | 13 |
1991 | 13.4 | 15.4 | 12.8 | 14 | 18.8 | 12.2 | 18.9 | 18.5 | 18.1 | 16.2 | 12.5 | 13.6 |
1992 | 12.1 | 15.3 | 11.7 | 14.6 | 17.6 | 12.5 | 19.4 | 18.9 | 17.1 | 19.7 | 13.5 | 15.2 |
1993 | 13.4 | 13.9 | 18.6 | 14.5 | 13.9 | 12.9 | 19 | 17.5 | 13.8 | 16.9 | 13.9 | 14.3 |
1994 | 12.3 | 19 | 16.7 | 14.7 | 15.7 | 15.7 | 17.8 | 18.1 | 18.6 | 16.7 | 15.2 | 13.7 |
1995 | 13.5 | 13.6 | 16.5 | 17.4 | 13.7 | 15.2 | 16.1 | 15.6 | 16.8 | 14.5 | 15.3 | 20.6 |
1996 | 12.4 | 11.6 | 14.5 | 13.6 | 15.5 | 12.8 | 14.9 | 17.4 | 18 | 16.3 | 12 | 15.2 |
1997 | 13.7 | 11.9 | 13.6 | 16 | 11.9 | 16.7 | 13.7 | 19 | 17.1 | 14.8 | 14.4 | 15.4 |
1998 | 14.4 | 13.5 | 12.5 | 17.3 | 17.1 | 14.3 | 14.6 | 15 | 15 | 16.4 | 19.3 | 15 |
1999 | 16.5 | 14.8 | 14.9 | 14.5 | 13 | 15.4 | 20.1 | 17.9 | 13.4 | 17 | 14.7 | 14.5 |
2000 | 13.7 | 15.8 | 13.1 | 16.6 | 16.9 | 19.2 | 16.4 | 16.6 | 17.1 | 18 | 12.2 | 16.5 |
2001 | 11.4 | 13.5 | 16 | 14.5 | 12.7 | 14.8 | 16.4 | 20 | 16.6 | 14.5 | 12.5 | 15.1 |
2002 | 11.7 | 12.2 | 13.8 | 14.8 | 14.3 | 11.7 | 13.3 | 13.3 | 16.6 | 14.8 | 13.3 | 15.1 |
2003 | 11.7 | 14.8 | 14.8 | 12.2 | 14.8 | 14.8 | 13.8 | 13.3 | 14.3 | 19.7 | 13.7 | 14.4 |
2004 | 14.3 | 13.8 | 13.8 | 14.8 | 13.8 | 11.7 | 13.8 | 16.6 | 14.8 | 19.7 | 14.8 | 12.2 |
2005 | 12.2 | 13.8 | 14.8 | 18.7 | 13.8 | 14.3 | 14.5 | 14.5 | 15.7 | 15.5 | 13.4 | 12.1 |
2006 | 22.8 | 12.4 | 12 | 11.5 | 17.8 | 17.7 | 17.5 | 14.3 | 12 | 13.6 | 12.9 | 12.7 |
2007 | 15 | 11.8 | 20.4 | 18.1 | 16.4 | 21.6 | 15.6 | 14.5 | 14.2 | 14.7 | 11.5 | 11.3 |
2008 | 11.9 | 15.3 | 12.5 | 11.1 | 14.4 | 15.8 | 17 | 13 | 19 | 14.3 | 9.2 | 14.5 |
2009 | 15.8 | 14.7 | 20.2 | 16.6 | 14.5 | 12.2 | 15.6 | 16.2 | 13.2 | 12.4 | 14.4 | 11.3 |
2010 | 15.4 | 13 | 16.9 | 11.2 | 12.5 | 12.4 | 14.3 | 15.1 | 13.5 | 12.7 | 13.5 | 13.9 |
2011 | 15.4 | 11.3 | 16.4 | 10.3 | 11.7 | 13.4 | 14.3 | 12.7 | 17.8 | 17 | 14.6 | 12.9 |
2012 | 15.4 | 13.5 | 11.7 | 12.7 | 14.2 | 11.7 | 15.9 | 13.5 | 15.3 | 12.6 | 12.4 | 12.4 |
2013 | 11.8 | 11.8 | 14.1 | 14.9 | 13.9 | 15.9 | 14.4 | 14.8 | 14.8 | 15.5 | 12.1 | 13.5 |
2014 | 11.8 | 12.2 | 14.7 | 13.9 | 13.3 | 14.3 | 15.1 | 15.4 | 17.8 | 15.8 | 16.2 | 12.7 |
2015 | 11.8 | 13 | 10.7 | 16.2 | 14.2 | 13.7 | 15.1 | 19.1 | 15.2 | 18.2 | 14.6 | 12.5 |
2016 | 11.7 | 14.2 | 10.3 | 10.7 | 14.9 | 16 | 15.1 | 15.7 | 16.2 | 12.9 | 13.8 | 15 |
2017 | 12.9 | 15.4 | 12.3 | 13.5 | 14.9 | 12.6 | 10.9 | 15.7 | 16.5 | 15.1 | 15.4 | 14.1 |
2018 | 11.8 | 12.2 | 13.2 | 18.5 | 17.8 | 15.4 | 16.3 | 14.2 | 13.7 | 13.2 | 13.8 | 15.9 |
2019 | 11.8 | 10.2 | 13.2 | 16.7 | 17.8 | 14.1 | 16.3 | 14.2 | 13.7 | 13.2 | 13.8 | 15.9 |
95% Confidence Level | 12.74 | 13.01 | 13.55 | 13.88 | 14.31 | 13.71 | 14.99 | 15.02 | 15.13 | 14.92 | 13.15 | 13.50 |
Month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |
1990 | 13.7 | 14.5 | 39 | 14.7 | 17.7 | 19.1 | 21.5 | 15.2 | 17 | 20.5 | 14.7 | 11.8 |
1991 | 15.6 | 16.3 | 13.5 | 18.3 | 13.5 | 13.6 | 13.6 | 13 | 13.3 | 20.2 | 13.8 | 14.8 |
1992 | 18.2 | 14.5 | 14.8 | 13.9 | 15 | 13.9 | 15.4 | 16.9 | 13.5 | 14.6 | 16.7 | 21.5 |
1993 | 14.1 | 15.7 | 19.8 | 15.8 | 17.2 | 15.1 | 16.9 | 16.4 | 15.1 | 17.5 | 13.9 | 14.9 |
1994 | 16.4 | 16.6 | 19.3 | 23.8 | 14.8 | 17.2 | 21.2 | 17.3 | 19.3 | 21.9 | 13.8 | 12.3 |
1995 | 12.8 | 14.8 | 18.5 | 26.5 | 16 | 16.5 | 15.3 | 17.8 | 14 | 15.7 | 14.9 | 15.2 |
1996 | 13.2 | 12.6 | 14.8 | 20.2 | 14.9 | 18.6 | 14.4 | 15 | 16.2 | 15.5 | 13.9 | 12.2 |
1997 | 14 | 13.2 | 16.7 | 17 | 15.9 | 15.3 | 16.6 | 16.1 | 13.4 | 12.5 | 11.6 | 17.6 |
1998 | 14.2 | 20.6 | 17.8 | 21.5 | 13.7 | 14.7 | 15.5 | 14 | 18.8 | 15.6 | 10.7 | 12.1 |
1999 | 14.8 | 12.5 | 15.1 | 14.7 | 14.8 | 15.5 | 13.8 | 17.4 | 16 | 13.3 | 21.4 | 16.5 |
2000 | 13.5 | 14.7 | 20 | 18 | 17 | 18.5 | 16.5 | 11.5 | 14.5 | 17.5 | 24.4 | 13.5 |
2001 | 13 | 13.2 | 15 | 15.6 | 14.4 | 13.8 | 13.2 | 19.4 | 16.7 | 13.8 | 12.5 | 13.6 |
2002 | 14.8 | 13.8 | 14.8 | 14.3 | 12.2 | 12.8 | 14.3 | 12.8 | 14.8 | 14.3 | 11.7 | 14.8 |
2003 | 14.8 | 13.8 | 14.8 | 16.8 | 14.8 | 16.8 | 12.8 | 14.8 | 12.2 | 13.8 | 13.3 | 13.3 |
2004 | 14.8 | 14.8 | 11.7 | 14.3 | 13.8 | 12.2 | 13.3 | 14.3 | 14.8 | 13.8 | 12.8 | 12.8 |
2005 | 14.8 | 13.3 | 14.8 | 14.4 | 13.7 | 19.6 | 17.1 | 11.5 | 14.8 | 16.5 | 13.1 | 16.4 |
2006 | 13 | 15.2 | 21.9 | 14.4 | 13.3 | 13.7 | 11.9 | 12.6 | 19.5 | 16.3 | 18.4 | 15.7 |
2007 | 12 | 12.3 | 18 | 12.8 | 12.1 | 14 | 12.2 | 11.9 | 19.5 | 11.3 | 17.3 | 9.8 |
2008 | 21.1 | 12.1 | 16.1 | 12.8 | 12.4 | 14.8 | 13.4 | 22.2 | 16.1 | 12.1 | 12.7 | 13 |
2009 | 17.2 | 15.5 | 16.4 | 17.5 | 11.8 | 16.5 | 14.4 | 16.9 | 15.2 | 13.5 | 13.2 | 13.8 |
2010 | 12.4 | 16.9 | 16.5 | 13.8 | 16.5 | 13.2 | 14.9 | 16.3 | 14 | 21.4 | 14.3 | 14.8 |
2011 | 17.1 | 16.2 | 15.3 | 17.8 | 15.4 | 17.8 | 14.9 | 15.3 | 13.4 | 13.3 | 14.3 | 12.5 |
2012 | 14.6 | 14.1 | 15.9 | 14.8 | 15 | 13.9 | 15.3 | 15 | 14.5 | 12.2 | 13.9 | 13.7 |
2013 | 15.1 | 10.7 | 15.1 | 14.9 | 13.4 | 13.2 | 13.5 | 17.6 | 14.1 | 15.2 | 12.5 | 14.3 |
2014 | 12.3 | 10.1 | 12.7 | 17.2 | 13.4 | 13.1 | 12.3 | 17.6 | 14.1 | 16.8 | 12.5 | 14.3 |
2015 | 17 | 21.4 | 18.6 | 27.7 | 13.4 | 13.2 | 12.2 | 14.4 | 13.7 | 10.6 | 12.5 | 13.3 |
2016 | 13.5 | 9.4 | 18.6 | 12.5 | 13.4 | 17.2 | 11.9 | 12.5 | 13.7 | 13.4 | 12.5 | 11.4 |
2017 | 14.7 | 13.1 | 17.4 | 12.5 | 13.4 | 12.3 | 10.7 | 12.2 | 12.1 | 13.4 | 12.5 | 17 |
2018 | 14.7 | 13 | 13 | 17.4 | 17.9 | 13.3 | 12.9 | 15.6 | 15.8 | 13.4 | 10.9 | 17.3 |
2019 | 18 | 10.6 | 15.9 | 19.8 | 17.9 | 13.3 | 17.2 | 16.4 | 14.7 | 13.4 | 13 | 9.7 |
95% Confidence Level | 14.1 | 13.2 | 15.4 | 15.5 | 14.0 | 14.3 | 13.8 | 14.5 | 14.4 | 14.1 | 13.1 | 13.3 |
Main Cluster | Sub Cluster | Site Location | Wind Speed, m/s | Highest Wind Speed, m/s |
---|---|---|---|---|
1 | 1.a | Ipoh | 39 | 39 |
Subang | 27 | |||
1.b | Butterworth | 27.2 | 28.4 | |
Alor Setar | 28.4 | |||
Bayan Lepas | 22.8 | |||
1.c | Petaling Jaya | 24.5 | 28.6 | |
Melaka | 22 | |||
Senai | 28.6 | |||
1.d | Mersing | 36.5 | 36.5 | |
1.e | Pulau Langkawi | 25 | 29 | |
Kuantan | 29 | |||
1.f | Kuala Terengganu | 24.7 | 34.8 | |
Cameron Highland | 27.9 | |||
Kota Bharu | 34.8 |
Main Cluster | Sub Cluster | Site Location | Wind Speed, m/s | Highest Wind Speed, m/s |
---|---|---|---|---|
1 | 1.a | Kuching | 41.7 | 41.7 |
Sibu | 38.6 | |||
1.b | Kota Kinabalu | 33.1 | 34.5 | |
Kudat | 34.5 | |||
Sandakan | 24 | |||
Labuan | 26.9 | |||
Miri | 26.1 |
References | Method | Findings | Similarity (Compare to Existing Design Approach) |
---|---|---|---|
Kok, Akhir, and Tangang 2015 [22] | Hybrid Coordinate Ocean Model (HYCOM) | Wind speed started to increase in May and decreased in September | Similar with wind trend found in this paper |
Masseran et al., 2012 [23] | Weibull (WE), Burr (BR), Gamma (GA), Inverse Gamma (IGA), Inverse Gaussian (IGU), Exponential (EX), Rayleigh (RY), Lognormal (LN) and Erlang (ER) | Mean wind speed map indicating higher wind speed area in Malaysia | The paper highlights there are locations which are higher in wind speed and mainly located at the northern Malaysian Peninsula. This is similar with this paper’s findings |
Lawan et al., 2015 [24] | 95% confidence interval | The highest wind speed observed in Kuching is within July to September each year and consistent for three years | Similar wind trend of Kuching with the current research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azhar, A.; Hashim, H. Wind Mapping of Malaysia Using Ward’s Clustering Method. Energies 2024, 17, 1563. https://doi.org/10.3390/en17071563
Azhar A, Hashim H. Wind Mapping of Malaysia Using Ward’s Clustering Method. Energies. 2024; 17(7):1563. https://doi.org/10.3390/en17071563
Chicago/Turabian StyleAzhar, Amar, and Huzaifa Hashim. 2024. "Wind Mapping of Malaysia Using Ward’s Clustering Method" Energies 17, no. 7: 1563. https://doi.org/10.3390/en17071563
APA StyleAzhar, A., & Hashim, H. (2024). Wind Mapping of Malaysia Using Ward’s Clustering Method. Energies, 17(7), 1563. https://doi.org/10.3390/en17071563