Exploring Corn Cob Gasification as a Low-Carbon Technology in the Corn Flour Industry in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Corn Characterization
2.2. Gasification of Corn Cob for Cogeneration and Residual Biochar
2.3. Scenario Building Methodology
2.4. Cost Analysis Methodology
3. Case Study: Corn Flour Production
3.1. Description of the Production Process
3.2. Base Scenario
3.3. Alternative Scenario
4. Results
4.1. Reduction of GHG Emissions
4.2. Cost Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
°C | Degrees Celsius |
AS | Alternative Scenario |
BHP | Boiler Horsepower |
BS | Base Scenario |
C | Carbon |
Ca(OH)2 | Calcium Hydroxide |
CFE | Federal Electricity Commission (CFE, by its acronym in Spanish) |
CH4 | Methane |
CHP | Combined Heat and Power |
CO | Carbon Monoxide |
CO2 | Carbon Dioxide |
GHG | Greenhouse gas |
GJ | Gigajoule |
GWh | Giga watt hour |
H | Hydrogen |
H2O | Water |
IPCC | Intergovernmental Panel on Climate Change |
kg | Kilogram |
kW | Kilowatts |
kWe | Kilowatt electric |
kWh | Kilowatt hour |
kWhe | Kilowatt hour electric |
kWht | Kilowatt hour thermal |
kWt | Kilowatt thermal |
LCOE | Levelized cost of energy |
LPG | Liquefied Petroleum Gas |
MES | Mexican Electric System |
MJ/kg | Megajoule/Kilogram |
mm | Millimeters |
N | Nitrogen |
NPV | Net present value |
O | Oxygen |
O&M | Operation and Maintenance |
S | Sulfur |
SME | Small and medium-sized enterprise |
tCO2 | Tons of Carbon Dioxide |
USD | US Dollar |
w/w | % Weight concentration |
References
- Global Bioenergy Partnership (GBEP). The Global Bioenergy Partnership Sustainability Indicators for Bioenergy, 1st ed.; FAO: Rome, Italy, 2011; ISBN 978-92-5-107249-3. [Google Scholar]
- Valdez-Vazquez, I.; Acevedo-Benítez, J.A.; Hernández-Santiago, C. Distribution and Potential of Bioenergy Resources from Agricultural Activities in Mexico. Renew. Sustain. Energy Rev. 2010, 14, 2147–2153. [Google Scholar] [CrossRef]
- Honorato-Salazar, J.A.; Sadhukhan, J. Annual Biomass Variation of Agriculture Crops and Forestry Residues, and Seasonality of Crop Residues for Energy Production in Mexico. Food Bioprod. Process. 2020, 119, 1–19. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT. Maize (Corn) Production by Country. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 19 April 2023).
- Secretaría de Economía. Sistema de Información Arancelaria vía Internet (SIAVI). Exportaciones de Maíz Blanco (Harinero). Available online: http://www.economia-snci.gob.mx/ (accessed on 25 May 2022).
- Servicio de Información Agroalimentaria y Pesquera (SIAP) Statistical Yearbook of Agricultural Production. Agricultural Production of White Grain Corn. Available online: https://nube.siap.gob.mx/cierreagricola (accessed on 19 April 2022).
- González Huerta, A.; Vázquez García, L.M.; Sahagún Castellanos, J.; Rodríguez Pérez, J.E. Phenotypic Diversity of Maize Varieties and Hybrids in the Toluca-Atlacomulco Valley, Mexico. Rev. Fitotec. Mex 2008, 31, 67–76. [Google Scholar]
- Servicio de Información Agroalimentaria y Pesquera (SIAP). Balanza Disponibilidad-Consumo. Maíz Blanco. Available online: https://www.gob.mx/cms/uploads/attachment/file/813719/Balanzas_disponibilidad_consumo_Marzo.pdf (accessed on 19 April 2023).
- Aseffe, J.A.M.; González, A.M.; Jaén, R.L.; Lora, E.E.S. The Corn Cob Gasification-Based Renewable Energy Recovery in the Life Cycle Environmental Performance of Seed-Corn Supply Chain: An Ecuadorian Case Study. Renew. Energy 2021, 163, 1523–1535. [Google Scholar] [CrossRef]
- Kumar, A.; Wang, L.; Dzenis, Y.A.; Jones, D.D.; Hanna, M.A. Thermogravimetric Characterization of Corn Stover as Gasification and Pyrolysis Feedstock. Biomass Bioenergy 2008, 32, 460–467. [Google Scholar] [CrossRef]
- Córdoba, J.A.; Salcedo, E.; Rodríguez, R.; Zamora, J.F.; Manríquez, R.; Contreras, H.; Delgado, E. Characterization and Chemical Titration of Olote: Hydrothermal Degradation under Subcritical Conditions. Rev. Latinoam. Quim. 2013, 41, 171–184. [Google Scholar]
- Knob, A.; Carmona, E.C. Purification and Characterization of Two Extracellular Xylanases from Penicillium Sclerotiorum: A Novel Acidophilic Xylanase. Appl. Biochem. Biotechnol. 2010, 162, 429–443. [Google Scholar] [CrossRef]
- Cai, D.; Dong, Z.; Wang, Y.; Chen, C.; Li, P.; Qin, P.; Wang, Z.; Tan, T. Biorefinery of Corn Cob for Microbial Lipid and Bio-Ethanol Production: An Environmental Friendly Process. Bioresour. Technol. 2016, 211, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Virmond, E.; Rocha, J.D.; Moreira, P.M.; José, H.J. Valorization of Agroindustrial Solid Residues and Residues from Biofuel Production Chains by Thermochemical Conversion: A Review, Citing Brazil as a Case Study. Braz. J. Chem. Eng. 2013, 30, 197–230. [Google Scholar] [CrossRef]
- Kumar, A.; Gautam, A.; Dutt, D. Biotechnological Transformation of Lignocellulosic Biomass in to Industrial Products: An Overview. Adv. Biosci. Biotechnol. 2016, 7, 149–168. [Google Scholar] [CrossRef]
- Chong, T.Y.; Law, M.C.; Chan, Y.S. The Potentials of Corn Waste Lignocellulosic Fibre as an Improved Reinforced Bioplastic Composites. J. Polym. Environ. 2021, 29, 363–381. [Google Scholar] [CrossRef]
- Zoghlami, A.; Paës, G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.M.; Mota, T.R.; Grandis, A.; de Morais, G.R.; de Lucas, R.C.; Polizeli, M.L.; Marchiosi, R.; Buckeridge, M.S.; Ferrarese-Filho, O.; dos Santos, W.D. Lignin Plays a Key Role in Determining Biomass Recalcitrance in Forage Grasses. Renew. Energy 2020, 147, 2206–2217. [Google Scholar] [CrossRef]
- Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). Aprovechamiento de Esquilmos y Subproductos en la Alimentación del Ganado 2013; SAGARPA: Mexico City, Mexico, 2013. [Google Scholar]
- DeBaufre, W.L. The Heating Value of Corn. Agron. J. 1923, 15, 1–6. [Google Scholar] [CrossRef]
- Horsfield, B.; Doster, H.; Peart, R. Drying Energy from Corn Cobs: A Total System. In Agriculture and Energy; Lockeretz, W., Ed.; Academic Press: Cambridge, MA, USA, 1977; pp. 47–63. ISBN 978-0-12-454250-1. [Google Scholar]
- Du, C.; Li, Y.; Zong, H.; Yuan, T.; Yuan, W.; Jiang, Y. Production of Bioethanol and Xylitol from Non-Detoxified Corn Cob via a Two-Stage Fermentation Strategy. Bioresour. Technol. 2020, 310, 123427. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.D.; Imrana, G. Biogas Production from Lignocellulosic Materials: Co-Digestion of Corn Cobs, Groundnut Shell and Sheep Dung. Imp. J. Interdiscip. Res. 2016, 2, 1261–1268. [Google Scholar]
- Manahan, E.; Enríquez-Poy, M.; Molina, L.T.; Durán-de-Bazúa, C. Energy and Activated Carbon Production from Crop Biomass by Products. In Towards a Cleaner Planet: Energy for the Future; Klapp, J., Cervantes-Cota, J.L., Chávez Alcalá, J.F., Eds.; Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2007; pp. 365–387. ISBN 978-3-540-71345-6. [Google Scholar]
- Low, Y.W.; Yee, K.F. A Review on Lignocellulosic Biomass Waste into Biochar-Derived Catalyst: Current Conversion Techniques, Sustainable Applications and Challenges. Biomass Bioenergy 2021, 154, 106245. [Google Scholar] [CrossRef]
- Larson, E.D. Biomass Gasification Systems for Electric Power, Cogeneration, Liquid Fuels, and Hydrogen; Biomass Energy Workshop Stanford: Stanford, CA, USA, 2004. [Google Scholar]
- Ankur Scientific Charcoal Generator. Available online: https://www.ankurscientific.com/ankur-gasifiers-charcoal-generator.html (accessed on 12 June 2023).
- Biagini, E.; Barontini, F.; Tognotti, L. Gasification of Agricultural Residues in a Demonstrative Plant: Corn Cobs. Bioresour. Technol. 2014, 173, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Suberu, M.Y.; Mokhtar, A.S.; Bashir, N. Potential Capability of Corn Cob Residue for Small Power Generation in Rural Nigeria. ARPN J. Eng. Appl. Sci. 2012, 7, 1037–1046. [Google Scholar]
- Anshar, M.; Ani, F.N.; Kader, A.S. Makhrani Electrical Energy Potential of Corn Cob as Alternative Energy Source for Power Plant in Indonesia. Adv. Sci. Lett. 2017, 23, 4184–4187. [Google Scholar] [CrossRef]
- Allesina, G.; Pedrazzi, S.; Allegretti, F.; Morselli, N.; Puglia, M.; Santunione, G.; Tartarini, P. Gasification of Cotton Crop Residues for Combined Power and Biochar Production in Mozambique. Appl. Therm. Eng. 2018, 139, 387–394. [Google Scholar] [CrossRef]
- Kumar, A.; Jones, D.D.; Hanna, M.A. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies 2009, 2, 556–581. [Google Scholar] [CrossRef]
- Molino, A.; Larocca, V.; Chianese, S.; Musmarra, D. Biofuels Production by Biomass Gasification: A Review. Energies 2018, 11, 811. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, L.; Shen, B.; Wu, C. Preparation, Modification and Development of Ni-Based Catalysts for Catalytic Reforming of Tar Produced from Biomass Gasification. Renew. Sustain. Energy Rev. 2018, 94, 1086–1109. [Google Scholar] [CrossRef]
- IEA. Bioenergy Country Report Austria. 2021. Available online: http://task33.ieabioenergy.com/download.php?file=files/file/country_reports/2021/CR%20Austria%202022.pdf (accessed on 12 June 2023).
- Brewer, C.E.; Schmidt-Rohr, K.; Satrio, J.A.; Brown, R.C. Characterization of Biochar from Fast Pyrolysis and Gasification Systems. Environ. Prog. Sustain. Energy 2009, 28, 386–396. [Google Scholar] [CrossRef]
- Shackley, S.; Carter, S.; Knowles, T.; Middelink, E.; Haefele, S.; Sohi, S.; Cross, A.; Haszeldine, S. Sustainable Gasification–Biochar Systems? A Case-Study of Rice-Husk Gasification in Cambodia, Part I: Context, Chemical Properties, Environmental and Health and Safety Issues. Energy Policy 2012, 42, 49–58. [Google Scholar] [CrossRef]
- Martínez-Casillas, D.C.; Mascorro-Gutiérrez, I.; Betancourt-Mendiola, M.L.; Palestino, G.; Quiroga-González, E.; Pascoe-Sussoni, J.E.; Guillén-López, A.; Muñiz, J.; Cuentas-Gallegos, A.K. Residue of Corncob Gasification as Electrode of Supercapacitors: An Experimental and Theoretical Study. Waste Biomass Valorization 2021, 12, 4123–4140. [Google Scholar] [CrossRef]
- Felber, R.; Leifeld, J.; Horák, J.; Neftel, A. Nitrous Oxide Emission Reduction with Greenwaste Biochar: Comparison of Laboratory and Field Experiments. Eur. J. Soil Sci. 2014, 65, 128–138. [Google Scholar] [CrossRef]
- Bates, A. The Biochar Solution: Carbon Farming and Climate Change; New Society Publisher: Gabriola Island, BC, Canada, 2010; ISBN 0-86571-677-3. [Google Scholar]
- Goswami, M.; Pant, G.; Mansotra, D.K.; Sharma, S.; Joshi, P.C. Chapter 11 Biochar: A Carbon Negative Technology for Combating Climate Change. In Advances in Carbon Capture and Utilization; Pant, D., Kumar Nadda, A., Pant, K.K., Agarwal, A.K., Eds.; Energy, Environment, and Sustainability; Springer: Singapore, 2021; pp. 251–272. ISBN 9789811606380. [Google Scholar]
- Sri Shalini, S.; Palanivelu, K.; Ramachandran, A.; Raghavan, V. Biochar from Biomass Waste as a Renewable Carbon Material for Climate Change Mitigation in Reducing Greenhouse Gas Emissions—A Review. Biomass Conv. Bioref. 2021, 11, 2247–2267. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5 °C; Special Report; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Zhang, Y.; Ghaly, A.E.; Li, B. Physical Properties of Corn Residues. Am. J. Biochem. Biotechnol. 2012, 8, 44–53. [Google Scholar] [CrossRef]
- Wannapeera, J.; Worasuwannarak, N.; Pipatmanomai, S. Product Yields and Characteristics of Rice Husk, Rice Straw and Corncob during Fast Pyrolysis in a Drop-Tube/Fixed-Bed Reactor. Songklanakarin J. Sci. Technol. 2008, 30, 393–404. [Google Scholar]
- Danje, S. Fast Pyrolysis of Corn Residues for Energy Production. Master’s Thesis, Stellenbosch University, Stellenbosch, Sudáfrica, 2011. [Google Scholar]
- Gallardo, L.M.; Gutiérrez, G.A. Reporte de Resultados Experimentales de Pruebas de Gasificación de Biomasa: Olote. G2E S.A.P.I. de C.V. Programa de Fomento a La Agricultura 2014, Componente Bioenergía Sustentabilidad, Convenio SAGARPA-COFUPRO; SAGARPA: Ciudad de México, Mexico, 2016. [Google Scholar]
- Anukam, A.I.; Goso, B.P.; Okoh, O.O.; Mamphweli, S.N. Studies on Characterization of Corn Cob for Application in a Gasification Process for Energy Production. J. Chem. 2017, 2017, 6478389. [Google Scholar] [CrossRef]
- Bustamante García, V.; Carrillo Parra, A.; Prieto Ruíz, J.Á.; Corral-Rivas, J.J.; Hernández Díaz, J.C. Chemistry of Plant Biomass upon Yield during Torrefaction: A Review. Rev. Mex. Cienc. For. 2016, 7, 5–24. [Google Scholar]
- Fandiño, J.M.M.; German, S.J.S.; García, D.E.L.; Guarín, A.M.; Julio, J.D.R. Energy Characterization of Corn Agroindustry Waste in a Multi-Zone Gasification Prototype. Rev. Virtual Quim. 2022, 14, 61–67. [Google Scholar] [CrossRef]
- Danish, M.; Naqvi, M.; Farooq, U.; Naqvi, S. Characterization of South Asian Agricultural Residues for Potential Utilization in Future ‘Energy Mix’. Energy Procedia 2015, 75, 2974–2980. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Bärnthaler, G. Chemical Properties of Solid Biofuels—Significance and Impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- Costa, M.; Buono, A.; Caputo, C.; Carotenuto, A.; Cirillo, D.; Costagliola, M.A.; Di Blasio, G.; La Villetta, M.; Macaluso, A.; Martoriello, G.; et al. The “INNOVARE” Project: Innovative Plants for Distributed Poly-Generation by Residual Biomass. Energies 2020, 13, 4020. [Google Scholar] [CrossRef]
- IEA. Bioenergy Status Report on Thermal Gasification of Biomass and Waste. 2021. Available online: https://www.ieabioenergy.com/wp-content/uploads/2022/03/Status-Report2021_final.pdf (accessed on 12 June 2023).
- Walter Power from Wood Volter 40 Indoor Gasifier. Available online: https://volter.fi/products/volter-40-indoor/ (accessed on 20 June 2023).
- All Power Labs PP30 Power Pallet. Available online: http://www.allpowerlabs.com/pp30-power-pallet (accessed on 12 June 2023).
- Pedrazzi, S.; Santunione, G.; Mustone, M.; Cannazza, G.; Citti, C.; Francia, E.; Allesina, G. Techno-Economic Study of a Small Scale Gasifier Applied to an Indoor Hemp Farm: From Energy Savings to Biochar Effects on Productivity. Energy Convers. Manag. 2021, 228, 113645. [Google Scholar] [CrossRef]
- All Power Labs Power Pallet PP30. Available online: https://www.allpowerlabs.com/wp-content/uploads/2019/08/PP30OneSheet2_1_23-2.pdf (accessed on 12 June 2023).
- U.S. Energy Information Administration Annual Energy Outlook 2023. Table 3. Energy Prices by Sector and Source. Available online: https://www.eia.gov/outlooks/aeo/data/browser/#/?id=3-AEO2023®ion=1-0&cases=ref2023&start=2021&end=2050&f=A&sourcekey=0 (accessed on 20 June 2023).
- Comisión Reguladora de Energía (CRE). Historial de Precios Promedio al Público de Gas LP Reportados Por Los Distribuidores. Available online: https://www.gob.mx/cre/documentos/historial-de-precios-promedio-al-publico-de-gas-lp-reportados-por-los-distribuidores (accessed on 20 June 2023).
- Comisión Reguladora de Energía (CRE). Memorias de Cálculo de Tarifas de Suministro Básico. Tarifa Media Nacional Por Categoría y División Tarifaria. Available online: https://datos.gob.mx/busca/dataset/memorias-de-calculo-de-tarifas-de-suministro-basico (accessed on 28 March 2023).
- Grande-Acosta, G.K.; Islas-Samperio, J.M. Boosting Energy Efficiency and Solar Energy inside the Residential, Commercial, and Public Services Sectors in Mexico. Energies 2020, 13, 5601. [Google Scholar] [CrossRef]
- Secretaría de Comercio y fomento Industrial Norma Mexicana NMX-F-046-S-1980. Harina de Maíz Nixtamalizado. Available online: http://www.economia-nmx.gob.mx/normas/nmx/1980/nmx-f-046-s-1980.pdf (accessed on 12 June 2023).
- Campechano Carrera, E.M.; de Dios Figueroa Cárdenas, J.; Arámbula Villa, G.; Martínez Flores, H.E.; Jiménez Sandoval, S.J.; Luna Bárcenas, J.G. New Ecological Nixtamalisation Process for Tortilla Production and Its Impact on the Chemical Properties of Whole Corn Flour and Wastewater Effluents. Int. J. Food Sci. Technol. 2012, 47, 564–571. [Google Scholar] [CrossRef]
- Torres, F.; Moreno, E.; Chong, I.; Quintanilla, J. La Industria de la Masa y la Tortilla. Desarrollo y Tecnología; Universidad Nacional Autónoma de México, Dirección General de Publicaciones: Mexico City, Mexico, 1996; ISBN 978-968-36-4793-1. [Google Scholar]
- Mounir, S.; Mujumdar, A.S.; Bhandari, B.; Fang, Z. Handbook of Drying of Vegetables and Vegetable Products, 1st ed.; Routledge, Taylor and Francis Group: Abingdon, UK, 2017; ISBN 978-1-4987-5386-9. [Google Scholar]
- Pulvex Molino de Martillos. Available online: https://www.pulvex.mx/molinos/de-martillos/ (accessed on 12 June 2023).
- Instituto Nacional de Ecología y Cambio Climático (INECC). Factores de Emisión Para Los Diferentes Tipos de Combustibles Fósiles y Alternativos Que Se Consumen En México. Available online: https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf (accessed on 20 October 2022).
- Comisión Reguladora de Energía (CRE). Factor de Emisión Del Sistema Eléctrico Nacional. 2019. Available online: https://www.gob.mx/cms/uploads/attachment/file/537538/2019.pdf (accessed on 20 June 2023).
- Fulton Classic TM Steam. Vertical Tubeless Steam Boiler. Available online: https://www.fulton.com/products/classic/ (accessed on 12 June 2023).
- International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2021; IRENA: Abu Dhabi, United Arab Emirates, 2022; ISBN 978-92-9260-452-3. [Google Scholar]
Moisture (%) | Volatiles (%) | Ash (%) | Fixed Carbon (%) | Country | Reference |
---|---|---|---|---|---|
10.00 | 80.79 | 1.81 | 17.40 | Colombia | [9] |
5.30 | 74.85 | 8.18 | 11.70 | USA | [10] |
- | 78.70 | 0.90 | 16.20 | Thailand | [45] |
4.60 | 79.90 | 1.80 | 13.70 | South Africa | [46] |
10.10 | 80.06 | 2.12 | 17.82 | Italy | [28] |
5.10 | 65.10 | 8.50 | 21.30 | South Africa | [48] |
10.52 | 65.23 | 7.71 | 16.54 | Colombia | [50] |
C (%) | H (%) | N (%) | S (%) | O (%) | Lower/Higher Calorific Value (MJ/kg) | Reference |
---|---|---|---|---|---|---|
47.82 | 5.50 | 0.38 | 0.40 | 44.09 | 17.97/19.34 | [9] |
51.80 | 5.50 | 0.84 | 0.34 | 41.60 | - | [10] |
45.50 | 6.20 | 1.30 | - | 47.00 | - | [45] |
50.20 | 5.90 | 0.42 | 0.03 | 43.50 | 19.14 * | [46] |
47.60 | 6.10 | 0.52 | - | 45.78 | 17.33/18.56 | [28] |
46.2 | 5.42 | 0.92 | 0.24 | 47.22 | 18.36 * | [51] |
44.40 | 5.6 | 0.43 | 1.30 | 48.27 | 18.02 ** | [48] |
39.95 | 4.97 | 0.60 | - | 47.42 | 14.7 *** | [50] |
Parameters | Value | References |
---|---|---|
Max. continuous operation | 24 h | [56] |
Electrical efficiency (wood to power) | 23% | [56] |
Gasification efficiency (wood to gas) | 82% | [56] |
Cost without shipping and installation | 55,000 € | [57] |
Process | Thermal Energy | Electric Energy | References |
---|---|---|---|
(kWht/kg Grain) | (kWhe/kg Grain) | ||
Cooking | 0.273 | [65] | |
Drying | 0.402 | [66] | |
Wet grinding—stones | 0.041 | [65] | |
Dry Grinding—hammers | 0.075 | [67] | |
Add energy | 0.675 | 0.116 | |
CO2 Emission Factors (kgCO2/kWh) | |||
LPG | 0.234 | [68] | |
Electricity from MES | 0.505 | [69] |
Equipment | Cost | Units | References |
---|---|---|---|
Unit investment cost 20 BHP boiler | USD 402.00 | USD */W | [71] |
Investment cost 20 BHP boiler | USD 79,011.89 | USD | Own calculations with data from [71] |
Equipment | Cost | Units | References |
---|---|---|---|
Unit investment cost CHP gasifier | USD 2376.0 | USD/kWe | [57] |
Investment cost CHP gasifier 25 kWe | USD 59,400.0 | USD | Own calculations with data from [57] |
Unit investment cost Boiler | USD 402.0 | USD/kWt | [71] |
Investment cost 15 BHP boiler | USD 59,375.8 | USD * | Own calculations with data from [71] |
Annual tCO2 | Accumulated over 20 Years tCO2 | Cumulative Avoided Emissions AS-BS tCO2 | % Cumulative Emissions Reduction (AS-BS)/BS | |
---|---|---|---|---|
LPG emissions in BS | 176.6 | 3531.4 | ||
Grid electricity emissions in BS | 65.4 | 1307.0 | ||
Total BS emissions | 241.9 | 4838.4 | ||
LPG emissions in AS | 131.6 | 2632.0 | 899.4 | 18.6% |
Grid electricity emissions in AS | 17.5 | 349.0 | 958.0 | 19.8% |
Total AS emissions | 149.1 | 2981.0 | ||
Emissions avoided by energy substitution | 92.9 | 1857.4 | 38.4% | |
Emissions avoided by storage in Biochar | 31.1 | 622.0 | 12.9% | |
Total avoided emissions | 124.0 | 2479.4 | 51.2% |
BS | AS | AS − BS | |
---|---|---|---|
Investment | USD 79,012 | USD 118,776 | USD 39,764 |
O&M | USD 17,705 | USD 38,817 | USD 21,112 |
Electricity | USD 81,776 | USD 21,187 | USD −60,589 |
LPG | USD 336,833 | USD 251,145 | USD −85,688 |
Total costs | USD 515,326 | USD 429,925 | USD −85,401 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzini, F.; Islas-Samperio, J.M.; Grande-Acosta, G.K. Exploring Corn Cob Gasification as a Low-Carbon Technology in the Corn Flour Industry in Mexico. Energies 2024, 17, 2256. https://doi.org/10.3390/en17102256
Manzini F, Islas-Samperio JM, Grande-Acosta GK. Exploring Corn Cob Gasification as a Low-Carbon Technology in the Corn Flour Industry in Mexico. Energies. 2024; 17(10):2256. https://doi.org/10.3390/en17102256
Chicago/Turabian StyleManzini, Fabio, Jorge M. Islas-Samperio, and Genice K. Grande-Acosta. 2024. "Exploring Corn Cob Gasification as a Low-Carbon Technology in the Corn Flour Industry in Mexico" Energies 17, no. 10: 2256. https://doi.org/10.3390/en17102256
APA StyleManzini, F., Islas-Samperio, J. M., & Grande-Acosta, G. K. (2024). Exploring Corn Cob Gasification as a Low-Carbon Technology in the Corn Flour Industry in Mexico. Energies, 17(10), 2256. https://doi.org/10.3390/en17102256