A New Task Scheduling Approach for Energy Conservation in Internet of Things
Abstract
:1. Introduction
- To improve the data dissemination rate using the decisive task scheduling process;
- To minimize the delay and high energy consumption using the conditional decision-making and energy slots handling procedure;
- To apply the queuing process to balance the edge node availability among the device while allocating the resources.
2. Literature Survey
3. Decisive Task Scheduling for Energy Conservation (DTS-EC)
3.1. Energy-Based Task Scheduling
3.2. Decision Making
4. Results and Discussion
4.1. Energy Utilization
4.2. Data Dissemination
4.3. Active Edge Nodes
4.4. Latency
4.5. Summary of Findings
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DTS-EC | Decisive Task Scheduling for Energy Conservation |
EH | Energy Harvesting |
DEEDC | Delay and energy-efficient data collection |
FM | Frequency Modulator |
SEES | Scalable Energy Efficiency Scheme |
CRIO | Composition based on concurrent Request Integration Optimization |
PSO | Particle Swarm Optimization |
DRLO | Deep Reinforcement Learning-Based Offloading |
IoT | Internet of Things |
MEC | Mobile Edge Computing |
References
- Al-Azez, Z.T.; Lawey, A.Q.; El-Gorashi, T.E.H.; Elmirghani, J.M.H. Energy Efficient IoT Virtualization Framework with Peer to Peer Networking and Processing. IEEE Access 2019, 7, 50697–50709. [Google Scholar] [CrossRef]
- Li, Y.; Orgerie, A.-C.; Rodero, I.; Amersho, B.L.; Parashar, M.; Menaud, J.-M. End-To-End Energy Models for Edge Cloud-Based IoT Platforms: Application to Data Stream Analysis in IoT. Future Gener. Comput. Syst. 2018, 87, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Bushnaq, O.M.; Chaaban, A.; Chepuri, S.P.; Leus, G.; Al-Naffouri, T.Y. Sensor Placement and Resource Allocation for Energy Harvesting IoT Networks. Digit. Signal Process. 2020, 105, 102659. [Google Scholar] [CrossRef] [Green Version]
- Shrivastav, K.; Kulat, K.D. Scalable Energy Efficient Hexagonal Heterogeneous Broad Transmission Distance Protocol in WSN-IoT Networks. J. Electr. Eng. Technol. 2019, 15, 95–120. [Google Scholar] [CrossRef]
- Ashraf, N.; Hasan, A.; Qureshi, H.K.; Lestas, M. Combined Data Rate and Energy Management in Harvesting Enabled Tactile IoT Sensing Devices. IEEE Trans. Ind. Inform. 2019, 15, 3006–3015. [Google Scholar] [CrossRef]
- Munoz, R.; Vilalta, R.; Yoshikane, N.; Casellas, R.; Martinez, R.; Tsuritani, T.; Morita, I. Integration of IoT, Transport SDN, and Edge/Cloud Computing for Dynamic Distribution of IoT Analytics and Efficient Use of Network Resources. J. Light. Technol. 2018, 36, 1420–1428. [Google Scholar] [CrossRef]
- Samie, F.; Tsoutsouras, V.; Masouros, D.; Bauer, L.; Soudris, D.; Henkel, J. Fast Operation Mode Selection for Highly Efficient IoT Edge Devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 572–584. [Google Scholar] [CrossRef]
- Mishra, S.K.; Puthal, D.; Sahoo, B.; Sharma, S.; Xue, Z.; Zomaya, A.Y. Energy-Efficient Deployment of Edge Dataenters for Mobile Clouds in Sustainable IoT. IEEE Access 2018, 6, 56587–56597. [Google Scholar] [CrossRef]
- Toor, A.; Islam, S.U.; Ahmed, G.; Jabbar, S.; Khalid, S.; Sharif, A.M. Energy Efficient Edge-of-Things. Eurasip J. Wirel. Commun. Netw. 2019, 2019, 82. [Google Scholar] [CrossRef]
- Huang, J.; Li, S.; Chen, Y. Revenue-Optimal Task Scheduling and Resource Management for IoT Batch Jobs in Mobile Edge Computing. Peer Peer-to-Peer Netw. Appl. 2020, 13, 1776–1787. [Google Scholar] [CrossRef]
- Qiu, C.; Wu, F.; Lee, C.; Yuce, M.R. Self-Powered Control Interface Based on Gray Code with Hybrid Triboelectric and Photovoltaics Energy Harvesting for IoT Smart Home and Access Control Applications. Nano Energy 2020, 70, 104456. [Google Scholar] [CrossRef]
- Din, I.U.; Hassan, S.; Almogren, A.; Ayub, F.; Guizani, M. PUC: Packet Update Caching for Energy Efficient IoT-Based Information-Centric Networking. Future Gener. Comput. Syst. 2019, 111, 634–643. [Google Scholar] [CrossRef]
- Ke, H.; Wang, J.; Wang, H.; Ge, Y. Joint Optimization of Data Offloading and Resource Allocation with Renewable Energy Aware for IoT Devices: A Deep Reinforcement Learning Approach. IEEE Access 2019, 7, 179349–179363. [Google Scholar] [CrossRef]
- Jamil, B.; Ijaz, H.; Shojafar, M.; Munir, K.; Buyya, R. Resource Allocation and Task Scheduling in Fog Computing and Internet of Everything Environments: A Taxonomy, Review, and Future Directions. ACM Comput. Surv. 2022, 54, 1–38. [Google Scholar] [CrossRef]
- Wei, Z.; Zhao, B.; Su, J.; Lu, X. Dynamic Edge Computation Offloading for Internet of Things with Energy Harvesting: A Learning Method. IEEE Internet Things J. 2019, 6, 4436–4447. [Google Scholar] [CrossRef]
- Valerio, L.; Conti, M.; Passarella, A. Energy Efficient Distributed Analytics at the Edge of the Network for IoT Environments. Pervasive Mob. Comput. 2018, 51, 27–42. [Google Scholar] [CrossRef]
- Sun, M.; Zhou, Z.; Wang, J.; Du, C.; Gaaloul, W. Energy-Efficient IoT Service Composition for Concurrent Timed Applications. Future Gener. Comput. Syst. 2019, 100, 1017–1030. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, X.; Chen, H.; Zhou, Y.; Bao, W.; Yang, L.T. DEED: Dynamic Energy-Efficient Data Offloading for IoT Applications under Unstable Channel Conditions. Future Gener. Comput. Syst. 2019, 96, 425–437. [Google Scholar] [CrossRef]
- Abdul-Qawy, A.S.H.; Srinivasulu, T. SEES: A Scalable and Energy-Efficient Scheme for Green IoT-Based Heterogeneous Wireless Nodes. J. Ambient. Intell. Humaniz. Comput. 2018, 10, 1571–1596. [Google Scholar] [CrossRef]
- Naranjo, P.G.V.; Baccarelli, E.; Scarpiniti, M. Design and Energy-Efficient Resource Management of Virtualized Networked Fog Architectures for the Real-Time Support of IoT Applications. J. Supercomput. 2018, 74, 2470–2507. [Google Scholar] [CrossRef]
- Huo, Y.; Xu, M.; Fan, X.; Jing, T. A Novel Secure Relay Selection Strategy for Energy-Harvesting-Enabled Internet of Things. Eurasip J. Wirel. Commun. Netw. 2018, 2018, 264. [Google Scholar] [CrossRef] [Green Version]
- Min, M.; Xiao, L.; Chen, Y.; Cheng, P.; Wu, D.; Zhuang, W. Learning-Based Computation Offloading for IoT Devices with Energy Harvesting. IEEE Trans. Veh. Technol. 2019, 68, 1930–1941. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.; Xie, M.; Hu, J. ENZYME: An Energy-Efficient Transient Computing Paradigm for Ultralow Self-Powered IoT Edge Devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 2440–2450. [Google Scholar] [CrossRef]
- Guo, M.; Li, L.; Guan, Q. Energy-Efficient and Delay-Guaranteed Workload Allocation in IoT-Edge-Cloud Computing Systems. IEEE Access 2019, 7, 78685–78697. [Google Scholar] [CrossRef]
- Li, C.; Tang, J.; Zhang, Y.; Yan, X.; Luo, Y. Energy Efficient Computation Offloading for Nonorthogonal Multiple Access Assisted Mobile Edge Computing with Energy Harvesting Devices. Comput. Netw. 2019, 164, 106890. [Google Scholar] [CrossRef]
- Xiang, X.; Liu, W.; Wang, T.; Xie, M.; Li, X.; Song, H.; Liu, A.; Zhang, G. Delay and Energy-Efficient Data Collection Scheme-Based Matrix Filling Theory for Dynamic Traffic IoT. Eurasip J. Wirel. Commun. Netw. 2019, 2019, 168. [Google Scholar] [CrossRef] [Green Version]
Metrics | SEES | CRIO-PSO | DRLO | Our Work |
---|---|---|---|---|
Energy Utilization (J) | 0.035 | 0.0293 | 0.012 | 0.009 |
Data Dissemination (Gb) | 50.84 | 60.93 | 67.22 | 79.88 |
Latency (ms) | 35.9 | 29.49 | 25.83 | 18.9 |
Metrics | SEES | CRIO-PSO | DRLO | Our Work |
---|---|---|---|---|
Energy Utilization (J) | 0.0358 | 0.0267 | 0.0131 | 0.0091 |
Data Dissemination (Gb) | 50.01 | 60.3 | 68.36 | 78.85 |
Latency (ms) | 32.94 | 28.68 | 21.74 | 18.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, M.-W.; Yan, S.-R.; Guo, W.; Mohammadzadeh, A.; Ghaderpour, E. A New Task Scheduling Approach for Energy Conservation in Internet of Things. Energies 2023, 16, 2394. https://doi.org/10.3390/en16052394
Tian M-W, Yan S-R, Guo W, Mohammadzadeh A, Ghaderpour E. A New Task Scheduling Approach for Energy Conservation in Internet of Things. Energies. 2023; 16(5):2394. https://doi.org/10.3390/en16052394
Chicago/Turabian StyleTian, Man-Wen, Shu-Rong Yan, Wei Guo, Ardashir Mohammadzadeh, and Ebrahim Ghaderpour. 2023. "A New Task Scheduling Approach for Energy Conservation in Internet of Things" Energies 16, no. 5: 2394. https://doi.org/10.3390/en16052394
APA StyleTian, M.-W., Yan, S.-R., Guo, W., Mohammadzadeh, A., & Ghaderpour, E. (2023). A New Task Scheduling Approach for Energy Conservation in Internet of Things. Energies, 16(5), 2394. https://doi.org/10.3390/en16052394