Exploring the Bioenergy Potential of Microfluidics: The Case of a T-Micromixer with Helical Elements for Sustainable Energy Solutions
Abstract
:1. Introduction
2. Methodology
2.1. Biogas Production and Characterization
2.2. Governing Equations and Numerical Methodology
2.3. Deformation and Vorticity Intensity
2.4. Velocity Gradient Tensor Method
2.5. Geometries Description
2.6. Boundary Conditions
2.7. Grid Independency Test
2.8. CFD Code Validation
3. Results and Discussion
3.1. Effect of the Geometrical Factors
3.2. Application of the Vortex Identification Method
3.3. Mixing Performance
3.4. Pressure Drop
3.5. Contour of Mass Fraction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kan, X.; Zhou, D.; Yang, W.; Zhai, X.; Wang, C.-H. An Investigation on Utilization of Biogas and Syngas Produced from Biomass Waste in Premixed Spark Ignition Engine. Appl. Energy 2018, 212, 210–222. [Google Scholar] [CrossRef]
- Ramos, A.; Monteiro, E.; Rouboa, A. Biomass Pre-Treatment Techniques for the Production of Biofuels Using Thermal Conversion Methods—A Review. Energy Convers. Manag. 2022, 270, 116271. [Google Scholar] [CrossRef]
- Fan, F.; Wang, S.; Yang, S.; Hu, J.; Wang, H. Numerical Investigation of Gas Thermal Property in the Gasification Process of a Spouted Bed Gasifier. Appl. Therm. Eng. 2020, 181, 115917. [Google Scholar] [CrossRef]
- Dabiri, S.; Kumar, P.; Rauch, W. Integrating Biokinetics with Computational Fluid Dynamics for Energy Performance Analysis in Anaerobic Digestion. Bioresour. Technol. 2023, 373, 128728. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, S.; Feng, F.; Tagawa, K. A Review on Numerical Simulation Based on CFD Technology of Aerodynamic Characteristics of Straight-Bladed Vertical Axis Wind Turbines. Energy Rep. 2023, 9, 4360–4379. [Google Scholar] [CrossRef]
- Aly, A.M.; Clarke, J. Wind Design of Solar Panels for Resilient and Green Communities: CFD with Machine Learning. Sustain. Cities Soc. 2023, 94, 104529. [Google Scholar] [CrossRef]
- Khan, Z.U.; Ali, Z.; Uddin, E. Performance Enhancement of Vertical Axis Hydrokinetic Turbine Using Novel Blade Profile. Renew. Energy 2022, 188, 801–818. [Google Scholar] [CrossRef]
- Shiehnejadhesar, A.; Schulze, K.; Scharler, R.; Obernberger, I. A New Innovative CFD-Based Optimisation Method for Biomass Combustion Plants. Biomass Bioenergy 2013, 53, 48–53. [Google Scholar] [CrossRef]
- Gao, H.; Runstedtler, A.; Majeski, A.; Boisvert, P.; Campbell, D. Optimizing a Woodchip and Coal Co-Firing Retrofit for a Power Utility Boiler Using CFD. Biomass Bioenergy 2016, 88, 35–42. [Google Scholar] [CrossRef]
- Jahangiri, A.; Ebrahim Sarbandi Farahani, M.; Ahmadi, G.; Shahsavar, A.; Borzouei, A.; Gharehbaei, H. Coupled CFD and 3E (Energy, Exergy and Economical) Analysis of Using Windbreak Walls in Heller Type Cooling Towers. J. Clean. Prod. 2022, 358, 131550. [Google Scholar] [CrossRef]
- Zheng, L.; Lu, W.; Wu, L.; Zhou, Q. A Review of Integration between BIM and CFD for Building Outdoor Environment Simulation. Build. Environ. 2023, 228, 109862. [Google Scholar] [CrossRef]
- Santiago, J.L.; Borge, R.; Martin, F.; de la Paz, D.; Martilli, A.; Lumbreras, J.; Sanchez, B. Evaluation of a CFD-Based Approach to Estimate Pollutant Distribution within a Real Urban Canopy by Means of Passive Samplers. Sci. Total Environ. 2017, 576, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Lu, L.; He, W.; Min, Y. Fundamentals and Applications of CFD Technology on Analyzing Falling Film Heat and Mass Exchangers: A Comprehensive Review. Appl. Energy 2020, 261, 114473. [Google Scholar] [CrossRef]
- Satjaritanun, P.; Khunatorn, Y.; Vorayos, N.; Shimpalee, S.; Bringley, E. Numerical Analysis of the Mixing Characteristic for Napier Grass in the Continuous Stirring Tank Reactor for Biogas Production. Biomass Bioenergy 2016, 86, 53–64. [Google Scholar] [CrossRef]
- Birth, T.; Heineken, W.; He, L. Preliminary Design of a Small-Scale System for Theconversion of Biogas to Electricity by HT-PEM Fuel Cell. Biomass Bioenergy 2014, 65, 20–27. [Google Scholar] [CrossRef]
- Santana, H.S.; Tortola, D.S.; Silva, J.L.; Taranto, O.P. Biodiesel Synthesis in Micromixer with Static Elements. Energy Convers. Manag. 2017, 141, 28–39. [Google Scholar] [CrossRef]
- Banerjee, R.; Kumar, S.P.J.; Mehendale, N.; Sevda, S.; Garlapati, V.K. Intervention of Microfluidics in Biofuel and Bioenergy Sectors: Technological Considerations and Future Prospects. Renew. Sustain. Energy Rev. 2019, 101, 548–558. [Google Scholar] [CrossRef]
- Šalić, A.; Zelić, B. A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance. Energies 2022, 15, 7065. [Google Scholar] [CrossRef]
- Alam, A.; Kim, K.-Y. Analysis of Mixing in a Curved Microchannel with Rectangular Grooves. Chem. Eng. J. 2012, 181–182, 708–716. [Google Scholar] [CrossRef]
- Chen, J.; Risberg, M.; Westerlund, L.; Jansson, U.; Lu, X.; Wang, C.; Ji, X. A High Efficient Heat Exchanger with Twisted Geometries for Biogas Process with Manure Slurry. Appl. Energy 2020, 279, 115871. [Google Scholar] [CrossRef]
- Stroock, A.D.; Dertinger, S.K.; Whitesides, G.M.; Ajdari, A. Patterning Flows Using Grooved Surfaces. Anal Chem. 2002, 74, 5306–5312. [Google Scholar] [CrossRef]
- Tseng, L.-Y.; Yang, A.-S.; Lee, C.-Y.; Hsieh, C.-Y. CFD-Based Optimization of a Diamond-Obstacles Inserted Micromixer with Boundary Protrusions. Eng. Appl. Comput. Fluid Mech. 2011, 5, 210–222. [Google Scholar] [CrossRef]
- Liu, R.H.; Stremler, M.A.; Sharp, K.V.; Olsen, M.G.; Santiago, J.G.; Adrian, R.J.; Aref, H.; Beebe, D.J. Passive Mixing in a Three-Dimensional Serpentine Microchannel. J. Microelectromech. Syst. 2000, 9, 190–197. [Google Scholar] [CrossRef]
- Kim, D.; Shin, J.; Son, Y.; Park, S. Characteristics of In-Cylinder Flow and Mixture Formation in a High-Pressure Spray-Guided Gasoline Direct-Injection Optically Accessible Engine Using PIV Measurements and CFD. Energy Convers. Manag. 2021, 248, 114819. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, S.H.; Kwon, T.H.; Ahn, C.H. A Serpentine Laminating Micromixer Combining Splitting/Recombination and Advection. Lab Chip 2005, 5, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Valera-Medina, A.; Vigueras-Zuniga, M.O.; Baej, H.; Syred, N.; Chong, C.T.; Bowen, P.J. Outlet Geometrical Impacts on Blowoff Effects When Using Various Syngas Mixtures in Swirling Flows. Appl. Energy 2017, 207, 195–207. [Google Scholar] [CrossRef]
- Ottino, J.M. The Kinematics of Mixing: Stretching, Chaos, and Transport; Cambridge University Press: Cambridge, UK, 1989; ISBN 9780521368780. [Google Scholar]
- Tian, F.; Zhang, M.; Fan, H.; Gu, M.; Wang, L.; Qi, Y. Numerical Study on Microscopic Mixing Characteristics in Fluidized Beds via DEM. Fuel Process. Technol. 2007, 88, 187–198. [Google Scholar] [CrossRef]
- Karvelas, E.; Liosis, C.; Karakasidis, T.; Sarris, I. Mixing of Particles in Micromixers under Different Angles and Velocities of the Incoming Water. Proceedings 2018, 2, 577. [Google Scholar] [CrossRef]
- Mahmud, F.; Tamrin, K.F.; Mohamaddan, S.; Watanabe, N. Effect of Thermal Energy and Ultrasonication on Mixing Efficiency in Passive Micromixers. Processes 2021, 9, 891. [Google Scholar] [CrossRef]
- Bothe, D.; Lojewski, A.; Warnecke, H.-J. Computational Analysis of an Instantaneous Chemical Reaction in a T-Microreactor. AIChE J. 2010, 56, 1406–1415. [Google Scholar] [CrossRef]
- Lobasov, A.S.; Minakov, A.V.; Kuznetsov, V.V.; Rudyak, V.Y.; Shebeleva, A.A. Investigation of Mixing Efficiency and Pressure Drop in T-Shaped Micromixers. Chem. Eng. Process. Process Intensif. 2018, 134, 105–114. [Google Scholar] [CrossRef]
- Wong, S.H.; Ward, M.C.L.; Wharton, C.W. Micro T-Mixer as a Rapid Mixing Micromixer. Sens. Actuators B Chem. 2004, 100, 359–379. [Google Scholar] [CrossRef]
- Stroock, A.D.; Dertinger, S.K.W.; Ajdari, A.; Mezić, I.; Stone, H.A.; Whitesides, G.M. Chaotic Mixer for Microchannels. Science 2002, 295, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.P.; dos Santos, A.; Semiao, V. Experimental Characterization of Pulsed Newtonian Fluid Flows inside T-Shaped Micromixers with Variable Inlets Widths. Exp. Therm. Fluid Sci. 2017, 89, 249–258. [Google Scholar] [CrossRef]
- Chen, J.; Hai, Z.; Lu, X.; Wang, C.; Ji, X. Heat-Transfer Enhancement for Corn Straw Slurry from Biogas Plants by Twisted Hexagonal Tubes. Appl. Energy 2020, 262, 114554. [Google Scholar] [CrossRef]
- Hoffmann, M.; Schlüter, M.; Räbiger, N. Experimental Investigation of Liquid–Liquid Mixing in T-Shaped Micro-Mixers Using μ-LIF and μ-PIV. Chem. Eng. Sci. 2006, 61, 2968–2976. [Google Scholar] [CrossRef]
- Maionchi, D.D.O.; Ainstein, L.; dos Santos, F.P.; de Souza Júnior, M.B. Computational Fluid Dynamics and Machine Learning as Tools for Optimization of Micromixers Geometry. Int. J. Heat Mass Transf. 2022, 194, 123110. [Google Scholar] [CrossRef]
- Zhu, S.; Fang, Y.; Chen, Y.; Yu, P.; Han, Y.; Xiang, N.; Ni, Z. Stackable Micromixer with Modular Design for Efficient Mixing over Wide Reynold Numbers. Int. J. Heat Mass Transf. 2022, 183, 122129. [Google Scholar] [CrossRef]
- Cortes-Quiroz, C.A.; Azarbadegan, A.; Zangeneh, M. Evaluation of Flow Characteristics That Give Higher Mixing Performance in the 3-D T-Mixer versus the Typical T-Mixer. Sens. Actuators B Chem. 2014, 202, 1209–1219. [Google Scholar] [CrossRef]
- Gobby, D.; Angeli, P.; Gavriilidis, A. Mixing Chacteristics of T-Type Microfluidic Mixers. J. Micromech. Microeng. 2001, 11, 126–132. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, S.W.; Kwon, T.H.; Lee, S.S. A Barrier Embedded Chaotic Micromixer. J. Micromech. Microeng. 2004, 14, 798–805. [Google Scholar] [CrossRef]
- Bertsch, A.; Heimgartner, S.; Cousseau, P.; Renaud, P. Static Micromixers Based on Large-Scale Industrial Mixer Geometry. Lab Chip 2001, 1, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Kolář, V.; Šístek, J.; Cirak, F.; Moses, P. Average Corotation of Line Segments near a Point and Vortex Identification. AIAA J. 2013, 51, 2678–2694. [Google Scholar] [CrossRef]
- Cucitore, R.; Quadrio, M.; Baron, A. On the Effectiveness and Limitations of Local Criteria for the Identification of a Vortex. Eur. J. Mech. B Fluids 1999, 18, 261–282. [Google Scholar] [CrossRef]
- Jeong, J.; Hussain, F. On the Identification of a Vortex. J. Fluid Mech. 1995, 285, 69–94. [Google Scholar] [CrossRef]
- Lappa, M.; Inam, S. Large Eddy Simulation of Three-Dimensional Hybrid Forced-Buoyancy Convection in Channels with a Step. Int. J. Heat Mass Transf. 2023, 202, 123767. [Google Scholar] [CrossRef]
- Chen, L.; Wang, G.; Lim, C.; Seong, G.H.; Choo, J.; Lee, E.K.; Kang, S.H.; Song, J.M. Evaluation of Passive Mixing Behaviors in a Pillar Obstruction Poly(Dimethylsiloxane) Microfluidic Mixer Using Fluorescence Microscopy. Microfluid. Nanofluid. 2009, 7, 267–273. [Google Scholar] [CrossRef]
- Santana, H.S.; Silva, J.L.; Tortola, D.S.; Taranto, O.P. Transesterification of Sunflower Oil in Microchannels with Circular Obstructions. Chin. J. Chem. Eng. 2018, 26, 852–863. [Google Scholar] [CrossRef]
- Soleymani, A.; Kolehmainen, E.; Turunen, I. Numerical and Experimental Investigations of Liquid Mixing in T-Type Micromixers. Chem. Eng. J. 2008, 135, S219–S228. [Google Scholar] [CrossRef]
- Gañán, J.; Al-Kassir Abdulla, A.; Cuerda Correa, E.M.; Macías-García, A. Energetic Exploitation of Vine Shoot by Gasification Processes. A Preliminary Study. Fuel Process. Technol. 2006, 87, 891–897. [Google Scholar] [CrossRef]
- Gañan, J.; González, J.F.; González-García, C.M.; Cuerda-Correa, E.M.; Macías-García, A. Determination of the Energy Potential of Gases Produced in the Pyrolysis Processes of the Vegetal Carbon Manufacture Industry. Bioresour. Technol. 2006, 97, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Mebarki, B.; Mohammed, K.; Imtiaz, M.; Belkacem, D.; Medal, M.; Benhanifia, K.; Jamshed, W.; Eid, M.R.; El Din, S.M. A CFD Examination of Free Convective Flow of a Non-Newtonian Viscoplastic Fluid Using ANSYS Fluent. Arab. J. Chem. 2023, 16, 105309. [Google Scholar] [CrossRef]
- Boss, J. Evaluation of the Homogeneity Degree of a Mixture. Bulk Solids Handl. 1986, 6, 1207–1215. [Google Scholar]
- Ishii, K.; Hihara, E.; Munakata, T. Mechanism of Temperature-Difference-Induced Spiral Flow in Microchannel and Investigation of Mixing Performance of a Non-Invasive Micromixer. Appl. Therm. Eng. 2020, 174, 115291. [Google Scholar] [CrossRef]
- Sohankar, A.; Riahi, M.; Shirani, E. Numerical Investigation of Heat Transfer and Pressure Drop in a Rotating U-Shaped Hydrophobic Microchannel with Slip Flow and Temperature Jump Boundary Conditions. Appl. Therm. Eng. 2017, 117, 308–321. [Google Scholar] [CrossRef]
- Hajmohammadi, M.R.; Alipour, P.; Parsa, H. Microfluidic Effects on the Heat Transfer Enhancement and Optimal Design of Microchannels Heat Sinks. Int. J. Heat Mass Transf. 2018, 126, 808–815. [Google Scholar] [CrossRef]
- Ding, H.; Xie, P.; Ingham, D.; Ma, L.; Pourkashanian, M. Flow Behaviour of Drop and Jet Modes of a Laminar Falling Film on Horizontal Tubes. Int. J. Heat Mass Transf. 2018, 124, 929–942. [Google Scholar] [CrossRef]
- Kurnia, J.C.; Sasmito, A.P. Performance Evaluation of Liquid Mixing in a T-Junction Passive Micromixer with a Twisted Tape Insert. Ind. Eng. Chem. Res. 2020, 59, 3904–3915. [Google Scholar] [CrossRef]
- Zimparov, V. Prediction of Friction Factors and Heat Transfer Coefficients for Turbulent Flow in Corrugated Tubes Combined with Twisted Tape Inserts. Part 1: Friction Factors. Int. J. Heat Mass Transf. 2004, 47, 589–599. [Google Scholar] [CrossRef]
- Fazel, Z.; Sadrhosseini, H.; Hannani, S.K. Heat Transfer Intensification of Turbulent Forced Convection by Inserting Discontinuous Twisted Tapes in a Wavy Tube; Hydrothermal and Thermodynamics Analysis. Chem. Eng. Process. Process Intensif. 2022, 181, 109137. [Google Scholar] [CrossRef]
- Singh, I.; Vardhan, S. Experimental Investigation of an Evacuated Tube Collector Solar Air Heater with Helical Inserts. Renew. Energy 2021, 163, 1963–1972. [Google Scholar] [CrossRef]
- Douroum, E.; Kouadri, A.; Tahiri, A.; Brihmat, M.; Khelladi, S. Hydrodynamic and Kinematic Study to Analyze the Mixing Efficiency of Short Passive Micromixers. Ind. Eng. Chem. Res. 2022, 61, 5994–6009. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Wang, B.; Cai, Y.; Wan, Y. Vortices Degradation and Periodical Variation in Spiral Micromixers with Various Spiral Structures. Int. J. Heat Mass Transf. 2022, 183, 122168. [Google Scholar] [CrossRef]
- Naas, T.T.; Hossain, S.; Aslam, M.; Rahman, A.; Hoque, A.S.M.; Kim, K.-Y.; Riazul Islam, S.M. Kinematic Measurements of Novel Chaotic Micromixers to Enhance Mixing Performances at Low Reynolds Numbers: Comparative Study. Micromachines 2021, 12, 364. [Google Scholar] [CrossRef] [PubMed]
- Hinge, S.P.; Patwardhan, A.W. Thermal-Hydraulic Performance of an Annular Pipe with Square Wire Coil Inserts Using Computational Fluid Dynamics. Ind. Eng. Chem. Res. 2020, 59, 3887–3903. [Google Scholar] [CrossRef]
- Sadegh Cheri, M.; Latifi, H.; Salehi Moghaddam, M.; Shahraki, H. Simulation and Experimental Investigation of Planar Micromixers with Short-Mixing-Length. Chem. Eng. J. 2013, 234, 247–255. [Google Scholar] [CrossRef]
- Fang, Y.; Ye, Y.; Shen, R.; Zhu, P.; Guo, R.; Hu, Y.; Wu, L. Mixing Enhancement by Simple Periodic Geometric Features in Microchannels. Chem. Eng. J. 2012, 187, 306–310. [Google Scholar] [CrossRef]
- Tan, S.J.; Yu, K.H.; Ismail, M.A.; Teoh, Y.H. Enhanced Liquid Mixing in T-Mixer Having Staggered Fins. Asia Pac. J. Chem. Eng. 2020, 15, e2538. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Lai, B.-H. Numerical Study of T-Shaped Micromixers with Vortex-Inducing Obstacles in the Inlet Channels. Micromachines 2020, 11, 1122. [Google Scholar] [CrossRef]
- Mariotti, A.; Galletti, C.; Brunazzi, E.; Salvetti, M.V. Mixing Sensitivity to the Inclination of the Lateral Walls in a T-Mixer. Chem. Eng. Process. Process Intensif. 2022, 170, 108699. [Google Scholar] [CrossRef]
- Haghighinia, A.; Movahedirad, S.; Rezaei, A.K.; Mostoufi, N. On-Chip Mixing of Liquids with High-Performance Embedded Barrier Structure. Int. J. Heat Mass Transf. 2020, 158, 119967. [Google Scholar] [CrossRef]
- Irfan, M.; Shah, I.; Niazi, U.M.; Ali, M.; Ali, S.; Jalalah, M.S.; Asif Khan, M.K.; Almawgani, A.H.M.; Rahman, S. Numerical Analysis of Non-Aligned Inputs M-Type Micromixers with Different Shaped Obstacles for Biomedical Applications. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 236, 870–880. [Google Scholar] [CrossRef]
- Fan, Y.; Hassan, I. The Numerical Simulation of a Passive Interdigital Micromixer with Uneven Lamellar Width. In Proceedings of the 7th International Conference on Nanochannels, Microchannels, and Minichannels, Pohang, Republic of Korea, 22–24 June 2009; pp. 813–819. [Google Scholar]
- Okuducu, M.B.; Aral, M.M. Novel 3-D T-Shaped Passive Micromixer Design with Helicoidal Flows. Processes 2019, 7, 637. [Google Scholar] [CrossRef]
- Silva, A.O.; Monteiro, C.A.A.; Souza, V.P.D.; Ferreira, A.S.; Jaimes, R.P.; Fontoura, D.V.R.; Nunhez, J.R. Fluid Dynamics and Reaction Assessment of Diesel Oil Hydrotreating Reactors via CFD. Fuel Process. Technol. 2017, 166, 17–29. [Google Scholar] [CrossRef]
Mesh | Standard Deviation (SD) | |
---|---|---|
80,916 | 0.01943 | 33.51 |
121,425 | 0.02136 | 33.87 |
192,947 | 0.02448 | 34.25 |
250,494 | 0.02647 | 34.42 |
290,496 | 0.02807 | 34.5 |
379,703 | 0.02815 | 34.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahammedi, A.; Tayeb, N.T.; Rahmani, K.; Al-Kassir, A.; Cuerda-Correa, E.M. Exploring the Bioenergy Potential of Microfluidics: The Case of a T-Micromixer with Helical Elements for Sustainable Energy Solutions. Energies 2023, 16, 7123. https://doi.org/10.3390/en16207123
Mahammedi A, Tayeb NT, Rahmani K, Al-Kassir A, Cuerda-Correa EM. Exploring the Bioenergy Potential of Microfluidics: The Case of a T-Micromixer with Helical Elements for Sustainable Energy Solutions. Energies. 2023; 16(20):7123. https://doi.org/10.3390/en16207123
Chicago/Turabian StyleMahammedi, Abdelkader, Naas Toufik Tayeb, Kouider Rahmani, Awf Al-Kassir, and Eduardo Manuel Cuerda-Correa. 2023. "Exploring the Bioenergy Potential of Microfluidics: The Case of a T-Micromixer with Helical Elements for Sustainable Energy Solutions" Energies 16, no. 20: 7123. https://doi.org/10.3390/en16207123
APA StyleMahammedi, A., Tayeb, N. T., Rahmani, K., Al-Kassir, A., & Cuerda-Correa, E. M. (2023). Exploring the Bioenergy Potential of Microfluidics: The Case of a T-Micromixer with Helical Elements for Sustainable Energy Solutions. Energies, 16(20), 7123. https://doi.org/10.3390/en16207123