The Relationship between Fluid Evolution and Hydrocarbon Accumulation and Metallization in the Nanpanjiang-Youjiang Basin: Evidence from Calcite Petrography and Fluid Inclusions
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Petrographic Characteristics
4.2. Cathode Luminescence
4.3. Fluid Inclusion Characteristics
5. Discussion
5.1. Characteristics of the Basin Fluid Activity
5.2. First Basin Fluid Activity, Related Hydrocarbon Migration, and Gold Mineralization
5.2.1. Timing of Hydrocarbon Migration/Accumulation
5.2.2. The Relationship between Hydrocarbon Migration/Accumulation and Gold Mineralization
5.3. Second Basin Fluid Activity and Related Gold Mineralization
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kesler, S.; Jones, H.; Furman, F.; Sassen, R.; Anderson, W.; Kyle, J. Role of crude oil in the genesis of Mississippi Valley-type deposits: Evidence from the Cincinnati arch. Geology 1994, 22, 609–612. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Y.; Li, B.; Xue, C.; Dong, S.; Fu, S.; Cheng, W.; Liu, L.; Wu, C. The coupling relationship between metallization and hydrocarbon accumulation in sedimentaty basins. Earth Sci. Front. 2010, 17, 83–105. [Google Scholar]
- Gu, X.; Li, B.; Fu, S.; Xu, S.; Dong, S. Physicochemical properities of hydrocarbon-bearing fluids in the Youjiang Basin, South China. Bull. Mineral. Petrol. Geochem. 2007, 26, 214–217. [Google Scholar]
- Li, B.; Li, W.; Gu, X.; Xiao, D.; Huang, Z.; Cheng, W.; Chen, C.; Dong, S. A Study of Methane Inclusions of the Danzhai Mercury Ore Field in Guizhou Province and Its Geological Signific ance. Earth Sci. Front. 2013, 20, 55–63. [Google Scholar]
- Hu, Y.; Ren, T. Metal deposits, oil and gas reservoirs: Two brothers in sedimentary basin. Chin. J. Nat. 2019, 41, 44–48. [Google Scholar]
- Fu, J.; Peng, P.; Lin, Q.; Liu, D.; Jia, R.; Shi, J.; Lu, J. Some Problems on Organic Geochemistry of Stratabound Deposits. Adv. Earth Sci. 1990, 5, 43–49. [Google Scholar]
- Liu, J.; Fu, J.; Lu, J. Experimental Study on Interaction between Organic Matters and Gold. Chin. J. Geol. 1993, 28, 246–253. [Google Scholar]
- Tompkins, L.; Rayner, M.; Groves, D.; Roche, M. Evaporites; in situ sulfur source for rhythmically banded ore in the Cadjebut mississippi valley-type Zn-Pb deposit, Western Australia. Econ. Geol. 1994, 89, 467–492. [Google Scholar] [CrossRef]
- Zhuang, H.; Lu, J.; Fu, J.; Ren, Z.; Zou, D. Crude oil as a carrier of gold migration: Petrology and geochemical evidence. Sci. China (Ser. D) 1998, 28, 552–558. [Google Scholar]
- Wang, G.; Hu, R.; Su, W.; Zhu, L. Fluid flow and mineralization in the Youjiang Basin, Dianqiangui district. Sci. China (Ser. D) 2002, 32, 78–86. [Google Scholar]
- Liu, E.; Zhao, J.; Pan, S.; Yan, D.; Lu, J.; Hao, S.; Gong, Y. A New Technology of Basin Fluid Geochronology: In Situ U-Pb Dating of Calcite. Earth Sci. Front. 2019, 44, 698–712. [Google Scholar]
- Liu, J. Dynamics of Sedimentary Basins and Basin-Fluid Related Ore-Forming. Bull. Mineral. Petrol. Geochem. 2000, 19, 76–84. [Google Scholar]
- Wu, C. Organic Matter in Carlin-Type Gold Deposits and Paleo-Oil Reservoirs in Southwest Guizhou—Source, Maturity and Association; China University of Geosciences: Beijing, China, 2012; p. 91. [Google Scholar]
- Zhao, M.; Zhang, S.; Zhao, L.; Liu, P.; Da, J. Geochemical characteristics and genesis of the bitumen and gas in the Palaeo-reservoirs, Nanpanjiang Basin. Sci. China Ser. D Earth Sci. 2007, 37, 167–177. [Google Scholar]
- Muntean, J. The Carlin gold system: Applications to exploration in Nevada and beyond. Soc. Econ. Geol. 2018, 20, 39–88. [Google Scholar]
- Su, W.; Dong, W.; Zhang, X.; Shen, N.; Hu, R.; Hofstra, A.H.; Cheng, L.; Xia, Y.; Yang, K. Carlin-type gold deposits in the Dian-Qian-Gui “Golden Triangle” of southwest China. Rev. Econ. Geol. 2018, 20, 157–185. [Google Scholar]
- Jin, X.; Li, J.; Hofstra, A.; Marsh, E.; Liu, J.; Yang, W. Relationship between Carlin-type gold deposits and paleopetroleum reservoirs in SW Guizhou, China: Evidence from gas compositions of fluid inclusions and Raman spectroscopic characteristics of bitumen. Acta Petrol. Sin. 2016, 32, 3295–3311. [Google Scholar]
- Liu, Y.; Hu, K.; Han, S.; Sun, Z. The characteristics of organic matter and its relationship with the formation of Carlin-type gold deposits in southwest Guizhou Province. Geochimica. 2016, 45, 281–302. [Google Scholar]
- Zeng, Y.; Liu, W.; Cheng, H.; Zheng, R.; Zhang, J.; Li, X.; Jiang, T. Evolution of Sedimentation and Tectonics of the Youjiang Composite Basin, South China. Acta Geol. Sin. 1995, 8, 358–371. [Google Scholar]
- Qin, J.; Wu, T.; Yan, Y.; Zhu, Z. Hercynian-Indosinian sedimentary-tectonic evolution of the Nanpanjiang Basin. Acta Geol. Sin. 1996, 70, 99–107. [Google Scholar]
- Zhou, M. A study on the pereoleum system of Nanpanjiang Sag. Yunnan Geol. 1999, 18, 248–265. [Google Scholar]
- Gu, X.; Li, B.; Xu, S.; Fu, S.; Dong, S. Characteristics of hydrocarbon-bearing ore-forming fluids in the Youjiang Basin, South China: Implications for hydrocarbon accumulation and ore mineralization. Earth Sci. Front. 2007, 14, 135–148. [Google Scholar]
- Zhao, M.; Ling, Z.; Zhang, S.; Liu, P. Geochemical characteristics of main source rocks in the Nanpanjiang Basin. Pet. Geol. Exp. 2006, 28, 162–167. [Google Scholar]
- Chen, M.; Mao, J.; Li, C.; Zhang, Z.; Dang, Y. Re–Os isochron ages for arsenopyrite from Carlin-like gold deposits in the Yunnan–Guizhou–Guangxi “golden triangle”, southwestern China. Ore Geol. Rev. 2015, 64, 316–327. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Y.; Wu, C.; Peng, Y.; Li, B. The Genetic Relationship between Carlin-type Gold Deposits and Paleo-Petroleum Reservoirs in SW Guizhou, China: Evidence from Organic Petrography. Earth Sci. Front. 2013, 20, 92–106. [Google Scholar]
- Hu, R.; Su, W.; Bi, X.; Tu, G.; Hofstra, A. Geology and geochemistry of Carlin-type gold deposits in China. Miner. Depos. 2002, 37, 378–392. [Google Scholar]
- Su, W.; Zhang, H.; Hu, R.; Ge, X.; Xia, B.; Chen, Y.; Zhu, C. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: Implications for gold depositional processes. Miner. Depos. 2012, 47, 653–662. [Google Scholar] [CrossRef]
- Cline, J. Nevada’s Carlin-type gold deposits: What we’ve learned during the past 10 to 15 years. In Diversity in Carlin-Style Gold Deposits; Muntean, J.L., Ed.; Society of Economic Geologists Special Publications: Littleton, CO, USA, 2018; Volume 20, pp. 7–37. [Google Scholar]
- Zhao, J.; Liang, L.; Long, X.; Li, J.; Xiang, Q.; Zhang, L.; Hao, J. Genesis and evolution of framboidal pyrite and its implications for the ore-forming process of Carlin-style gold deposits, southwestern China. Ore Geol. Rev. 2018, 102, 426–436. [Google Scholar] [CrossRef]
- Cline, J.; Hofstra, A.; Muntean, J.; Tosdal, R.; Hickey, K. Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models. In Economic Geology 100th Anniversary Volume; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2005; pp. 451–484. [Google Scholar]
- Xie, Z.; Xia, Y.; Cline, J.; Koenig, A.; Wei, D.; Tan, Q.; Wang, Z. Are there Carlin-type gold deposits in China? A comparison of the Guizhou, China, deposits with Nevada, USA, deposits. In Diversity in Carlin-Style Gold Deposits; Muntean, J.L., Ed.; Society of Economic Geologists Special Publications: Littleton, CO, USA, 2008; Volume 20, pp. 187–233. [Google Scholar]
- Ge, X.; Selby, D.; Liu, J.; Chen, Y.; Cheng, G.; Shen, C. Genetic relationship between hydrocarbon system evolution and Carlin-type gold mineralization: Insights from ReOs pyrobitumen and pyrite geochronology in the Nanpanjiang Basin, South China. Chem. Geol. 2021, 559, 119953. [Google Scholar] [CrossRef]
- Huang, S. Relationship between Cathodoluminescence and Concentration of Iron and Manganese in Carbonate Minerals. Mineral. Petrol. 1992, 12, 74–79. [Google Scholar]
- Machel, H. Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment. Geol. 2001, 140, 143–175. [Google Scholar] [CrossRef]
- Li, B.; Hu, Z.; Li, Y.; Zhao, Y.; Liang, F. Cathodoluminescence Characteristics and Diagenetic Fluids of Dolomites in Lower Cambrian Longwangmiao Formation of Central Sichuan Basin. Pet. Geol. Eng. 2016, 30, 28–31+148. [Google Scholar]
- Bodnar, R. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta. 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Ge, X.; Shen, C.; Zhou, R.; He, P.; Zhao, J.; Feng, Y. Tracing fluid evolution in sedimentary basins with calcite geochemical, isotopic and U-Pb geochronological data: Implications for petroleum and mineral resource accumulation in the Nanpanjiang Basin, South China. GSA Bull. 2022, 134, 2097–2114. [Google Scholar] [CrossRef]
- Gu, X.; Li, B.; Xu, S.; Fu, S.; Dong, S. Analysis of The Charge History of The Shitouzhai Permian Paleo-Oil Reservoir, Guizhou, SW-China: Fluid Inclusion and Sm-Nd Isotope Constraints. Acta Petrol. Sin. 2007, 23, 2279–2286. [Google Scholar]
- Zhao, M.; Zhang, S.; Zhao, L.; Liu, P. The thermal evolution history and oil and gas generation history of main source rocks in the Nanpanjiang Basin. Petroeum Geol. Exp. 2006, 28, 271–275. [Google Scholar]
- Wang, J.; Guo, R.; Xiao, X.; Liu, Z.; Shen, J. Timing and Phases of Hydrocarbon Migration and Accumulation of the Formation of Oil and Gas Pools in Lunnan Low Uplift of Tarim Basin. Acta Sedimentol. Sin. 2002, 20, 320–325+332. [Google Scholar]
- Wu, K.; Liu, L. Relationship between tectonic movement and destruction of oil and gas reservoirs in the Dananpanjiang Area. Geotecton. Metallog. 2010, 34, 255–261. [Google Scholar]
- Zhu, G.; Wang, T.; Xie, Z.; Xie, B.; Liu, K. Giant gas discovery in the Precambrian deeply buried reservoirs in the Sichuan Basin, China: Implications for gas exploration in old cratonic basins. Precambrian Res. 2015, 262, 45–66. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, S.; Zhao, L.; Liu, P. Geochemistry and Genesis of Bitumen in Paleo-Oil Reservoir in the Nanpanjiang Basin, China. Acta Geol. Sin. 2006, 28, 271–275. [Google Scholar]
- Chen, Z.; Jin, K. Organic Petrology Characteristics of Nature Solid Bitumens. Coal Geol. &Explor. 1995, 23, 18–22. [Google Scholar]
- Jacob, H. Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”). Int. J. Coal Geol. 1989, 11, 65–79. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, N.; Ma, Z.; Ning, C.; Zhen, L.; Zhou, Y.; Fang, G.; Rui, X.; Rao, D. Evalution of equivalent relationship between vitrinite reflectance and solid bitumen reference. J. China Univ. Min. Technol. 2020, 49, 563–575. [Google Scholar]
- Ge, X.; Shen, C.; Selby, D.; Deng, D.; Mei, L. Apatite fission-track and Re-Os geochronology of the Xuefeng uplift, China: Temporal implications for dry gas associated hydrocarbon systems. Geology. 2016, 44, 491–494. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Shen, C.; Selby, D.; Wang, G.; Yang, Z.; Gong, Y.; Xiong, S. Neoproterozoic-Cambrian petroleum system evolution of the Micang Shan uplift, northern Sichuan Basin, China: Insights from pyrobitumen Re-Os geochronology and apatite fission track analysis. AAPG Bull. 2018, 102, 1429–1453. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Fu, S.; Xiao, J. Major scientific problems on low-temperature metallogenesis in South China. Acta Geol. Sin. 2016, 32, 3239–3251. [Google Scholar]
- Jin, X. Geology, Mineralization and Genesis of the Nibao, Shuiyindong and Yata Gold Deposits in SW Guizhou Province, China; China University of Geoscience: Wuhan, China, 2017; p. 208. [Google Scholar]
- Pi, Q.; Hu, R.; Xiong, B.; Li, Q.; Zhong, R. In situ SIMS U-Pb dating of hydrothermal rutile: Reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China. Miner. Depos. 2017, 8, 1179–1190. [Google Scholar] [CrossRef]
- Jin, X.; Zhao, J.; Feng, Y.; Hofstra, A.; Deng, X.; Zhao, X.; Li, J. Calcite U-Pb dating unravels the age and hydrothermal history of the giant Shuiyindong Carlin-type gold deposit In the golden triangle, South China. Econ. Geol. 2021, 116, 1253–1265. [Google Scholar] [CrossRef]
- Large, R.; Bull, S.; Maslennikov, V. A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ. Geol. 2011, 106, 331–358. [Google Scholar] [CrossRef] [Green Version]
- Migdisov, A.; Guo, X.; Xu, H.; Williams-Jones, A.; Sun, C.; Vasyukova, O.; Sugiyama, I.; Fuch, S.; Pearce, K.; Roback, R. Hydrocarbons as ore fluids. Geochem. Perspect. Lett. 2017, 5, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Emsbo, P.; Hofstra, A. Origin and Significance of Postore Dissolution Collapse Breccias Cemented with Calcite and Barite at the Meikle Gold Deposit, Northern Carlin Trend, Nevada. Econ. Geol. 2003, 98, 1243–1252. [Google Scholar] [CrossRef]
- Su, W.; Hu, R.; Xia, B.; Xia, Y.; Liu, Y. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China. Chem. Geol. 2009, 258, 269–274. [Google Scholar] [CrossRef]
- Xie, Z.; Xia, Y.; Cline, J.; Pribil, M.; Koenig, A.; Tan, Q.; Wei, D.; Wang, Z.; Yan, J. Magmatic origin for sediment-hosted Au deposits, Guizhou Province, China: In situ chemistry and sulfur isotope composition of pyrites, Shuiyindong and Jinfeng deposits. Econ. Geol. 2018, 113, 1627–1652. [Google Scholar] [CrossRef]
- Zhang, X. The Geology and Hydrothermal Evolution of Sediment-Hosted Gold Deposits in Southwestern Guzhou Province, PRC. Ph.D. Thesis, Imperial College of London, London, UK, 1997; p. 273. [Google Scholar]
- He, X.; Su, W.; Shen, N.; Xia, X.; Wang, F. In situ multiple sulfur isotopes and chemistry of pyrite support a sedimentary source-rock model for the Linwang Carlin-type gold deposit in the Youjiang basin, southwest China. Ore Geol. Rev. 2021, 139, 104533. [Google Scholar] [CrossRef]
- Hao, F.; Zhang, X.; Wang, C.; Li, P.; Guo, T.; Zou, H.; Zhu, Y.; Liu, J.; Cai, Z. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin, China. Earth-Sci. Rev. 2015, 141, 154–177. [Google Scholar] [CrossRef]
- Cai, C.; Xie, Z.; Worden, R.; Hu, G.; Wang, L.; He, H. Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation East Sichuan Basin, China: Towards prediction of fatal H2S concentrations. Mar. Pet. Geol. 2004, 21, 1265–1279. [Google Scholar] [CrossRef]
- Hao, F.; Zhang, X.; Wang, C.; Li, P.; Guo, T.; Zou, H.; Zhu, Y.; Liu, J.; Cai, Z. Isotopic evidence of TSR origin for natural gas bearing high H2S contents within the Feixianguan Formation of the northeastern Sichuan Basin, southwestern China. Sci. China 2005, 48, 1960–1971. [Google Scholar]
- Claypool, G.; Holser, W.; Kaplan, I.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Y.; Li, B.; Dong, S.; Xue, C.; Fu, S. Hydrocarbon- and ore-bearing basinal fluids: A possible link between gold mineralization and hydrocarbon accumulation in the Youjiang Basin, South China. Miner. Depos. 2012, 47, 663–682. [Google Scholar] [CrossRef]
- Mao, J.; Cheng, Y.; Chen, M.; Franco, P. Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar]
- Zhang, Y.; Dong, S.; Li, J.; Cui, J.; Shi, W.; Su, J.; Li, Y. The New Progress in the Study of Mesozoic Tectonics of South China. Acta Geosci. Sin. 2012, 33, 257–279. [Google Scholar]
- Bai, D.; Li, B.; Zhou, C.; Sun, J.; Wei, F. Gold mineralization events of the Jiangnan Orogen in Hunan and their tectonic settings. Acta Petrol. Mineral. 2021, 5, 1–27. [Google Scholar]
- Chen, F.; Li, H.; Mei, Y. Zircon SHRIMP U-Pb Chronology of Diagenetic Mineralization of the Longtoushan Porphyry Gold Orefield‚Gui County‚Guangxi. Acta Geol. Sin. 2008, 82, 921–926. [Google Scholar]
- Chen, H.; Li, H. Fluid Inclusion Rb-Sr Isochron Dating of Gold Deposits in Yunkai Uplifted Area. Miner. Depos. 1991, 10, 333–341. [Google Scholar]
- Li, X.; Li, W.; Wang, X.; Li, Q.; Liu, Y.; Tang, G.; Gao, Y.; Wu, F. SIMS U-Pb zircon geochronology of porphyry Cu-Au-(Mo) deposits in the Yangtze River Metallogenic Belt, eastern China: Magmatic response to early Cretaceous lithospheric extension. Lithos 2010, 119, 427–438. [Google Scholar] [CrossRef]
- Sun, X.; Chen, W.; Wang, M.; Xue, T. Isochronous ~(40)Ar/~(39)Ar Dating of Laser Microzone in Fine Disseminated Gold Deposit: A Case Study of Changkeng Large Gold Deposit. Chin. Sci. Bull. 2003, 48, 1355–1358. [Google Scholar]
- Mao, J.; Xie, G.; Guo, C.; Yuan, S.; Cheng, Y.; Chen, Y. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geol. J. China Univ. 2008, 14, 510–526. [Google Scholar]
- Xu, J.; Zeng, Z.; Li, X.; Liu, J.; Chen, Z. Geological Characteristics and Mineralization Age of the Tongkengzhang Molybdenum Deposit in Xunwu County‚South Jiangxi Province‚ China. Acta Geol. Sin. 2007, 81, 924–928. [Google Scholar]
- Zhang, J.; Mei, Y.; Wang, D.; Li, H. Isochronology Study on the Xianglushan Scheelite Deposit in North Jiangxi Province and Its Geological Significance. Acta Geol. Sin. 2008, 82, 927–931. [Google Scholar]
Samples | Latitude | Longtitude | Calcite Type |
---|---|---|---|
BQ-1 | 24°50′59″ | 105°39′33″ | Black calcite |
BQ-2 | 24°51′35″ | 105°40′21″ | White calcite |
BQ-3 | 24°50′57″ | 105°39′11″ | White calcite |
BQ-4 | 24°51′35″ | 105°40′21″ | White calcite |
BQ-5 | 24°50′57″ | 105°39′11″ | Gray Calcite |
BQ-6 | 24°50′57″ | 105°39′11″ | Gray Calcite |
LZS-1A | 24°59′59″ | 105°46′29″ | White Calcite |
LZS-1B | 24°59′59″ | 105°46′29″ | Gray Calcite |
LZS-2A | 24°59′59″ | 105°46′29″ | White Calcite |
LZS-2B | 24°59′59″ | 105°46′29″ | Gray Calcite |
LZS-3 | 24°59′59″ | 105°46′29″ | Gray Calcite |
LZS-4A | 24°59′59″ | 105°46′29″ | White Calcite |
LZS-4B | 24°59′59″ | 105°46′29″ | Gray Calcite |
LZS-5 | 24°59′59″ | 105°46′29″ | White Calcite |
LZS-6 | 24°59′59″ | 105°46′29″ | White Calcite |
LZS-7 | 24°59′59″ | 105°46′29″ | White Calcite |
LZS-8 | 24°59′59″ | 105°46′29″ | White Calcite |
YT-1 | 24°55′48″ | 105°39′20″ | White Calcite |
YT-2 | 24°55′48″ | 105°39′20″ | White Calcite |
Type | Sample | Mn (ppm) | Fe (ppm) | Fe/Mn |
---|---|---|---|---|
Black/gray calcite | BQ-1 | 187 | 704 | 3.8 |
BQ-6 | 74.3 | 396 | 5.3 | |
BQ-5 | 75.2 | 410 | 5.5 | |
LZS-1B | 169 | 397 | 2.3 | |
LZS-2B | 158 | 431 | 2.7 | |
LZS-4B | 164 | 432 | 2.6 | |
White calcite | BQ-2 | 341 | 426 | 1.2 |
BQ-3 | 384 | 395 | 1.0 | |
LZS-1A | 438 | 617 | 1.4 | |
LZS-2A | 352 | 477 | 1.4 | |
LZS-4A | 409 | 573 | 1.4 | |
YT-2 | 273 | 619 | 2.3 |
Type | Sample | Homogenization Temperature (°C) | Salinity (wt.% NaCl eq.) | ||
---|---|---|---|---|---|
Range/Number of Measurements | Mean | Range/Number of Measurements | Mean | ||
Black/gray calcite | LZS-2B | 76.9~146.1/30 | 108.7 | 7.45~22.24/5 | 18.37 |
158.1~163.7/2 | 160.9 | / | / | ||
LZS-3 | 65.7~136.8/22 | 102.5 | 9.34~22.27/5 | 15.61 | |
155.4~173.1/5 | 165.4 | 15.19~16.27/2 | 15.73 | ||
LZS-4B | 92.3~141.2/13 | 123.1 | / | / | |
White calcite | BQ-2 | 138.4~189.5/46 | 164.2 | 4.65~8.14/22 | 6.08 |
190.8~218.7/6 | 201.4 | 4.34/1 | 4.34 | ||
231.7/1 | 231.7 | / | / | ||
LZS-5 | 130.3~186.9/21 | 161.8 | 0.88~13.51/12 | 5.35 | |
195.6~227.6/15 | 209.7 | 4.49~12.96/4 | 7.98 | ||
235.1~294.6/14 | 254.5 | 5.71~13.07/4 | 10.06 | ||
YT-1 | 128.2~185.1/12 | 156.7 | 2.90~3.06/2 | 2.98 | |
190.8~221.3/11 | 205.9 | 3.23~4.18/3 | 3.86 | ||
246.6~299.9/8 | 279.1 | 3.55~4.03/2 | 3.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, P.; Ge, X.; Shen, C.; Li, S.; Chen, Y. The Relationship between Fluid Evolution and Hydrocarbon Accumulation and Metallization in the Nanpanjiang-Youjiang Basin: Evidence from Calcite Petrography and Fluid Inclusions. Energies 2023, 16, 328. https://doi.org/10.3390/en16010328
He P, Ge X, Shen C, Li S, Chen Y. The Relationship between Fluid Evolution and Hydrocarbon Accumulation and Metallization in the Nanpanjiang-Youjiang Basin: Evidence from Calcite Petrography and Fluid Inclusions. Energies. 2023; 16(1):328. https://doi.org/10.3390/en16010328
Chicago/Turabian StyleHe, Peng, Xiang Ge, Chuanbo Shen, Shuaiping Li, and Youzhi Chen. 2023. "The Relationship between Fluid Evolution and Hydrocarbon Accumulation and Metallization in the Nanpanjiang-Youjiang Basin: Evidence from Calcite Petrography and Fluid Inclusions" Energies 16, no. 1: 328. https://doi.org/10.3390/en16010328
APA StyleHe, P., Ge, X., Shen, C., Li, S., & Chen, Y. (2023). The Relationship between Fluid Evolution and Hydrocarbon Accumulation and Metallization in the Nanpanjiang-Youjiang Basin: Evidence from Calcite Petrography and Fluid Inclusions. Energies, 16(1), 328. https://doi.org/10.3390/en16010328