A Ring-Shaped Curved Deformable Self-Powered Vibration Sensor Applied in Drilling Conditions
Abstract
1. Introduction
2. Structural Design and Working Principle
2.1. Structural Design
2.2. Working Principle
3. Sensor Performance Tests
3.1. Sensing Performance Tests
3.2. Power-Generation Performance Tests
3.3. Influence of Internal Structure on Sensor Output Performance
4. Conclusions and Discussions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zha, Y.; Pham, S. Monitoring downhole drilling vibrations using surface data through deep learning. In SEG Technical Program Expanded Abstracts 2018; Society of Exploration Geophysicists: Houston, TX, USA, 2018; pp. 2101–2105. [Google Scholar]
- Isheyskiy, V.; Sanchidrián, J.A. Prospects of applying MWD technology for quality management of drilling and blasting operations at mining enterprises. Minerals 2020, 10, 925. [Google Scholar] [CrossRef]
- Lei, W.; Yiren, F.; Chao, Y.; Zhenguan, W.; Shaogui, D.; Weina, Z. Selection criteria and feasibility of the inversion model for azimuthal electromagnetic logging while drilling (LWD). Pet. Explor. Dev. 2018, 45, 974–982. [Google Scholar]
- Okoli, P.; Cruz Vega, J.; Shor, R. Estimating Downhole Vibration via Machine Learning Techniques Using Only Surface Drilling Parameters. In SPE Western Regional Meeting; OnePetro: Richardson, TX, USA, 2019. [Google Scholar]
- Wang, L.; Zhang, C.; Gao, S.; Lin, T.; Li, X. Influence of linear vibration on the errors of three-axis FOGs in the measurement while drilling systems. Optik 2018, 156, 204–223. [Google Scholar] [CrossRef]
- Wang, C.; Liu, G.; Yang, Z.; Li, J.; Zhang, T.; Jiang, H.; Cao, C. Downhole working conditions analysis and drilling complications detection method based on deep learning. J. Nat. Gas Sci. Eng. 2020, 81, 103485. [Google Scholar] [CrossRef]
- Zhang, H.; Di, Q.; Li, N.; Wang, W.; Chen, F. Measurement and simulation of nonlinear drillstring stick–slip and whirling vibrations. Int. J. Non-Linear Mech. 2020, 125, 103528. [Google Scholar] [CrossRef]
- Zhao, G.F.; Di, W.N. Application Perspective of Environmentally Responsive Materials in the Downhole Operation. In Materials Science Forum; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2020; Volume 993, pp. 799–805. [Google Scholar]
- Sasaki, T.; Park, J.; Soga, K.; Momoki, T.; Kawaguchi, K.; Muramatsu, H.; Imasato, Y.; Balagopal, A.; Fontenot, J.; Hall, T. Distributed fibre optic strain sensing of an axially deformed well model in the laboratory. J. Nat. Gas Sci. Eng. 2019, 72, 103028. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerator (TENG)—Sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137. [Google Scholar] [CrossRef]
- Luo, J.; Gao, W.; Wang, Z.L. The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 2021, 33, 2004178. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, E.; Chen, T.; Wang, J.; Hu, Z.; Mi, J.; Pan, X.; Xu, M. A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy 2020, 78, 105279. [Google Scholar] [CrossRef]
- Zou, H.X.; Zhao, L.C.; Wang, Q.; Gao, Q.H.; Yan, G.; Wei, K.X.; Zhang, W.M. A self-regulation strategy for triboelectric nanogenerator and self-powered wind-speed sensor. Nano Energy 2022, 95, 106990. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, Q.; Yan, C.; Liu, Y.; Zeng, X.; Wei, X.; Hu, Y.; Zheng, Z. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy 2020, 70, 104528. [Google Scholar] [CrossRef]
- Venugopal, K.; Panchatcharam, P.; Chandrasekhar, A.; Shanmugasundaram, V. Comprehensive review on triboelectric nanogenerator based wrist pulse measurement: Sensor fabrication and diagnosis of arterial pressure. ACS Sens. 2021, 6, 1681–1694. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, T.; Zhang, Z.; Zhao, L.; Lee, C.; Luo, G.; Mao, Q.; Yang, P.; Lin, Q.; Li, X.; et al. Self-sustained autonomous wireless sensing based on a hybridized TENG and PEG vibration mechanism. Nano Energy 2021, 80, 105555. [Google Scholar] [CrossRef]
- Teng, W.; Ding, X.; Tang, S.; Xu, J.; Shi, B.; Liu, Y. Vibration analysis for fault detection of wind turbine drivetrains—A comprehensive investigation. Sensors 2021, 21, 1686. [Google Scholar] [CrossRef]
- Fang, L.; Zheng, Q.; Hou, W.; Zheng, L.; Li, H. A self-powered vibration sensor based on the coupling of triboelectric nanogenerator and electromagnetic generator. Nano Energy 2022, 97, 107164. [Google Scholar] [CrossRef]
- Kim, Y.; Yun, J.; Kim, D. Robust and flexible triboelectric nanogenerator using non-Newtonian fluid characteristics towards smart traffic and human-motion detecting system. Nano Energy 2022, 98, 107246. [Google Scholar] [CrossRef]
- Zaw, N.Y.W.; Yun, J.; Goh, T.S.; Kim, I.; Kim, Y.; Lee, J.S.; Kim, D. All-polymer waterproof triboelectric nanogenerator towards blue energy harvesting and self-powered human motion detection. Energy 2022, 247, 123422. [Google Scholar]
- Jiang, T.; Pang, H.; An, J.; Lu, P.; Feng, Y.; Liang, X.; Zhong, W.; Wang, Z.L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064. [Google Scholar] [CrossRef]
- Zhu, M.; Yi, Z.; Yang, B.; Lee, C. Making use of nanoenergy from human–Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021, 36, 101016. [Google Scholar] [CrossRef]
- Park, D.; Hong, J.H.; Choi, D.; Kim, D.; Jung, W.H.; Yoon, S.S.; Kim, K.H.; An, S. Biocompatible and mechanically-reinforced tribopositive nanofiber mat for wearable and antifungal human kinetic-energy harvester based on wood-derived natural product. Nano Energy 2022, 96, 107091. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, W.; Wang, Z.L.; Cao, X. Sugar-based triboelectric nanogenerators for effectively harvesting vibration energy and sugar quality assessment. Nano Energy 2021, 88, 106196. [Google Scholar] [CrossRef]
- Ma, P.; Zhu, H.; Lu, H.; Zeng, Y.; Zheng, N.; Wang, Z.L.; Cao, X. Design of biodegradable wheat-straw based triboelectric nanogenerator as self-powered sensor for wind detection. Nano Energy 2021, 86, 106032. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, M.; Shi, Q.; Wen, F.; Liu, L.; Dong, B.; Haroun, A.; Yang, Y.; Vachon, P.; Guo, X.; et al. Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem. EcoMat 2020, 2, e12058. [Google Scholar] [CrossRef]
- Liu, J.; Huang, H.; Zhou, Q.; Wu, C. Self-powered Downhole Drilling Tools Vibration Sensor Based on Triboelectric Nanogenerator. IEEE Sens. J. 2021, 22, 2250–2258. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.; Yang, S. A self-powered rotating speed sensor for downhole motor based on triboelectric nanogenerator. IEEE Sens. J. 2020, 21, 4310–4316. [Google Scholar] [CrossRef]
- Lee, J.W.; Jeong, J.; Yoo, D.; Lee, K.; Lee, S.; Kim, D.S.; Sim, J.Y.; Hwang, W. Pump drill-integrated triboelectric nanogenerator as a practical substitute for batteries of intermittently used devices. Nano Energy 2019, 56, 612–618. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Huang, H.; Wu, C.; Liu, J. A Ring-Shaped Curved Deformable Self-Powered Vibration Sensor Applied in Drilling Conditions. Energies 2022, 15, 8268. https://doi.org/10.3390/en15218268
Wang H, Huang H, Wu C, Liu J. A Ring-Shaped Curved Deformable Self-Powered Vibration Sensor Applied in Drilling Conditions. Energies. 2022; 15(21):8268. https://doi.org/10.3390/en15218268
Chicago/Turabian StyleWang, Hu, He Huang, Chuan Wu, and Jinrun Liu. 2022. "A Ring-Shaped Curved Deformable Self-Powered Vibration Sensor Applied in Drilling Conditions" Energies 15, no. 21: 8268. https://doi.org/10.3390/en15218268
APA StyleWang, H., Huang, H., Wu, C., & Liu, J. (2022). A Ring-Shaped Curved Deformable Self-Powered Vibration Sensor Applied in Drilling Conditions. Energies, 15(21), 8268. https://doi.org/10.3390/en15218268