Reflections on the Evidentiary Basis of Indoor Air Quality Standards
Abstract
:1. Introduction
1.1. On the Importance of Indoor Air Quality Conditions in View of Occupants’ Requirements
1.2. General Reflections on the Role of Standards in Building Design and Operation
1.3. The Need for the Provision of Evidence in Indoor Air Quality Standards
2. Approach
2.1. Selection of Standards
- The standard provides information on: (i) known health effects of indoor air contaminants; (ii) indoor sources of air contaminants; and (iii) recommended exposure limits.
- The national standard provides prescriptive information on building design requirements including those that affect IAQ conditions.
- The standard includes thresholds and limits for pollutants, calculation of concentrations, pollutant sources, and assumptions for emissions.
- The standard offers IAQ-related definitions, ventilation rate and air distribution requirements.
- The standard includes related technical reports and/or references to research papers.
2.2. Standard Assessment Matrix
- (i)
- General (bibliographic) information
- (ii)
- Basic parameters
- (iii)
- Target design and performance variables
- (iv)
- Evidence
- (v)
- Usability
- General effectiveness: “This standard is generally highly effective”.
- Clarity of stated criteria: “This standard states the design/performance criteria in a clear and unambiguous manner”.
- Flexibility: “This standard encourages the flexibility toward identifying creative and effective solutions through its entailed requirements”.
- Up-to-dateness: “This standard reflects the latest state of the domain knowledge and technology”.
- Ease of navigation: “The relevant information is easily found in this standard”.
- Accessibility of the language/material: “The language/material of this standard is easily accessible”.
- Ease of compliance control: “The requirements of this standard can be readily addressed in specific projects”.
- Motivation and inspiration: “This standard is highly motivational and inspires the development of good solutions”.
- Non-objective, non-transparent agenda: “Agenda, other than the objective criteria, is pursued in this standard”.
- Experience in the application of standard: “Studying, using and working with this standard is a positive experience.”
2.3. Selection of Technical Literature
2.4. Evaluation of the Strength of the Provided Evidentiary Material
3. Findings
3.1. Overview of the Analyzed Standards and Technical Literature
3.2. Content-Wise Reproducibility
3.3. Procedural Transparency
3.4. Usability
4. Conclusions and Future Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Keeling, R.F.; Powell, F.L.; Shaffer, G.; Robbins, P.A.; Simonson, T.S. Impacts of Changes in Atmospheric O2 on Human Physiology. Is There a Basis for Concern? Front. Physiol. 2021, 12, 571137. [Google Scholar] [CrossRef] [PubMed]
- Sokhi, R.S.; Singh, V.; Querol, X.; Finardi, S.; Targino, A.C.; Andrade, M.F.; Pavlovic, R.; Garland, R.M.; Massagué, J.; Kong, S.; et al. A Global Observational Analysis to Understand Changes in Air Quality during Exceptionally Low Anthropogenic Emission Conditions. Environ. Int. 2021, 157, 106818. [Google Scholar] [CrossRef]
- Tham, K.W. Indoor Air Quality and Its Effects on Humans—A Review of Challenges and Developments in the Last 30 Years. Energy Build. 2016, 130, 637–650. [Google Scholar] [CrossRef]
- Cincinelli, A.; Martellini, T. Indoor Air Quality and Health. Int. J. Environ. Res. Public Health 2017, 14, 1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altomonte, S.; Allen, J.; Bluyssen, P.M.; Brager, G.; Heschong, L.; Loder, A.; Schiavon, S.; Veitch, J.A.; Wang, L.; Wargocki, P. Ten Questions Concerning Well-Being in the Built Environment. Build. Environ. 2020, 180, 106949. [Google Scholar] [CrossRef]
- Park, J.; Loftness, V.; Aziz, A.; Wang, T.-H. Critical Factors and Thresholds for User Satisfaction on Air Quality in Office Environments. Build. Environ. 2019, 164, 106310. [Google Scholar] [CrossRef]
- Tahmasebi, F.; Wang, Y.; Cooper, E.; Godoy Shimizu, D.; Stamp, S.; Mumovic, D. Window Operation Behaviour and Indoor Air Quality during Lockdown: A Monitoring-Based Simulation-Assisted Study in London. Build. Serv. Eng. Res. Technol. 2022, 43, 5–21. [Google Scholar] [CrossRef]
- ISO 17772-1; Energy Performance of Buildings–Indoor Environmental Quality–Part 1: Indoor Environmental Input Parameters for the Design and Assessment of Energy Performance in Buildings. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- EN 16798-1:2019; Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics–Module M1–6. CEN: Brussels, Belgium, 2019.
- EN 15251; Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. CEN: Brussels, Belgium, 2007.
- ANSI/ASHRAE Standard 62.1-2019; Ventilation for Acceptable Indoor Air Quality. ANSI/ASHRAE Standard: Atlanta, GA, USA, 2019.
- Abdul-Wahab, S.A.; Chin Fah En, S.; Elkamel, A.; Ahmadi, L.; Yetilmezsoy, K. A Review of Standards and Guidelines Set by International Bodies for the Parameters of Indoor Air Quality. Atmos. Pollut. Res. 2015, 6, 751–767. [Google Scholar] [CrossRef]
- IEQ Guidelines. Available online: https://ieqguidelines.org/index.html (accessed on 22 September 2022).
- Khovalyg, D.; Kazanci, O.B.; Halvorsen, H.; Gundlach, I.; Bahnfleth, W.P.; Toftum, J.; Olesen, B.W. Critical Review of Standards for Indoor Thermal Environment and Air Quality. Energy Build. 2020, 213, 109819. [Google Scholar] [CrossRef]
- Olesen, B.W. International Standards for the Indoor Environment. Indoor Air 2004, 14, 18–26. [Google Scholar] [CrossRef]
- Morawska, L.; Allen, J.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.J.; Floto, A.; Franchimon, F.; et al. A Paradigm Shift to Combat Indoor Respiratory Infection. Science 2021, 372, 689–691. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.W.; Bahnfleth, W.P.; Bluyssen, P.M.; Buonanno, G.; Jimenez, J.L.; Kurnitski, J.; Li, Y.; Miller, S.; Sekhar, C.; Morawska, L.; et al. Dismantling Myths on the Airborne Transmission of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). J. Hosp. Infect. 2021, 110, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Milton, D.K. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2020, 71, 2311–2313. [Google Scholar] [CrossRef] [PubMed]
- ISIAQ (International Society of Indoor Air Quality and Climate). Available online: https://isiaq.org/news_manager.php?page=25168 (accessed on 22 September 2022).
- REHVA (Federation of European Heating, Ventilation and Air Conditioning Associations). Available online: https://www.rehva.eu/activities/covid-19-guidance (accessed on 22 September 2022).
- WHO. Available online: https://covid19.who.int/measures (accessed on 29 April 2022).
- Schweiker, M.; Berger, C.; Day, J.; Mahdavi, A. Fundamentals of IEQ and Occupant Needs. In Occupant-Centric Simulation-Aided Building Design: Theory, Application, and Case Studies; Routledge–Taylor & Francis: London, UK, 2023; (to be published). [Google Scholar]
- Berger, C.; Bochukova, V.; Mahdavi, A. Research, Standards, Practice. In Proceedings of the CLIMA 2022 The 14th REHVA HVAC World Congress, Rotterdam, The Netherlands, 22–25 May 2022. [Google Scholar] [CrossRef]
- Persily, A. Challenges in Developing Ventilation and Indoor Air Quality Standards: The Story of ASHRAE Standard 62. Build. Environ. 2015, 91, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Janssen, J.E. The History of Ventilation and Temperature Control: The first century of air conditioning. ASHRAE J. 1999, 6, 48. [Google Scholar]
- Sekhar, C.; Akimoto, M.; Fan, X.; Bivolarova, M.; Liao, C.; Lan, L.; Wargocki, P. Bedroom Ventilation: Review of Existing Evidence and Current Standards. Build. Environ. 2020, 184, 107229. [Google Scholar] [CrossRef]
- Fan, D.-Y.; Wang, Q.-Q.; Zhao, L.; Liu, M.-L. Status, Standards, Technologies and Existing Problems of Residential Ventilation in China. Indoor Built Environ. 2020, 29, 485–495. [Google Scholar] [CrossRef]
- ISO 17772-2; Energy Performance of Buildings–Overall Energy Performance Assessment Procedures–Part 2: Guideline for Using Indoor Environmental Input Parameters for the Design and Assessment of Energy Performance of Buildings. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.
- DS/CEN/TR 16798-2:2019; Energy Performance of Buildings–Ventilation for Buildings–Part 2: Interpretation of the Requirements in EN 16798-1–Indoor Environmental Input Parameters for Design and Assessment of Energy Performanceof Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics (Module M1–6). CEN: Brussels, Belgium, 2019.
- BS 5925; Ventilation Principles and Designing for Natural Ventilation. British Standards Institution: London, UK, 1991.
- ASR A3.6; Technische Regeln für Arbeitsstätten (Technical Rules for Workplaces)–Lüftung (Ventilation). BAUA: Dortmund, Germany, 2012; p. 474, Last amended GMBI 2018. Available online: https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/ASR/pdf/ASR-A3–6.html (accessed on 22 September 2022).
- Residential Indoor Air Quality Guidelines. 2021. Available online: https://www.canada.ca/en/health-canada/services/publications/healthy-living/residential-indoor-air-quality-guidelines-carbon-dioxide.html#sec3 (accessed on 22 September 2022).
- National Building Code of Canada NR24–28/2015E; National Research Council of Canada: Ottawa, ON, Canada, 2015.
- CEN. Business Operations Support System website of CEN. Available online: https://boss.cen.eu/reference-material/guidancedoc/pages/del/ (accessed on 15 June 2022).
- International Organisation for Standardisation (ISO). Available online: https://www.iso.org/standards.html (accessed on 7 March 2022).
- EN Standards–European Standards. Available online: https://www.en-standard.eu/ (accessed on 22 September 2022).
- CIBSE. Guide A: Environmental Design; CIBSE: London, UK, 2015. [Google Scholar]
- EN 15665:2009; Ventilation for Buildings–Determining Performance Criteria for Residential Ventilation Systems. ASHRAE: Atlanta, GA, USA, 2009.
- ANSI/ASHRAE Standard 62.2–2019; Ventilation and Acceptable Indoor Air Quality in Residential Buildings. ASHRAE: Atlanta, GA, USA, 2019.
- ANSI/ASHRAE/USGBC/IES Standard 189; Standard for the Design of High-Performance Green Buildings. ASHRAE: Atlanta, GA, USA, 2009.
- ASHRAE Guideline 10; Criteria for Achieving Acceptable Indoor Environments. ASHRAE: Atlanta, GA, USA, 2016.
- Pettenkofer, M. Über Den Luftwechsel in Wohngebäuden; Literarisch-artistische Anstalt der J. G. Cotta´schen Buchhandlung: München, Germany, 1858. [Google Scholar]
- Berg-Munch, B.; Fanger, P.O. The Influence of Air Temperature on the Perception of Body Odor. Environ. Int. 1982, 8, 333–335. [Google Scholar] [CrossRef]
- Bluyssen, P.M.; Oliveira Fernandes, E.; Groes, L.; Clausen, G.; Fanger, P.O.; Valbjorn, O.; Bernhard, C.A.; Roulet, C.A. European Indoor Air Quality Audit Project in 56 Office Buildings. Indoor Air 1996, 6, 221–238. [Google Scholar] [CrossRef]
- Fanger, P.O.; Berg-Munch, B. Ventilation and Body Odor. In Proceedings of the an Engineering Foundation Conference on Management of Atmospheres in Tightly Enclosed Spaces, Santa Barbara, CA, USA, 17–21 October 1983; ASHRAE: Atlanta, GA, USA, 1983; pp. 45–50. [Google Scholar]
- Fanger, P.O. Introduction of the Olf and the Decipol Units to Quantify Air Pollution Perceived by Humans Indoors and Outdoors. Energy Build. 1988, 12, 1–6. [Google Scholar] [CrossRef]
- Berg-Munch, B.; Clausen, G.; Fanger, P.O. Ventilation Requirements for the Control of Body Odor in Spaces Occupied by Women. Environ. Int. 1986, 12, 195–199. [Google Scholar] [CrossRef]
- Gunnarsen, L.; Ole Fanger, P. Adaptation to Indoor Air Pollution. Environ. Int. 1992, 18, 43–54. [Google Scholar] [CrossRef]
- Gunnarsen, L. The Influence of Area-Specific Ventilation Rate on the Emissions from Construction Products. Indoor Air 1997, 7, 116–120. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Addendum a to ANSI/ASHRAE Standard 62.1-2019; Ventilation for Acceptable Indoor Air Quality. ASHRAE: Atlanta, GA, USA, 2021. Available online: https://www.ashrae.org/technical-resources/standards-and-guidelines/standards-addenda (accessed on 22 September 2022).
- Persily, A.; de Jonge, L. Carbon Dioxide Generation Rates for Building Occupants. Indoor Air 2017, 27, 868–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- -. Gesundheitliche Bewertung von Kohlendioxid in der Innenraumluft. Bundesgesundheitsbl–Gesundheitsforsch -Gesundheitsschutz. 2008, 51, 1358–1369. [Google Scholar] [CrossRef] [PubMed]
- NASA/NOAA. Global Mean CO2 Mixing Ratios (ppm): Observations. Available online: https://data.giss.nasa.gov/modelforce/ghgases/Fig1A.ext.txt (accessed on 22 September 2022).
- Etheridge, D.M.; Steele, L.P.; Langenfelds, R.L.; Francey, R.J.; Barnola, J.-M.; Morgan, V.I. Natural and Anthroupogenic Changes in Atmospheric CO2 over the Last 1000 Years from Air in Antarctic Ice and Firn. J. Geophys. Res. 1996, 101, 4115–4128. [Google Scholar] [CrossRef] [Green Version]
- Tans, P.P.; Conway, T.J. Global Means Constructed Using About 70 CMDL CCGG Sampling Network Station Data. Available online: https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_mlo.txt (accessed on 20 September 2022).
- Ausschuss für Arbeitsstätten. Geschäftsordnung Für Den Ausschuss Für Arbeitsstätten (ASTA) ASTA-2019–007. 2019. Available online: https://de.wikipedia.org/wiki/Ausschuss_f%C3%BCr_Arbeitsst%C3%A4tten (accessed on 22 September 2022).
- Ausschuss für Arbeitsstätten. Stellungnahmeverfahren Zu Technischen Regeln Für Arbeitsstätten–ASR. Personal Communication, BAUA: Dortmund, Germany, 2022. [Google Scholar]
- ASHRAE. General Description of Public Reviewing Process. Available online: https://www.ashrae.org/technical-resources/standards-and-guidelines/public-review-drafts (accessed on 22 September 2022).
- Sammito, S.; Thielmann, B.; Klussmann, A.; Deußen, A.; Böckelmann, I. S2k-Leitlinie: Nutzung Der Herzschlagfrequenz Und Der Herzfrequenzvariabilität in Der Arbeitsmedizin Und Der Arbeitswissenschaft; Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin e.V. (DGAUM). 2021. Available online: https://www.awmf.org/leitlinien/detail/ll/002-042.html (accessed on 22 September 2022).
- Leung, D.Y.C. Outdoor-Indoor Air Pollution in Urban Environment: Challenges and Opportunity. Front. Environ. Sci. 2015, 2, 69. [Google Scholar] [CrossRef] [Green Version]
- Sundell, J. On the History of Indoor Air Quality and Health. Indoor Air 2004, 14, 51–58. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. Indoor Air Pollution: A Comprehensive Review of Public Health Challenges and Prevention Policies. In Current Trends and Advances in Computer-Aided Intelligent Environmental Data Engineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 105–126. [Google Scholar]
- Gasperi, J.; Wright, S.L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.J.; Tassin, B. Microplastics in Air: Are We Breathing It In? Curr. Opin. Environ. Sci. Health 2018, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kacprzak, S.; Tijing, L.D. Microplastics in Indoor Environment: Sources, Mitigation and Fate. J. Environ. Chem. Eng. 2022, 10, 107359. [Google Scholar] [CrossRef]
General (Bibliographic) Information | (a) Full title; (b) abbreviation; (c) publication year |
Basic Parameters | (a) Geographic coverage; (b) target IEQ domain(s); (c) combined effect of multiple domains; (d) user controls addressed; (e) relevant building type(s); (f) scope (e.g., subject, purpose of the standard) |
Target Design and Performance Variables | (a) Design variables; (b) design variable values; (c) design classes/categories; (d) performance variables; (e) performance variable values/ranges/functions; (f) performance classes/categories |
Evidence | (a) Direct evidence for the requirements; (b) general reference to other standards; (c) specific reference to other standards; (d) general reference to technical literature; (e) specific reference to technical literature; (f) other potential evidence |
Usability | (a) Effectiveness; (b) efficiency; (c) satisfaction |
General Information | (a) Information on the selecting and reviewing experts; (b) information on the selected study (authors; full title; keywords; publication year) |
Arguments for Selection | (a) Standard(s) which reference(s) this paper; (b) type of reference (reference included in bibliography or given as direct evidence for a requirement); (c) design variables for which the reference is relevant; (d) performance variables for which the reference is relevant |
Basic Information about the Study’s Design | (a) Method of the study; (b) physical context (e.g., lab, living-lab, field study); (c) climatic context; (d) date/duration of the study |
Participant Information | (a) Number and gender of participants; (b) age of participants; (c) cultural/ethnic background |
Collected Data Information | (a) IEQ data; (b) quality/resolution of IEQ data; (c) occupant-related data; (d) quality/resolution of occupant-related data; (e) outdoor conditions data; (f) quality/resolution of outdoor conditions data |
Data Analysis Method | (a) Data processing method (e.g., statistical method, regression analysis); (b) clarity of the results and interpretation |
Data Validation | Were the results validated with reference to other or similar studies in the relevant domain? |
Evaluation of the Evidence | (a) Are the results consistent with the related requirements in the standard? (b) Argument(s) or reasoning for the judgement stated in the previous column |
Standard | Year | Geographic Coverage | Scope | Targeted Variables | References ST/TR/RP | |||||
---|---|---|---|---|---|---|---|---|---|---|
Residential | Non-Residential | Building/System Design | Energy Performance Calculations | Exposure Limits | Design | Performance | ||||
ISO 17772-1 [8] | 2017 | International | x | x | x 3 | x 13 | x 9 | Ventilation rate per person, ventilation rate per floor area | Carbon dioxide levels (several classes) | 37/7/0 14 |
EN 16798-1 [9] | 2019 | Europe | x | x | x 3 | x 13 | x 9 | Ventilation rate per person, ventilation rate per floor area | Carbon dioxide levels (several classes) | 38/6/0 14 |
ISO 17772-2 [28] | 2018 | International | x | x | x 4 | x 4 | x 9 | Ventilation rate per person, ventilation rate per floor area | Carbon dioxide levels (several classes) | 7/2/23 14 |
CEN/TR 16798-2 [29] | 2019 | Europe | x | x | x 8 | x 8 | x 9 | Ventilation rate per person, ventilation rate per floor area | Carbon dioxide levels (several classes) | 35/3/23 14 |
EN 15665 [38] | 2009 | Europe | x | - | x | - | x | Ventilation rate, pollutant emissions | Pollutant concentration | 2/0/0 |
ANSI/ASHRAE Standard 62.1 [11] | 2019 | US/international | x | x | x | - | - | Ventilation rate | Minimum ventilation rate | 24/0/60 |
ANSI/ASHRAE Standard 62.2 [39] | 2019 | US/international | x | - | x 5 | - | - | Ventilation rate (bedroom, kitchen, bathrooms) | Ventilation rate | 23/0/0 |
ANSI/ASHRAE/USGBC/IES Standard 189.1 [40] | 2009 | US/international | x 1 | x | x | x | - | Ventilation rate, prescriptive: materials (emissions from materials) | Sum of volatile organic compounds | 131/0/0 |
ASHRAE Guideline 10 [41] | 2016 | US/international | all indoor spaces | all indoor spaces | n/a | n/a | n/a | n/a | n/a | 13/0/58 14 |
CIBSE Guide A [37] | 2015 | UK | x | x | x | - | - | Ventilation rates 12 | Carbon dioxide levels (several classes) | 101/3/114 14 |
Residential Indoor Air Quality Guidelines [32] | 2021 | Canada | x | - | - | - | x 6 | n/a | Maximum pollutants’ concentrations 10 | 3/10/142 |
NR24-28/2015E [33] | 2015 | Canada | x | x | x 3 | - | - | Ventilation rate, maximum outdoor air flow 11 | n/a | 6/2/0 15 |
ASR A3.6 [31] | 2012 | Germany | - | x 2 | x 7 | - | x 9 | Minimum opening area and maximum room depth, adjustability to weather conditions | Carbon dioxide levels | 0/5/0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berger, C.; Mahdavi, A.; Azar, E.; Bandurski, K.; Bourikas, L.; Harputlugil, T.; Hellwig, R.T.; Rupp, R.F.; Schweiker, M. Reflections on the Evidentiary Basis of Indoor Air Quality Standards. Energies 2022, 15, 7727. https://doi.org/10.3390/en15207727
Berger C, Mahdavi A, Azar E, Bandurski K, Bourikas L, Harputlugil T, Hellwig RT, Rupp RF, Schweiker M. Reflections on the Evidentiary Basis of Indoor Air Quality Standards. Energies. 2022; 15(20):7727. https://doi.org/10.3390/en15207727
Chicago/Turabian StyleBerger, Christiane, Ardeshir Mahdavi, Elie Azar, Karol Bandurski, Leonidas Bourikas, Timuçin Harputlugil, Runa T. Hellwig, Ricardo Forgiarini Rupp, and Marcel Schweiker. 2022. "Reflections on the Evidentiary Basis of Indoor Air Quality Standards" Energies 15, no. 20: 7727. https://doi.org/10.3390/en15207727
APA StyleBerger, C., Mahdavi, A., Azar, E., Bandurski, K., Bourikas, L., Harputlugil, T., Hellwig, R. T., Rupp, R. F., & Schweiker, M. (2022). Reflections on the Evidentiary Basis of Indoor Air Quality Standards. Energies, 15(20), 7727. https://doi.org/10.3390/en15207727