Evaluating Regional Carbon Inequality and Its Dependence with Carbon Efficiency: Implications for Carbon Neutrality
Abstract
:1. Introduction
2. Literature Review
2.1. Literature regarding Carbon Inequality
2.2. Literature Regarding Carbon Efficiency
2.3. Literature Regarding Dependence under Carbon Neutrality Background
3. Data and Variables
3.1. Sample and Data Sources
3.2. Variables
4. Statistical Approach
4.1. Regional Carbon Emission Fitting and the Regional Carbon Inequality (RCI) Index
4.1.1. Fitting the Carbon Emission Data: The Exponential Generalized Beta of the Second Kind (EGB2) Distribution
4.1.2. The Construction of Regional Carbon Inequality (RCI) Index
4.2. Measures of Dependence
4.2.1. Overall Dependence Estimation: Copula Functions
4.2.2. Tail Dependence Measure: Tail Quotient Correlation Coefficient
5. Empirical Results
5.1. The Regional Carbon Inequality (RCI) Estimation Results
5.1.1. The Intra-Provincial RCI Estimation Results
5.1.2. The National and Sub-National Levels RCI Estimation Results
5.2. Ungrouped Dependence Estimation Results
5.2.1. Overall Dependence Estimation Results: Copula Functions
5.2.2. Tail Dependence Estimation: The TQCC Results
5.3. Grouped Dependence Estimations
5.3.1. Grouped Dependence by “E-E Cost”
5.3.2. Grouped Dependence by Industrial Structure
6. Conclusions, Implications, and Future Research Directions
6.1. Main Findings
6.2. Policy Implications
6.3. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Province | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|---|
Beijing | 1.140 | 1.147 | 1.159 | 1.217 | 1.19 | 1.201 | 1.199 | 1.199 | 1.216 |
Tianjin | 0.658 | 0.665 | 0.662 | 0.658 | 0.672 | 0.736 | 0.71 | 0.741 | 0.808 |
Hebei | 0.386 | 0.376 | 0.381 | 0.375 | 0.377 | 0.365 | 0.362 | 0.361 | 0.364 |
Shanxi | 0.347 | 0.325 | 0.327 | 0.327 | 0.326 | 0.319 | 0.298 | 0.299 | 0.297 |
Inner Mongolia | 0.353 | 0.366 | 0.373 | 0.368 | 0.362 | 0.375 | 0.366 | 0.371 | 0.376 |
Liaoning | 0.42 | 0.42 | 0.427 | 0.425 | 0.428 | 0.428 | 0.418 | 0.421 | 0.404 |
Jilin | 0.371 | 0.376 | 0.38 | 0.381 | 0.4 | 0.398 | 0.394 | 0.4 | 0.408 |
Heilongjiang | 0.466 | 0.456 | 0.456 | 0.45 | 0.449 | 0.443 | 0.434 | 0.421 | 0.421 |
Shanghai | 1.066 | 1.059 | 1.062 | 1.073 | 1.085 | 1.026 | 1.035 | 1.042 | 1.052 |
Jiangsu | 0.617 | 0.619 | 0.618 | 0.602 | 0.616 | 0.603 | 0.613 | 0.619 | 0.627 |
Zhejiang | 0.638 | 0.625 | 0.628 | 0.605 | 0.621 | 0.603 | 0.608 | 0.607 | 0.611 |
Anhui | 0.419 | 0.416 | 0.427 | 0.422 | 0.427 | 0.409 | 0.407 | 0.404 | 0.407 |
Fujian | 0.594 | 0.575 | 0.581 | 0.545 | 0.561 | 0.549 | 0.539 | 0.544 | 0.559 |
Jiangxi | 0.492 | 0.49 | 0.488 | 0.475 | 0.488 | 0.468 | 0.47 | 0.467 | 0.473 |
Shandong | 0.474 | 0.473 | 0.472 | 0.489 | 0.494 | 0.485 | 0.484 | 0.479 | 0.48 |
Henan | 0.384 | 0.378 | 0.394 | 0.382 | 0.39 | 0.373 | 0.367 | 0.365 | 0.37 |
Hubei | 0.418 | 0.42 | 0.422 | 0.416 | 0.422 | 0.438 | 0.438 | 0.44 | 0.441 |
Hunan | 0.448 | 0.447 | 0.446 | 0.435 | 0.445 | 0.453 | 0.453 | 0.453 | 0.455 |
Guangdong | 1.101 | 1.091 | 1.088 | 1.081 | 1.07 | 1.056 | 1.04 | 1.033 | 1.027 |
Guangxi | 0.455 | 0.442 | 0.421 | 0.396 | 0.397 | 0.381 | 0.378 | 0.379 | 0.373 |
Hainan | 0.557 | 0.534 | 0.537 | 0.483 | 0.463 | 0.43 | 0.41 | 0.395 | 0.396 |
Chongqing | 0.445 | 0.451 | 0.464 | 0.467 | 0.489 | 0.493 | 0.494 | 0.502 | 0.503 |
Sichuan | 0.419 | 0.415 | 0.423 | 0.435 | 0.448 | 0.445 | 0.445 | 0.454 | 0.464 |
Guizhou | 0.286 | 0.292 | 0.295 | 0.309 | 0.311 | 0.3 | 0.293 | 0.287 | 0.284 |
Yunnan | 0.329 | 0.326 | 0.321 | 0.314 | 0.314 | 0.313 | 0.304 | 0.304 | 1.015 |
Shaanxi | 0.389 | 0.387 | 0.391 | 0.389 | 0.392 | 0.381 | 0.377 | 0.395 | 0.38 |
Gansu | 0.335 | 0.337 | 0.333 | 0.328 | 0.335 | 0.327 | 0.321 | 0.318 | 0.319 |
Qinghai | 0.283 | 0.277 | 0.283 | 0.278 | 0.272 | 0.257 | 0.247 | 0.238 | 0.233 |
Ningxia | 0.255 | 0.245 | 0.244 | 0.237 | 0.233 | 0.235 | 0.226 | 0.214 | 0.209 |
Xinjiang | 0.357 | 0.341 | 0.335 | 0.324 | 0.312 | 0.295 | 0.283 | 0.273 | 0.266 |
Province | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
---|---|---|---|---|---|---|---|
Shanghai | 421.651 | 362.648 | 447.841 | 484.132 | 384.913 | 545.903 | 852.825 |
Tianjin | 47.554 | 45.513 | 45.372 | 57.364 | 52.582 | 61.923 | 102.047 |
Inner Mongolia | 2.887 | 0.921 | 1.398 | 1.640 | 2.163 | 2.160 | 3.720 |
Jiangsu | 1.469 | 0.974 | 1.155 | 1.328 | 1.344 | 2.673 | 6.062 |
Liaoning | 4.841 | 4.338 | 4.956 | 6.280 | 5.823 | 7.326 | 11.122 |
Zhejiang | 1.230 | 1.059 | 1.292 | 1.685 | 1.928 | 4.271 | 7.376 |
Guangdong | 3.469 | 3.051 | 4.360 | 5.425 | 5.106 | 6.680 | 11.181 |
Beijing | 17.557 | 18.037 | 18.494 | 22.769 | 21.222 | 28.605 | 41.311 |
Xinjiang | 0.361 | 0.242 | 0.370 | 0.358 | 0.327 | 0.442 | 0.701 |
Guizhou | 2.409 | 2.067 | 2.256 | 2.695 | 2.348 | 3.008 | 4.653 |
Chongqing | 9.407 | 7.636 | 6.236 | 6.347 | 4.582 | 3.880 | 5.524 |
Hebei | 1.390 | 1.070 | 1.367 | 1.588 | 1.596 | 1.994 | 3.099 |
Hubei | 3.472 | 3.191 | 3.682 | 4.369 | 3.951 | 5.208 | 6.834 |
Ningxia | 0.071 | 0.057 | 0.060 | 0.065 | −0.126 | −0.201 | −0.524 |
Shaanxi | 0.546 | 0.443 | 0.510 | 0.626 | 0.582 | 0.727 | 1.291 |
Fujian | 0.738 | 0.626 | 0.790 | 0.957 | 0.882 | 1.139 | 1.767 |
Shanxi | 3.163 | 2.766 | 3.066 | 3.613 | 3.217 | 4.044 | 5.912 |
Hunan | 0.424 | 0.351 | 0.425 | 0.491 | 0.434 | 0.539 | 0.863 |
Jilin | 1.477 | 1.324 | 1.439 | 1.733 | 1.460 | 1.741 | 2.592 |
Shandong | 1.551 | 0.073 | 0.402 | 0.191 | 0.600 | 0.830 | 1.111 |
Guangxi | 0.306 | 0.212 | 0.231 | 0.307 | 0.275 | 0.359 | 0.565 |
Gansu | 0.456 | 0.341 | 0.487 | 0.526 | 0.531 | 0.625 | 0.914 |
Anhui | 0.263 | 0.231 | 0.259 | 0.303 | 0.266 | 0.354 | 0.539 |
Henan | 0.437 | 0.347 | 0.393 | 0.454 | 0.411 | 0.534 | 0.840 |
Sichuan | 0.400 | 0.314 | 0.416 | 0.531 | 0.503 | 0.642 | 1.146 |
Yunnan | 0.277 | 0.261 | 0.271 | 0.333 | 0.330 | 0.422 | 0.653 |
Heilongjiang | 0.500 | 0.503 | 0.586 | 0.812 | 0.723 | 1.022 | 1.587 |
Jiangxi | 0.233 | 0.194 | 0.205 | 0.236 | 0.207 | 0.268 | 0.430 |
Qinghai | 0.170 | 0.146 | 0.201 | 0.175 | 0.144 | 0.169 | 0.210 |
Hainan | 0.271 | 0.261 | 0.112 | 0.089 | 0.082 | 0.087 | 0.145 |
Province | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
---|---|---|---|---|---|---|---|
Shanghai | 1100.206 | 1488.187 | 2176.122 | 2594.256 | 2363.514 | 3270.809 | 3530.806 |
Tianjin | 130.645 | 202.325 | 283.584 | 339.456 | 406.155 | 543.472 | 702.186 |
Inner Mongolia | 6.468 | 17.807 | 27.422 | 40.083 | 59.582 | 68.191 | 103.625 |
Jiangsu | 9.238 | 17.032 | 28.931 | 40.568 | 54.359 | 64.880 | 86.337 |
Liaoning | 14.453 | 21.701 | 30.227 | 36.761 | 43.588 | 55.833 | 71.644 |
Zhejiang | 9.983 | 15.897 | 28.418 | 38.136 | 45.713 | 57.360 | 72.990 |
Guangdong | 14.924 | 21.285 | 29.789 | 36.379 | 40.905 | 50.091 | 60.615 |
Beijing | 57.138 | 77.174 | 114.239 | 122.591 | 140.359 | 179.411 | 212.924 |
Xinjiang | 1.007 | 2.083 | 3.199 | 4.455 | 6.457 | 8.193 | 13.210 |
Guizhou | 6.348 | 8.610 | 12.297 | 12.279 | 15.535 | 20.805 | 25.608 |
Chongqing | 7.425 | 11.580 | 18.839 | 21.637 | 23.876 | 31.596 | 36.291 |
Hebei | 4.278 | 7.267 | 10.074 | 12.727 | 16.119 | 19.249 | 25.594 |
Hubei | 9.240 | 13.883 | 16.497 | 16.896 | 18.935 | 24.431 | 29.593 |
Ningxia | −0.714 | 0.163 | 0.245 | 0.297 | 0.612 | 2.073 | 4.717 |
Shaanxi | 1.754 | 3.077 | 4.798 | 5.955 | 7.462 | 10.525 | 14.484 |
Fujian | 2.354 | 3.792 | 5.521 | 6.646 | 8.196 | 10.671 | 14.545 |
Shanxi | 7.593 | 10.980 | 14.492 | 15.952 | 18.108 | 22.603 | 27.305 |
Hunan | 1.169 | 1.867 | 2.672 | 3.203 | 4.065 | 5.289 | 7.435 |
Jilin | 3.269 | 4.751 | 6.362 | 6.630 | 7.521 | 10.287 | 13.518 |
Shandong | 2.313 | 6.035 | 8.609 | 10.865 | 13.399 | 15.013 | 17.638 |
Guangxi | 0.810 | 1.253 | 1.760 | 2.254 | 2.611 | 3.513 | 5.229 |
Gansu | 1.058 | 1.833 | 2.529 | 2.943 | 3.706 | 4.863 | 6.182 |
Anhui | 0.683 | 1.035 | 1.584 | 2.252 | 2.898 | 3.772 | 5.505 |
Henan | 1.162 | 1.980 | 3.219 | 3.905 | 4.834 | 5.943 | 7.772 |
Sichuan | 1.367 | 2.399 | 3.053 | 3.696 | 4.442 | 5.779 | 7.681 |
Yunnan | 0.895 | 1.365 | 1.934 | 2.628 | 3.059 | 3.748 | 5.340 |
Heilongjiang | 2.003 | 2.794 | 4.157 | 4.512 | 5.662 | 7.131 | 8.187 |
Jiangxi | 0.581 | 0.877 | 1.208 | 1.362 | 1.637 | 2.142 | 2.800 |
Qinghai | 0.219 | 0.292 | 0.469 | 0.371 | 0.371 | 0.516 | 0.528 |
Hainan | 0.421 | 0.509 | 0.630 | 0.750 | 0.962 | 1.019 | 1.185 |
Province | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
---|---|---|---|---|---|---|
Shanghai | 379.413 | 413.228 | 473.436 | 495.605 | 567.296 | 819.374 |
Tianjin | 47.862 | 43.713 | 53.022 | 59.991 | 75.877 | 102.549 |
Inner Mongolia | 1.655 | 1.295 | 1.723 | 1.947 | 2.669 | 3.997 |
Jiangsu | 1.218 | 1.192 | 1.283 | 1.795 | 3.463 | 6.221 |
Liaoning | 4.711 | 5.182 | 5.682 | 6.472 | 8.054 | 10.924 |
Guangdong | 3.631 | 4.272 | 4.960 | 5.487 | 7.556 | 10.638 |
Zhejiang | 1.218 | 1.433 | 1.653 | 2.604 | 4.983 | 7.913 |
Beijing | 18.072 | 22.148 | 22.095 | 25.072 | 34.124 | 44.776 |
Xinjiang | 0.305 | 0.327 | 0.343 | 0.447 | 0.509 | 0.706 |
Guizhou | 2.250 | 2.352 | 2.382 | 2.548 | 3.159 | 4.284 |
Chongqing | 8.330 | 6.763 | 5.620 | 4.832 | 4.841 | 5.751 |
Hebei | 1.280 | 1.346 | 1.518 | 1.728 | 2.239 | 3.136 |
Hubei | 3.555 | 3.775 | 4.202 | 4.336 | 5.042 | 6.892 |
Ningxia | 0.061 | 0.059 | 0.059 | 0.057 | −0.170 | 0.078 |
Shaanxi | 0.504 | 0.526 | 0.579 | 0.654 | 0.837 | 1.177 |
Shanxi | 3.001 | 3.155 | 3.300 | 3.632 | 4.417 | 5.889 |
Shandong | 1.536 | 0.333 | 0.665 | 0.792 | 1.263 | 2.380 |
Fujian | 0.698 | 0.766 | 0.869 | 0.981 | 1.230 | 1.712 |
Hunan | 0.398 | 0.420 | 0.450 | 0.488 | 0.605 | 0.847 |
Jilin | 1.416 | 1.512 | 1.551 | 1.655 | 2.015 | 2.641 |
Heilongjiang | 0.528 | 0.624 | 0.702 | 0.844 | 1.075 | 1.525 |
Guangxi | 0.230 | 0.265 | 0.286 | 0.331 | 0.394 | 0.538 |
Henan | 0.394 | 0.405 | 0.421 | 0.473 | 0.638 | 0.897 |
Hainan | 0.282 | 0.112 | 0.093 | 0.087 | 0.099 | 0.138 |
Gansu | 0.457 | 0.505 | 0.481 | 0.535 | 0.579 | 0.812 |
Sichuan | 0.411 | 0.454 | 0.470 | 0.580 | 0.719 | 1.081 |
Anhui | 0.252 | 0.269 | 0.278 | 0.314 | 0.427 | 0.579 |
Yunnan | 0.252 | 0.327 | 0.323 | 0.377 | 0.466 | 0.621 |
Jiangxi | 0.212 | 0.213 | 0.216 | 0.237 | 0.303 | 0.427 |
Qinghai | 0.213 | 0.190 | 0.215 | 0.180 | 0.192 | 0.200 |
Province | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
---|---|---|---|---|---|---|
Shanghai | 1116.471 | 1597.669 | 2040.841 | 2512.865 | 2708.537 | 3255.931 |
Tianjin | 143.760 | 208.832 | 272.116 | 367.874 | 420.792 | 543.451 |
Inner Mongolia | 8.871 | 16.878 | 28.028 | 42.511 | 56.176 | 76.916 |
Jiangsu | 11.279 | 19.221 | 29.356 | 41.631 | 53.647 | 69.396 |
Liaoning | 15.641 | 21.920 | 29.374 | 36.720 | 45.233 | 56.795 |
Guangdong | 15.386 | 21.438 | 28.804 | 35.636 | 41.263 | 49.287 |
Zhejiang | 11.570 | 18.783 | 27.985 | 37.742 | 47.433 | 59.352 |
Beijing | 61.440 | 84.084 | 106.861 | 126.661 | 132.961 | 179.326 |
Xinjiang | 1.190 | 1.970 | 3.109 | 4.538 | 6.261 | 9.018 |
Guizhou | 6.366 | 8.688 | 10.012 | 13.612 | 16.303 | 21.601 |
Chongqing | 8.246 | 12.551 | 17.203 | 21.447 | 25.793 | 30.750 |
Hebei | 4.914 | 7.273 | 10.063 | 13.025 | 16.072 | 20.385 |
Hubei | 10.060 | 13.659 | 17.323 | 17.198 | 20.083 | 24.382 |
Ningxia | −0.185 | 0.170 | 0.233 | 0.318 | 1.340 | 3.390 |
Shaanxi | 1.868 | 2.743 | 4.519 | 6.135 | 8.176 | 11.036 |
Shanxi | 8.232 | 11.190 | 13.936 | 16.252 | 19.002 | 22.788 |
Shandong | 4.665 | 10.268 | 14.225 | 18.334 | 21.735 | 25.755 |
Fujian | 2.560 | 3.734 | 5.215 | 6.748 | 8.450 | 11.094 |
Hunan | 1.286 | 1.879 | 2.570 | 3.312 | 4.170 | 5.557 |
Jilin | 3.651 | 4.969 | 6.019 | 6.898 | 8.297 | 10.688 |
Heilongjiang | 2.049 | 2.950 | 2.993 | 4.832 | 5.389 | 6.702 |
Guangxi | 0.808 | 1.219 | 1.711 | 2.237 | 2.865 | 3.765 |
Henan | 1.416 | 2.287 | 3.145 | 4.055 | 4.990 | 6.342 |
Hainan | 0.401 | 0.523 | 0.616 | 0.609 | 0.926 | 1.200 |
Gansu | 1.173 | 1.939 | 2.474 | 3.145 | 3.848 | 5.023 |
Sichuan | 1.513 | 2.270 | 3.030 | 3.681 | 4.562 | 5.810 |
Anhui | 0.833 | 1.223 | 1.689 | 2.274 | 3.060 | 4.201 |
Yunnan | 0.970 | 1.394 | 1.899 | 2.255 | 3.046 | 3.881 |
Jiangxi | 0.628 | 0.892 | 1.155 | 1.393 | 1.694 | 2.194 |
Qinghai | 0.239 | 0.308 | 0.371 | 0.334 | 0.436 | 0.493 |
Province | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|
Shanghai | 3615.487 | 3658.573 | 2371.686 | 2946.888 | 2293.422 | 2454.046 | 2342.263 |
Tianjin | 733.192 | 916.721 | 1082.821 | 1125.255 | 1062.452 | 1043.192 | 1090.298 |
Inner Mongolia | 115.032 | 152.632 | 179.326 | 182.744 | 180.803 | 181.647 | 181.165 |
Jiangsu | 94.202 | 114.250 | 124.765 | 126.486 | 121.996 | 120.688 | 116.756 |
Liaoning | 73.797 | 90.167 | 99.700 | 102.259 | 96.338 | 95.545 | 92.874 |
Guangdong | 61.427 | 70.159 | 74.692 | 77.018 | 78.426 | 80.723 | 81.256 |
Zhejiang | 70.004 | 78.251 | 76.000 | 72.010 | 65.424 | 69.379 | 79.129 |
Beijing | 182.342 | 177.607 | 137.753 | 113.043 | 85.000 | 87.755 | 78.603 |
Xinjiang | 16.529 | 24.206 | 36.244 | 43.595 | 51.409 | 48.087 | 50.843 |
Guizhou | 27.322 | 33.078 | 38.162 | 41.139 | 40.427 | 39.949 | 40.796 |
Chongqing | 36.071 | 39.361 | 40.097 | 41.091 | 38.669 | 38.766 | 39.409 |
Hebei | 27.890 | 34.398 | 38.244 | 39.167 | 38.451 | 39.102 | 38.808 |
Hubei | 29.995 | 34.253 | 35.662 | 36.099 | 33.888 | 34.086 | 33.807 |
Ningxia | 18.371 | 19.172 | 21.835 | 25.180 | 23.076 | 21.984 | 29.956 |
Shaanxi | 15.003 | 23.536 | 28.728 | 28.647 | 28.135 | 26.855 | 27.940 |
Shanxi | 27.990 | 31.922 | 33.209 | 32.747 | 29.950 | 28.633 | 27.290 |
Shandong | 28.871 | 31.286 | 30.047 | 28.146 | 15.721 | 26.287 | 26.366 |
Fujian | 16.402 | 21.830 | 25.118 | 28.252 | 27.286 | 26.373 | 23.068 |
Hunan | 8.592 | 11.759 | 14.999 | 16.762 | 17.118 | 17.182 | 17.794 |
Jilin | 13.264 | 15.165 | 15.439 | 15.831 | 15.282 | 15.923 | 17.108 |
Heilongjiang | 6.965 | 7.426 | 8.092 | 10.753 | 12.922 | 13.519 | 11.977 |
Guangxi | 5.648 | 7.590 | 9.865 | 10.826 | 11.046 | 10.941 | 11.556 |
Henan | 8.968 | 11.038 | 12.321 | 12.492 | 11.712 | 11.442 | 10.992 |
Hainan | 2.141 | 2.725 | 5.150 | 6.216 | 7.242 | 7.845 | 10.943 |
Gansu | 7.353 | 9.591 | 11.207 | 11.284 | 11.058 | 10.489 | 10.406 |
Sichuan | 7.777 | 9.705 | 10.722 | 11.107 | 10.513 | 10.355 | 10.203 |
Anhui | 6.054 | 7.573 | 8.508 | 9.235 | 9.251 | 9.815 | 10.179 |
Yunnan | 5.456 | 6.710 | 8.019 | 8.731 | 9.683 | 8.512 | 8.512 |
Jiangxi | 3.098 | 3.896 | 4.907 | 5.671 | 5.956 | 5.966 | 6.465 |
Qinghai | 0.865 | 1.322 | 2.314 | 2.825 | 3.204 | 2.959 | 3.864 |
Province | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
---|---|---|---|---|---|---|
Shanghai | 413.364 | 422.049 | 368.588 | 562.919 | 659.945 | 811.119 |
Tianjin | 50.726 | 50.410 | 61.251 | 71.044 | 68.996 | 123.649 |
Inner Mongolia | 1.629 | 1.495 | 1.858 | 2.501 | 3.502 | 6.963 |
Jiangsu | 1.260 | 1.238 | 1.647 | 2.934 | 5.104 | 9.496 |
Liaoning | 5.098 | 5.340 | 6.084 | 7.594 | 9.605 | 13.492 |
Beijing | 21.040 | 18.932 | 24.088 | 29.995 | 37.432 | 53.364 |
Guangdong | 4.081 | 4.484 | 5.384 | 7.004 | 9.313 | 13.311 |
Zhejiang | 1.390 | 1.567 | 2.291 | 4.132 | 6.787 | 10.624 |
Xinjiang | 0.318 | 0.341 | 0.375 | 0.480 | 0.628 | 0.978 |
Guizhou | 2.367 | 2.342 | 2.570 | 3.106 | 3.840 | 5.339 |
Chongqing | 8.524 | 5.999 | 5.132 | 5.164 | 5.640 | 7.328 |
Hebei | 1.432 | 1.483 | 1.724 | 2.165 | 2.857 | 4.341 |
Hubei | 3.705 | 3.894 | 4.054 | 4.861 | 5.851 | 8.216 |
Ningxia | 0.060 | −0.065 | 0.056 | 0.062 | -0.129 | 0.099 |
Shanxi | 3.160 | 3.172 | 3.495 | 4.221 | 5.252 | 7.244 |
Shaanxi | 0.523 | 0.541 | 0.619 | 0.771 | 1.018 | 1.541 |
Fujian | 0.754 | 0.789 | 0.928 | 1.158 | 1.479 | 2.146 |
Jilin | 1.504 | 1.492 | 1.609 | 1.951 | 2.429 | 3.320 |
Hunan | 0.421 | 0.424 | 0.473 | 0.576 | 0.737 | 1.083 |
Shandong | 1.048 | 0.552 | 0.717 | 1.121 | 2.070 | 5.569 |
Heilongjiang | 0.591 | 0.647 | 0.772 | 1.004 | 1.291 | 1.840 |
Guangxi | 0.255 | 0.271 | 0.299 | 0.387 | 0.469 | 0.681 |
Henan | 0.413 | 0.407 | 0.454 | 0.598 | 0.819 | 1.274 |
Gansu | 0.458 | 0.420 | 0.503 | 0.641 | 0.759 | 1.124 |
Sichuan | 0.469 | 0.476 | 0.580 | 0.697 | 0.890 | 1.342 |
Anhui | 0.268 | 0.268 | 0.300 | 0.399 | 0.542 | 0.792 |
Hainan | 0.129 | 0.103 | 0.092 | 0.097 | 0.117 | 0.399 |
Yunnan | 0.292 | 0.298 | 0.361 | 0.491 | 0.548 | 0.800 |
Jiangxi | 0.219 | 0.212 | 0.230 | 0.286 | 0.373 | 0.540 |
Qinghai | 0.187 | 0.180 | 0.160 | 0.231 | 0.219 | 0.210 |
Province | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
---|---|---|---|---|---|---|
Shanghai | 1367.674 | 1720.858 | 2104.329 | 2616.477 | 3017.794 | 2941.328 |
Tianjin | 164.620 | 236.998 | 303.177 | 387.372 | 429.950 | 637.009 |
Inner Mongolia | 13.133 | 22.415 | 35.929 | 49.533 | 67.797 | 100.871 |
Jiangsu | 16.387 | 25.341 | 36.041 | 47.911 | 62.690 | 85.445 |
Liaoning | 19.089 | 25.432 | 32.746 | 41.260 | 51.545 | 65.895 |
Beijing | 66.591 | 95.383 | 113.547 | 137.997 | 139.820 | 162.070 |
Guangdong | 18.977 | 25.212 | 31.865 | 39.172 | 46.821 | 56.132 |
Zhejiang | 16.309 | 24.286 | 32.809 | 43.177 | 54.537 | 64.987 |
Xinjiang | 1.586 | 2.459 | 3.827 | 5.351 | 7.706 | 13.621 |
Guizhou | 7.407 | 9.719 | 12.861 | 14.864 | 18.081 | 24.688 |
Chongqing | 10.808 | 14.730 | 18.858 | 24.058 | 28.589 | 33.234 |
Hebei | 6.483 | 9.041 | 12.174 | 15.255 | 19.233 | 25.003 |
Hubei | 11.851 | 15.442 | 16.838 | 19.018 | 22.545 | 27.328 |
Ningxia | 0.227 | 0.306 | 0.541 | 1.293 | 3.223 | 16.606 |
Shanxi | 9.953 | 12.522 | 15.076 | 17.908 | 21.139 | 25.656 |
Shaanxi | 2.539 | 3.613 | 5.403 | 7.077 | 9.569 | 14.284 |
Fujian | 3.179 | 4.366 | 5.892 | 7.658 | 9.890 | 14.118 |
Jilin | 4.511 | 5.877 | 7.231 | 8.982 | 9.840 | 12.134 |
Hunan | 1.608 | 2.202 | 2.935 | 3.788 | 4.941 | 7.368 |
Shandong | 7.105 | 12.479 | 16.498 | 20.126 | 23.958 | 16.535 |
Heilongjiang | 2.594 | 3.345 | 3.968 | 5.232 | 6.025 | 6.439 |
Guangxi | 1.029 | 1.428 | 1.951 | 2.549 | 3.343 | 4.839 |
Henan | 2.018 | 2.833 | 3.674 | 4.632 | 5.882 | 8.152 |
Gansu | 1.461 | 2.114 | 2.766 | 3.518 | 4.469 | 6.270 |
Sichuan | 1.930 | 2.519 | 3.356 | 4.264 | 5.208 | 6.771 |
Anhui | 1.140 | 1.555 | 2.043 | 2.744 | 3.819 | 5.474 |
Hainan | 0.509 | 0.543 | 0.754 | 0.899 | 1.008 | 2.047 |
Yunnan | 0.957 | 1.560 | 2.105 | 2.551 | 3.536 | 4.685 |
Jiangxi | 0.775 | 1.019 | 1.270 | 1.571 | 1.967 | 2.735 |
Qinghai | 0.253 | 0.348 | 0.313 | 0.398 | 0.507 | 0.595 |
Province | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|
Shanghai | 3302.229 | 3470.679 | 3858.184 | 2754.650 | 2513.485 | 1908.051 |
Tianjin | 830.881 | 980.868 | 1076.603 | 1219.724 | 1258.944 | 1137.842 |
Inner Mongolia | 130.902 | 159.603 | 181.851 | 180.091 | 181.444 | 183.347 |
Jiangsu | 104.232 | 117.131 | 125.599 | 123.236 | 121.554 | 119.548 |
Liaoning | 81.156 | 92.228 | 100.465 | 98.406 | 96.283 | 95.609 |
Beijing | 174.570 | 156.483 | 122.363 | 104.771 | 85.615 | 83.054 |
Guangdong | 65.662 | 71.122 | 76.242 | 76.653 | 78.381 | 81.241 |
Zhejiang | 72.412 | 74.952 | 73.312 | 69.704 | 69.559 | 74.746 |
Xinjiang | 19.611 | 29.548 | 39.855 | 43.395 | 50.758 | 51.740 |
Guizhou | 31.180 | 34.985 | 39.733 | 39.854 | 40.154 | 41.752 |
Chongqing | 37.566 | 39.204 | 40.869 | 39.360 | 38.746 | 40.414 |
Hebei | 30.868 | 35.316 | 38.872 | 38.558 | 38.786 | 39.286 |
Hubei | 31.757 | 34.302 | 36.081 | 34.806 | 33.975 | 34.637 |
Ningxia | 21.760 | 27.825 | 24.783 | 23.579 | 22.515 | 28.516 |
Shanxi | 29.780 | 31.877 | 32.939 | 31.047 | 29.408 | 28.486 |
Shaanxi | 19.658 | 24.975 | 29.331 | 27.343 | 27.560 | 26.674 |
Fujian | 18.789 | 23.392 | 32.600 | 27.720 | 28.415 | 25.437 |
Jilin | 16.280 | 17.644 | 18.567 | 18.399 | 18.424 | 18.721 |
Hunan | 10.021 | 12.994 | 15.926 | 16.452 | 17.129 | 18.094 |
Shandong | 29.832 | 17.861 | 17.321 | 16.617 | 16.071 | 15.965 |
Heilongjiang | 6.862 | 8.127 | 9.340 | 11.149 | 14.572 | 12.390 |
Guangxi | 6.489 | 8.591 | 10.426 | 10.552 | 10.998 | 11.746 |
Henan | 10.105 | 11.424 | 12.432 | 11.878 | 11.694 | 11.324 |
Gansu | 8.256 | 10.009 | 11.392 | 11.136 | 10.774 | 10.787 |
Sichuan | 8.562 | 10.022 | 10.922 | 10.646 | 10.452 | 10.531 |
Anhui | 6.890 | 7.964 | 8.889 | 9.112 | 9.600 | 10.171 |
Hainan | 2.336 | 3.397 | 5.861 | 6.457 | 7.380 | 9.500 |
Yunnan | 5.909 | 7.747 | 8.370 | 8.397 | 8.452 | 8.816 |
Jiangxi | 3.478 | 4.417 | 5.330 | 5.590 | 5.943 | 6.510 |
Qinghai | 1.047 | 2.012 | 2.092 | 2.581 | 3.112 | 3.363 |
Province | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
---|---|---|---|---|---|---|
Shanghai | 434.277 | 439.693 | 517.855 | 663.608 | 840.635 | 1138.644 |
Tianjin | 50.810 | 54.661 | 65.616 | 80.899 | 110.847 | 152.144 |
Inner Mongolia | 1.728 | 1.634 | 2.205 | 3.084 | 5.831 | 10.571 |
Jiangsu | 1.283 | 1.551 | 2.598 | 4.357 | 8.074 | 14.270 |
Liaoning | 5.240 | 5.725 | 7.045 | 8.903 | 11.870 | 16.592 |
Beijing | 20.959 | 21.781 | 28.194 | 36.763 | 47.580 | 66.758 |
Guangdong | 4.292 | 4.918 | 6.454 | 8.485 | 11.542 | 16.336 |
Zhejiang | 1.512 | 2.130 | 3.600 | 5.797 | 9.461 | 15.092 |
Xinjiang | 0.338 | 0.366 | 0.446 | 0.572 | 0.849 | 1.309 |
Guizhou | 2.368 | 2.472 | 2.929 | 3.598 | 4.659 | 6.435 |
Chongqing | 6.459 | 5.480 | 5.367 | 5.786 | 7.041 | 9.606 |
Hebei | 1.405 | 1.530 | 1.935 | 2.522 | 3.687 | 5.430 |
Hubei | 3.808 | 4.050 | 4.688 | 5.497 | 6.988 | 9.777 |
Shanxi | 3.173 | 3.357 | 3.994 | 4.935 | 6.480 | 8.865 |
Ningxia | −0.029 | −0.100 | −0.116 | −0.094 | 0.148 | 0.477 |
Fujian | 0.775 | 0.848 | 1.075 | 1.365 | 1.853 | 2.687 |
Shaanxi | 0.513 | 0.564 | 0.719 | 0.924 | 1.292 | 2.016 |
Shandong | 1.032 | 0.639 | 1.026 | 1.858 | 4.805 | 8.540 |
Hunan | 0.425 | 0.448 | 0.546 | 0.687 | 0.941 | 1.371 |
Jilin | 1.501 | 1.559 | 1.866 | 2.305 | 3.068 | 4.149 |
Heilongjiang | 0.616 | 0.712 | 0.908 | 1.183 | 1.567 | 2.215 |
Guangxi | 0.253 | 0.288 | 0.360 | 0.442 | 0.589 | 0.852 |
Henan | 0.413 | 0.441 | 0.566 | 0.762 | 1.172 | 1.841 |
Gansu | 0.485 | 0.472 | 0.584 | 0.726 | 1.005 | 1.333 |
Sichuan | 0.453 | 0.480 | 0.634 | 0.817 | 1.158 | 1.636 |
Anhui | 0.268 | 0.290 | 0.377 | 0.500 | 0.754 | 1.101 |
Yunnan | 0.268 | 0.320 | 0.400 | 0.512 | 0.691 | 0.968 |
Hainan | 0.111 | 0.101 | 0.100 | 0.111 | 0.362 | 0.440 |
Jiangxi | 0.218 | 0.224 | 0.271 | 0.346 | 0.474 | 0.676 |
Qinghai | 0.179 | 0.323 | 0.179 | 0.228 | 0.208 | 0.219 |
Province | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
---|---|---|---|---|---|---|
Shanghai | 1707.895 | 1627.190 | 3401.818 | 2726.388 | 3030.769 | 3372.613 |
Tianjin | 204.842 | 262.524 | 346.888 | 427.730 | 653.959 | 723.145 |
Inner Mongolia | 18.188 | 29.775 | 42.939 | 60.469 | 88.528 | 116.548 |
Jiangsu | 22.213 | 32.024 | 42.534 | 56.615 | 77.437 | 96.074 |
Liaoning | 22.362 | 28.829 | 37.063 | 46.955 | 59.657 | 73.121 |
Beijing | 85.792 | 104.687 | 127.315 | 165.212 | 159.747 | 169.449 |
Guangdong | 22.213 | 28.253 | 35.382 | 43.300 | 52.085 | 60.525 |
Zhejiang | 21.472 | 29.154 | 38.452 | 49.872 | 59.927 | 68.821 |
Xinjiang | 2.016 | 3.102 | 4.568 | 6.631 | 11.394 | 16.589 |
Guizhou | 8.592 | 10.842 | 13.616 | 17.957 | 22.455 | 26.915 |
Chongqing | 12.819 | 16.550 | 21.461 | 26.685 | 31.107 | 35.117 |
Hebei | 7.649 | 10.293 | 13.238 | 16.892 | 22.677 | 28.099 |
Hubei | 13.435 | 17.046 | 18.196 | 21.220 | 25.240 | 29.438 |
Shanxi | 11.339 | 13.814 | 16.705 | 19.935 | 23.857 | 27.647 |
Ningxia | 0.600 | 0.991 | 1.403 | 3.063 | 15.564 | 22.565 |
Fujian | 3.759 | 5.042 | 6.757 | 8.921 | 12.419 | 16.390 |
Shaanxi | 2.711 | 4.332 | 5.972 | 8.424 | 12.685 | 16.992 |
Shandong | 11.420 | 14.656 | 18.426 | 22.357 | 25.618 | 28.442 |
Hunan | 1.915 | 2.562 | 3.384 | 4.470 | 6.463 | 8.717 |
Jilin | 5.094 | 6.041 | 7.435 | 10.448 | 11.199 | 13.187 |
Heilongjiang | 2.943 | 3.652 | 4.614 | 5.635 | 6.070 | 6.341 |
Guangxi | 1.220 | 1.659 | 2.240 | 2.971 | 4.237 | 5.633 |
Henan | 2.571 | 3.402 | 4.277 | 5.459 | 7.537 | 9.350 |
Gansu | 1.835 | 2.426 | 3.141 | 4.059 | 5.509 | 7.149 |
Sichuan | 2.245 | 2.909 | 3.482 | 4.743 | 6.088 | 7.822 |
Anhui | 1.465 | 1.924 | 2.502 | 3.448 | 5.009 | 6.357 |
Yunnan | 1.427 | 1.875 | 2.413 | 3.020 | 3.860 | 5.215 |
Hainan | 0.566 | 0.655 | 0.779 | 0.919 | 1.601 | 2.202 |
Jiangxi | 0.902 | 1.141 | 1.438 | 1.812 | 2.438 | 3.121 |
Qinghai | 0.276 | 0.336 | 0.365 | 0.482 | 0.570 | 1.067 |
Province | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|
Shanghai | 3600.303 | 3238.876 | 2901.954 | 2804.623 | 2826.936 |
Tianjin | 819.709 | 1015.776 | 1000.079 | 1066.494 | 1153.142 |
Inner Mongolia | 141.018 | 165.419 | 179.937 | 180.790 | 182.932 |
Jiangsu | 109.204 | 119.581 | 123.162 | 122.583 | 120.431 |
Liaoning | 84.467 | 94.425 | 97.785 | 97.964 | 96.247 |
Beijing | 165.065 | 144.930 | 113.319 | 101.608 | 83.194 |
Guangdong | 66.862 | 73.057 | 76.121 | 78.378 | 79.166 |
Zhejiang | 71.148 | 72.920 | 72.067 | 71.984 | 70.690 |
Xinjiang | 24.565 | 33.483 | 40.233 | 43.866 | 52.074 |
Guizhou | 31.883 | 36.871 | 38.974 | 39.757 | 41.562 |
Chongqing | 37.827 | 40.025 | 39.512 | 39.291 | 40.058 |
Hebei | 32.376 | 36.395 | 38.439 | 38.817 | 38.961 |
Hubei | 32.259 | 34.754 | 34.955 | 34.749 | 34.481 |
Shanxi | 30.225 | 31.930 | 31.531 | 30.387 | 29.129 |
Ningxia | 34.125 | 32.240 | 23.546 | 22.987 | 27.632 |
Fujian | 20.585 | 24.606 | 26.814 | 26.758 | 27.600 |
Shaanxi | 21.550 | 26.166 | 28.308 | 27.859 | 27.591 |
Shandong | 29.162 | 29.236 | 28.204 | 27.366 | 26.153 |
Hunan | 11.332 | 14.097 | 15.844 | 16.591 | 17.862 |
Jilin | 14.307 | 15.339 | 15.512 | 15.834 | 16.574 |
Heilongjiang | 7.902 | 9.109 | 9.913 | 11.754 | 12.490 |
Guangxi | 7.467 | 9.315 | 10.273 | 10.602 | 11.645 |
Henan | 10.663 | 11.723 | 11.905 | 11.819 | 11.581 |
Gansu | 8.795 | 10.268 | 10.971 | 10.912 | 10.966 |
Sichuan | 9.005 | 10.259 | 10.591 | 10.574 | 10.558 |
Anhui | 7.363 | 8.393 | 8.847 | 9.392 | 9.923 |
Yunnan | 6.786 | 7.674 | 8.107 | 8.305 | 8.818 |
Hainan | 2.966 | 4.030 | 6.138 | 6.723 | 8.766 |
Jiangxi | 3.991 | 4.860 | 5.329 | 5.654 | 6.379 |
Qinghai | 1.344 | 2.227 | 2.217 | 2.800 | 3.957 |
Province | The E-E Cost | Rank |
---|---|---|
Yunnan | −0.355 | 1 |
Sichuan | −0.326 | 2 |
Xinjiang | 0.350 | 3 |
Zhejiang | 0.497 | 4 |
Jiangxi | 0.594 | 5 |
Hunan | 0.694 | 6 |
Guangxi | 0.790 | 7 |
Guizhou | 0.850 | 8 |
Anhui | 0.954 | 9 |
Shaanxi | 0.978 | 10 |
Jilin | 0.978 | 11 |
Inner Mongolia | 1.011 | 12 |
Liaoning | 1.062 | 13 |
Gansu | 1.147 | 14 |
Guangdong | 1.216 | 15 |
Shanghai | 1.258 | 16 |
Ningxia | 1.330 | 17 |
Shanxi | 1.334 | 18 |
Shandong | 1.354 | 19 |
Hebei | 1.544 | 20 |
Jiangsu | 1.548 | 21 |
Henan | 1.562 | 22 |
Hainan | 1.594 | 23 |
Heilongjiang | 1.672 | 24 |
Qinghai | 1.724 | 25 |
Fujian | 1.754 | 26 |
Tianjin | 1.932 | 27 |
Chongqing | 2.229 | 28 |
Beijing | 2.289 | 29 |
Hubei | 4.169 | 30 |
Province | The Proportion of the Tertiary Industry | Rank |
---|---|---|
Henan | 0.539 | 1 |
Qinghai | 0.538 | 2 |
Shaanxi | 0.530 | 3 |
Inner Mongolia | 0.522 | 4 |
Shanxi | 0.522 | 5 |
Jiangxi | 0.520 | 6 |
Shandong | 0.519 | 7 |
Hebei | 0.517 | 8 |
Anhui | 0.508 | 9 |
Tianjin | 0.508 | 10 |
Jilin | 0.505 | 11 |
Jiangsu | 0.505 | 12 |
Fujian | 0.504 | 13 |
Liaoning | 0.502 | 14 |
Chongqing | 0.500 | 15 |
Zhejiang | 0.499 | 16 |
Ningxia | 0.490 | 17 |
Guangdong | 0.479 | 18 |
Sichuan | 0.477 | 19 |
Hubei | 0.470 | 20 |
Guangxi | 0.456 | 21 |
Hunan | 0.450 | 22 |
Xinjiang | 0.446 | 23 |
Gansu | 0.438 | 24 |
Heilongjiang | 0.429 | 25 |
Yunnan | 0.419 | 26 |
Guizhou | 0.393 | 27 |
Shanghai | 0.383 | 28 |
Hainan | 0.264 | 29 |
Beijing | 0.224 | 30 |
References
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Demirkhanyan, B. Emission Reduction Potential and Directions for Long Term Low Emission Development Framework of Armenia Transport Sector. 2020. Available online: https://eu4climate.eu/download/emission-reduction-potential-and-directions-for-long-term-low-emission-development-framework-of-armenia-transport-sector/ (accessed on 4 September 2022).
- Dong, L.; Miao, G.; Wen, W. China’s carbon neutrality policy: Objectives, impacts and paths. East Asian Policy 2021, 13, 5–18. [Google Scholar] [CrossRef]
- Tian, J.; Yu, L.; Xue, R.; Zhuang, S.; Shan, Y. Global low-carbon energy transition in the post-COVID-19 era. Appl. Energy 2022, 307, 118205. [Google Scholar] [CrossRef] [PubMed]
- Vaka, M.; Walvekar, R.; Rasheed, A.K.; Khalid, M. A review on Malaysia’s solar energy pathway towards carbon-neutral Malaysia beyond COVID’19 pandemic. J. Clean. Prod. 2020, 273, 122834. [Google Scholar] [CrossRef]
- Sadiq, M.; Nonthapot, S.; Mohamad, S.; Keong, O.C.; Ehsanullah, S.; Iqbal, N. Does green finance matter for sustainable entrepreneurship and environmental corporate social responsibility during COVID-19? China Financ. Rev. Int. 2021, 12, 317–333. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, X.; Zhang, H.; Liu, Z. Automobile industry under China’s Carbon peaking and carbon neutrality goals: Challenges, opportunities, and coping strategies. J. Adv. Transp. 2022, 2022, 5834707. [Google Scholar] [CrossRef]
- Zhang, H. Technology innovation, economic growth and carbon emissions in the context of carbon neutrality: Evidence from BRICS. Sustainability 2021, 13, 11138. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, B. How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective. Energy 2021, 233, 121179. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, J.; Zhao, K.; Chen, H.; Zhao, S.; Li, W. Dynamics and decoupling analysis of carbon emissions from construction industry in China. Buildings 2022, 12, 257. [Google Scholar] [CrossRef]
- Pan, A.; Zhang, W.; Shi, X.; Dai, L. Climate policy and low-carbon innovation: Evidence from low-carbon city pilots in China. Energy Econ. 2022, 112, 106129. [Google Scholar] [CrossRef]
- Chi, Y.; Liu, Z.; Wang, X.; Zhang, Y.; Wei, F. Provincial CO2 emission measurement and analysis of the construction industry under china’s carbon neutrality target. Sustainability 2021, 13, 1876. [Google Scholar] [CrossRef]
- Heil, M.T.; Wodon, Q.T. Inequality in CO2 emissions between poor and rich countries. J. Environ. Dev. 1997, 6, 426–452. [Google Scholar] [CrossRef]
- Teixidó-Figueras, J.; Steinberger, J.K.; Krausmann, F.; Haberl, H.; Wiedmann, T.; Peters, G.P.; Duro, J.A.; Kastner, T. International inequality of environmental pressures: Decomposition and comparative analysis. Ecol. Indic. 2016, 62, 163–173. [Google Scholar] [CrossRef]
- Padilla, E.; Duro, J.A. Explanatory factors of CO2 per capita emission inequality in the European Union. Energy Policy 2013, 62, 1320–1328. [Google Scholar] [CrossRef]
- Hubacek, K.; Baiocchi, G.; Feng, K.; Muñoz Castillo, R.; Sun, L.; Xue, J. Global carbon inequality. Energy Ecol. Environ. 2017, 2, 361–369. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Li, Q.; Wang, Y.; Chen, W. Spatial Threshold Effect of Industrial Land Use Efficiency on Industrial Carbon Emissions: A Case Study in China. Int. J. Environ. Res. Public Health 2021, 18, 9368. [Google Scholar] [CrossRef]
- Schindler, D.; Jung, C. Copula-based estimation of directional wind energy yield: A case study from Germany. Energy Convers. Manag. 2018, 169, 359–370. [Google Scholar] [CrossRef]
- Niemierko, R.; Töppel, J.; Tränkler, T. A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data. Appl. Energy 2019, 233, 691–708. [Google Scholar] [CrossRef]
- Gozgor, G.; Tiwari, A.K.; Khraief, N.; Shahbaz, M. Dependence structure between business cycles and CO2 emissions in the US: Evidence from the time-varying Markov-Switching Copula models. Energy 2019, 188, 115995. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Li, L.; Wang, F.; Li, D. Driving factors of CO2 emission inequality in China: The role of government expenditure. China Econ. Rev. 2020, 64, 101545. [Google Scholar] [CrossRef]
- Zhong, H.; Feng, K.; Sun, L.; Cheng, L.; Hubacek, K. Household carbon and energy inequality in Latin American and Caribbean countries. J. Environ. Manag. 2020, 273, 110979. [Google Scholar] [CrossRef]
- Cui, W.; Wan, A.; Xin, F.; Li, Q. How does carbon emission reduction efficiency affect regional income inequality? The mediator effect of interregional labor flow. Math. Probl. Eng. 2021, 2021, 5578027. [Google Scholar] [CrossRef]
- Fang, D.; Chen, B. Inequality of air pollution and carbon emission embodied in inter-regional transport. Energy Procedia 2019, 158, 3833–3839. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Fang, C.; Feng, K. Inequalities in carbon intensity in China: A multi-scalar and multi-mechanism analysis. Appl. Energy 2019, 254, 113720. [Google Scholar] [CrossRef]
- Pan, X.; Wang, H.; Wang, Z.; Lin, L.; Zhang, Q.; Zheng, X.; Chen, W. Carbon Palma Ratio: A new indicator for measuring the distribution inequality of carbon emissions among individuals. J. Clean. Prod. 2019, 241, 118418. [Google Scholar] [CrossRef]
- Du, Q.; Li, J.; Li, Y.; Huang, N.; Zhou, J.; Li, Z. Carbon inequality in the transportation industry: Empirical evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 6300–6311. [Google Scholar] [CrossRef]
- Mushta, A.; Chen, Z.; Ud Din, N.; Ahmad, B.; Zhang, X. Income inequality, innovation and carbon emission: Perspectives on sustainable growth. Econ. Res. Ekon. Istraživanja 2020, 33, 769–787. [Google Scholar] [CrossRef]
- Han, M.; Lao, J.; Yao, Q.; Zhang, B.; Meng, J. Carbon inequality and economic development across the Belt and Road regions. J. Environ. Manag. 2020, 262, 110250. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. The inequality of China’s regional residential CO2 emissions. Sustain. Prod. Consum. 2021, 27, 2047–2057. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Hao, Y.; Liu, Z. Shooting two hawks with one arrow: Could China’s emission trading scheme promote green development efficiency and regional carbon equality? Energy Econ. 2021, 101, 105412. [Google Scholar] [CrossRef]
- Duro, J.A. On the automatic application of inequality indexes in the analysis of the international distribution of environmental indicators. Ecol. Econ. 2012, 76, 1–7. [Google Scholar] [CrossRef]
- Zhang, P.; You, J.; Jia, G.; Chen, J.; Yu, A. Estimation of carbon efficiency decomposition in materials and potential material savings for China’s construction industry. Resour. Policy 2018, 59, 148–159. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, W. Regional variation in the carbon dioxide emission efficiency of construction industry in China: Based on the three-stage DEA model. Discret. Dyn. Nat. Soc. 2021, 2021. [Google Scholar] [CrossRef]
- Tan, J.; Wang, R. Research on evaluation and influencing factors of regional ecological efficiency from the perspective of carbon neutrality. J. Environ. Manag. 2021, 294, 113030. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Ma, Z.; Kang, J.; Su, B. A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015. Energy Policy 2019, 129, 410–421. [Google Scholar] [CrossRef]
- Wang, B.; Yu, M.; Zhu, Y.; Bao, P. Unveiling the driving factors of carbon emissions from industrial resource allocation in China: A spatial econometric perspective. Energy Policy 2021, 158, 112557. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Z.; Zou, L.; Zou, L.; Zhang, H. Exploring the eco-efficiency of cultivated land utilization and its influencing factors in China’s Yangtze River Economic Belt, 2001–2018. J. Environ. Manag. 2021, 294, 112939. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Zhao, N.; Zhang, F.; Xiao, Y.; Guo, Z.; Liu, C. Green Total-factor energy efficiency of construction industry and its driving factors: Spatial-Temporal heterogeneity of Yangtze River Economic Belt in China. Int. J. Environ. Res. Public Health 2022, 19, 9972. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Xia, H.; Guo, Y.; Peng, C. The heterogeneous effects of urbanization and income inequality on CO2 emissions in BRICS economies: Evidence from panel quantile regression. Environ. Sci. Pollut. Res. 2018, 25, 17176–17193. [Google Scholar] [CrossRef] [PubMed]
- Dahal, K.; Juhola, S.; Niemelä, J. The role of renewable energy policies for carbon neutrality in Helsinki Metropolitan area. Sustain. Cities Soc. 2018, 40, 222–232. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, Y.; Xie, R. Does income inequality facilitate carbon emission reduction in the US? J. Clean. Prod. 2019, 217, 380–387. [Google Scholar] [CrossRef]
- Mi, Z.; Zheng, J.; Meng, J.; Ou, J.; Hubacek, K.; Liu, Z.; Coffman, D.; Stern, N.; Liang, S.; Wei, Y.M. Economic development and converging household carbon footprints in China. Nat. Sustain. 2020, 3, 529–537. [Google Scholar] [CrossRef]
- Bai, C.; Feng, C.; Yan, H.; Yi, X.; Chen, Z.; Wei, W. Will income inequality influence the abatement effect of renewable energy technological innovation on carbon dioxide emissions? J. Environ. Manag. 2020, 264, 110482. [Google Scholar] [CrossRef]
- Tan, Y.; Uprasen, U. Carbon neutrality potential of the ASEAN-5 countries: Implications from asymmetric effects of income inequality on renewable energy consumption. J. Environ. Manag. 2021, 299, 113635. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Zhang, Z. Assessing the features of extreme smog in China and the differentiated treatment strategy. Proc. R. Soc. Math. Phys. Eng. Sci. 2018, 474, 20170511. [Google Scholar] [CrossRef]
- Deng, L.; Yu, M.; Zhang, Z. Statistical learning of the worst regional smog extremes with dynamic conditional modeling. Atmosphere 2020, 11, 665. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Shan, Y.; Liu, J.; Liu, Z.; Xu, X.; Shao, S.; Wang, P.; Guan, D. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy 2016, 184, 742–750. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s recent emission pattern shifts. Earth Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Lunchen, N.; Wen, Z.; Liang’en, Z. Research on China’s Carbon Dioxide Emissions Efficiency from 2007 to 2016: Based on Two Stage Super Efficiency SBM Model and Tobit Model. Beijing Xue Xue Bao 2021, 57, 181–188. (In Chinese) [Google Scholar]
- Jarque, C.M.; Bera, A.K. A test for normality of observations and regression residuals. Int. Stat. Rev. Int. Stat. 1987, 55, 163–172. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- McDonald, J.B.; Xu, Y.J. A generalization of the beta distribution with applications. J. Econom. 1995, 66, 133–152. [Google Scholar] [CrossRef]
- Kerman, S.C.; McDonald, J.B. Skewness-kurtosis bounds for EGB1, EGB2, and special cases. Commun.-Stat.-Theory Methods 2015, 44, 3857–3864. [Google Scholar] [CrossRef]
- Coles, S.; Bawa, J.; Trenner, L.; Dorazio, P. An Introduction to Statistical Modeling of Extreme Values; Springer: Berlin/Heidelberg, Germany, 2001; Volume 208. [Google Scholar]
- Nelsen, R.B. An Introduction to Copulas; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Cherubini, U.; Luciano, E.; Vecchiato, W. Copula Methods in Finance; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Sklar, M. Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Zhang, Z. Quotient correlation: A sample based alternative to Pearson’s correlation. Ann. Stat. 2008, 36, 1007–1030. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, C.; Cui, Q. Random threshold driven tail dependence measures with application to precipitation data analysis. Stat. Sin. 2017, 27, 685–709. [Google Scholar]
- Genest, C.; Rivest, L.P. Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc. 1993, 88, 1034–1043. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Z. The tail dependence of the carbon markets: The implication of portfolio management. PLoS ONE 2020, 15, e0238033. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhang, Z. The impacts of digital finance development on household income, consumption, and financial asset holding: An extreme value analysis of China’s microdata. Pers. Ubiquitous Comput. 2022, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhang, Z. Extreme co-movements between infectious disease events and crude oil futures prices: From extreme value analysis perspective. Energy Econ. 2022, 110, 106054. [Google Scholar] [CrossRef]
- Calza, F.; Parmentola, A.; Tutore, I. Types of green innovations: Ways of implementation in a non-green industry. Sustainability 2017, 9, 1301. [Google Scholar] [CrossRef]
- Yuan, Q.; Yang, D.; Yang, F.; Luken, R.; Saieed, A.; Wang, K. Green industry development in China: An index based assessment from perspectives of both current performance and historical effort. J. Clean. Prod. 2020, 250, 119457. [Google Scholar] [CrossRef]
- Lin, H.; Wang, X.; Bao, G.; Xiao, H. Heterogeneous spatial effects of FDI on CO2 emissions in China. Earth Future 2022, 10, e2021EF002331. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Li, L. Grey Correlation Analysis of Transportation Carbon Emissions under the Background of Carbon Peak and Carbon Neutrality. Energies 2022, 15, 3064. [Google Scholar] [CrossRef]
- Xu, G.; Dong, H.; Xu, Z.; Bhattarai, N. China can reach carbon neutrality before 2050 by improving economic development quality. Energy 2022, 243, 123087. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, J.; Wang, L. Can the relationship between atmospheric environmental quality and urban industrial structure adjustment achieve green and sustainable development in China? A case of Taiyuan City. Energies 2022, 15, 3402. [Google Scholar] [CrossRef]
- Xu, X.; Voon, J.P. Regional integration in China: A statistical model. Econ. Lett. 2003, 79, 35–42. [Google Scholar] [CrossRef]
- Berkowitz, D.; DeJong, D.N. Regional integration: An empirical assessment of Russia. J. Urban Econ. 2003, 53, 541–559. [Google Scholar] [CrossRef]
- Kumar, S.; Sen, R.; Srivastava, S. Does economic integration stimulate capital mobility? An analysis of four regional economic communities in Africa. J. Int. Financ. Mark. Inst. Money 2014, 29, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; He, W. CO2 emissions efficiency and marginal abatement costs of the regional transportation sectors in China. Transp. Res. Part D Transp. Environ. 2017, 50, 83–97. [Google Scholar] [CrossRef]
- He, W.; Wang, B.; Danish; Wang, Z. Will regional economic integration influence carbon dioxide marginal abatement costs? Evidence from Chinese panel data. Energy Econ. 2018, 74, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Caivano, M.; Harvey, A. Time-series models with an EGB2 conditional distribution. J. Time Ser. Anal. 2014, 35, 558–571. [Google Scholar] [CrossRef]
- Liu, J.; Wu, S.; Zidek, J.V. On segmented multivariate regression. Stat. Sin. 1997, 7, 497–525. [Google Scholar]
- Cui, Q.; Xu, Y.; Zhang, Z.; Chan, V. Max-linear regression models with regularization. J. Econom. 2021, 222, 579–600. [Google Scholar] [CrossRef]
- Callaway, B.; Sant’Anna, P.H. Difference-in-differences with multiple time periods. J. Econom. 2021, 225, 200–230. [Google Scholar] [CrossRef]
- Yang, Z.; Ali, S.T.; Ali, F.; Sarwar, Z.; Khan, M.A. Outward foreign direct investment and corporate green innovation: An institutional pressure perspective. S. Afr. J. Bus. Manag. 2020, 51, 1–12. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, X.; Ock, Y.S.; Qing, L. Research on regional differences and influencing factors of Chinese industrial green technology innovation efficiency based on dagum gini coefficient decomposition. Land 2022, 11, 122. [Google Scholar] [CrossRef]
- Qing, L.; Chun, D.; Dagestani, A.A.; Li, P. Does Proactive Green Technology Innovation Improve Financial Performance? Evidence from Listed Companies with Semiconductor Concepts Stock in China. Sustainability 2022, 14, 4600. [Google Scholar] [CrossRef]
Year | Obs | Mean | S.D. | Skewness | Kurtosis | Min | Max | J-B Stat | J-B p-Value |
---|---|---|---|---|---|---|---|---|---|
1997 | 2735 | 1.132 | 1.292 | 5.469 | 72.95 | 0.000 | 25.75 | 571,188.85 | 0 |
1998 | 2735 | 0.998 | 1.179 | 6.497 | 94.76 | 0.000 | 25.13 | 978,850.97 | 0 |
1999 | 2735 | 1.094 | 1.259 | 6.595 | 99.77 | 0.000 | 27.08 | 1,087,000.49 | 0 |
2000 | 2735 | 1.154 | 1.330 | 6.715 | 102.1 | 0.000 | 28.69 | 1,139,495.23 | 0 |
2001 | 2735 | 1.162 | 1.305 | 6.229 | 91.17 | 0.000 | 27.17 | 903,685.42 | 0 |
2002 | 2735 | 1.257 | 1.416 | 6.330 | 92.59 | 0.000 | 29.49 | 932,928.62 | 0 |
2003 | 2735 | 1.481 | 1.660 | 6.073 | 85.65 | 0.000 | 33.58 | 795,299.82 | 0 |
2004 | 2735 | 1.650 | 1.839 | 5.861 | 80.87 | 0.000 | 36.70 | 706,645.71 | 0 |
2005 | 2735 | 1.965 | 2.153 | 5.287 | 68.35 | 0.000 | 41.31 | 499,366.95 | 0 |
2006 | 2735 | 2.208 | 2.424 | 5.254 | 67.85 | 0.000 | 46.82 | 491,890.47 | 0 |
2007 | 2735 | 2.362 | 2.568 | 4.903 | 59.43 | 0.000 | 47.52 | 373,815.41 | 0 |
2008 | 2735 | 2.531 | 2.719 | 4.637 | 53.49 | 0.000 | 48.77 | 300,317.69 | 0 |
2009 | 2735 | 2.729 | 2.922 | 4.748 | 56.04 | 0.000 | 53.48 | 330,880.89 | 0 |
2010 | 2735 | 2.988 | 3.156 | 4.554 | 51.67 | 0.000 | 56.43 | 7,279,382.16 | 0 |
2011 | 2735 | 3.335 | 3.398 | 3.949 | 38.38 | 0.000 | 54.14 | 149,786.90 | 0 |
2012 | 2735 | 3.403 | 3.462 | 3.998 | 39.11 | 0.000 | 55.56 | 155,843.31 | 0 |
2013 | 2735 | 3.422 | 3.369 | 3.689 | 32.83 | 0.000 | 49.25 | 107,608.38 | 0 |
2014 | 2735 | 3.494 | 3.430 | 3.594 | 31.11 | 0.000 | 49.42 | 95,951.52 | 0 |
2015 | 2735 | 3.302 | 3.257 | 3.468 | 28.63 | 0.000 | 45.05 | 80,345.16 | 0 |
2016 | 2735 | 3.404 | 3.360 | 3.428 | 27.92 | 0.000 | 46.08 | 76,117.43 | 0 |
2017 | 2735 | 3.467 | 3.392 | 3.255 | 24.74 | 0.000 | 44.03 | 58,696.73 | 0 |
Year | Obs | Mean | S.D. | Skewness | Kurtosis | Min | Max | J-B Stat | J-B p-Value |
---|---|---|---|---|---|---|---|---|---|
2007 | 30 | 0.499 | 0.229 | 1.738 | 5.241 | 0.251 | 1.126 | 21.38 | |
2008 | 30 | 0.497 | 0.229 | 1.805 | 5.432 | 0.255 | 1.140 | 23.68 | |
2009 | 30 | 0.492 | 0.230 | 1.820 | 5.498 | 0.245 | 1.147 | 24.36 | |
2010 | 30 | 0.495 | 0.230 | 1.827 | 5.543 | 0.244 | 1.159 | 24.77 | |
2011 | 30 | 0.490 | 0.236 | 1.962 | 6.056 | 0.237 | 1.217 | 30.93 | |
2012 | 30 | 0.493 | 0.235 | 1.863 | 5.707 | 0.233 | 1.190 | 26.51 | |
2013 | 30 | 0.486 | 0.233 | 1.827 | 5.624 | 0.235 | 1.201 | 25.29 | |
2014 | 30 | 0.480 | 0.235 | 1.803 | 5.584 | 0.226 | 1.199 | 24.60 | |
2015 | 30 | 0.481 | 0.237 | 1.744 | 5.391 | 0.214 | 1.199 | 22.35 | |
2016 | 30 | 0.508 | 0.259 | 1.427 | 4.037 | 0.209 | 1.216 | 11.52 |
Year | Obs | Mean | S.D. | Skewness | Kurtosis | Min | Max | J-B Stat | J-B p-Value |
---|---|---|---|---|---|---|---|---|---|
1997 | 30 | 17.63 | 76.84 | 5.092 | 27.27 | 0.071 | 421.7 | 866.1 | 0 |
1998 | 30 | 15.31 | 66.18 | 5.065 | 27.08 | 0.057 | 362.7 | 853.0 | 0 |
1999 | 30 | 18.29 | 81.59 | 5.111 | 27.41 | 0.060 | 447.8 | 875.3 | 0 |
2000 | 30 | 20.25 | 88.29 | 5.080 | 27.19 | 3.383 | 484.1 | 860.3 | 0 |
2001 | 30 | 16.61 | 70.28 | 5.043 | 26.91 | −0.126 | 384.9 | 842.0 | 0 |
2002 | 30 | 22.91 | 99.50 | 5.086 | 27.23 | −0.201 | 545.9 | 863.0 | 0 |
2003 | 30 | 35.88 | 155.5 | 5.078 | 27.17 | −0.525 | 852.8 | 859.2 | 0 |
2004 | 30 | 46.61 | 200.6 | 5.077 | 27.17 | −0.714 | 1100 | 859.0 | 0 |
2005 | 30 | 64.99 | 271.5 | 5.048 | 26.95 | 0.163 | 1488 | 844.2 | 0 |
2006 | 30 | 94.76 | 396.8 | 5.057 | 27.02 | 0.245 | 2176 | 849.0 | 0 |
2007 | 30 | 113.0 | 472.9 | 5.059 | 27.03 | 0.298 | 2594 | 849.9 | 0 |
2008 | 30 | 110.8 | 432.2 | 4.966 | 26.34 | 0.371 | 2364 | 804.2 | 0 |
2009 | 30 | 150.3 | 598.0 | 4.983 | 26.46 | 0.516 | 3271 | 812.4 | 0 |
2010 | 30 | 170.7 | 647.8 | 4.902 | 25.84 | 0.528 | 3531 | 772.5 | 0 |
2011 | 30 | 188.4 | 642.3 | 4.517 | 22.69 | 1.626 | 3407 | 586.5 | 0 |
2012 | 30 | 205.1 | 733.4 | 4.725 | 24.42 | 1.620 | 3954 | 684.9 | 0 |
2013 | 30 | 158.1 | 501.4 | 4.328 | 21.09 | 3.063 | 2620 | 502.6 | 0 |
2014 | 30 | 174.6 | 537.1 | 3.982 | 17.99 | 3.775 | 2684 | 360.3 | 0 |
2015 | 30 | 138.7 | 434.0 | 4.302 | 20.88 | 2.874 | 2264 | 492.0 | 0 |
2016 | 30 | 162.7 | 518.3 | 4.341 | 21.20 | 3.215 | 2711 | 508.0 | 0 |
2017 | 30 | 152.6 | 442.8 | 3.871 | 17.04 | 5.543 | 2182.6 | 321.2 | 0 |
Variable | Definition | Calculation Process | Scope | Original Data Structure | Reference |
---|---|---|---|---|---|
Intra-procinvial RCI Index | The intra-provincial regional carbon inequality | Fitting the data by Equation (1) and computing the provincial level RCI by Equation (2) | Provincial | County-level panel data | Method in Section 4.1, and the results in Section 5.1.1 |
Sub-national-level RCI Index | The sub-national-level regional carbon inequality | Fitting the data by Equation (1) and computing the sub-national-level RCI by Equation (2) | Sub-national level | County-level panel data | Method in Section 4.1, and the results in Section 5.1.2 |
National-level RCI Index | The national-level regional carbon inequality | Fitting the data by Equation (1) and computing the national-level RCI by Equation (2) | National level | Provincial panel data | Method in Section 4.1, and the results in Section 5.1.2 |
Provincial Carbon Efficiency | The annual provincial carbon efficiency for 30 provinces | Super-efficiency SBM model | Provincial | Provincial panel data | Ning et al., (2021) [54] |
Copula | Kendall’s |
---|---|
Survival BB7 | |
Survival Clayton | |
Joe |
Province | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|
Shanghai | 3407.318 | 3953.908 | 2619.998 | 2684.081 | 2263.728 | 2711.463 | 2182.630 |
Tianjin | 1148.335 | 1059.048 | 1043.118 | 1406.543 | 916.288 | 1068.201 | 1234.927 |
Inner Mongolia | 179.524 | 178.149 | 180.615 | 189.700 | 172.134 | 183.146 | 188.474 |
Jiangsu | 122.624 | 127.076 | 124.271 | 127.833 | 113.493 | 120.155 | 115.891 |
Liaoning | 95.383 | 104.509 | 98.588 | 103.309 | 86.777 | 95.954 | 95.882 |
Zhejiang | 77.939 | 81.923 | 65.354 | 67.178 | 62.572 | 82.966 | 91.534 |
Guangdong | 74.042 | 78.480 | 71.537 | 81.131 | 75.610 | 85.691 | 82.772 |
Beijing | 145.054 | 155.536 | 83.510 | 87.863 | 71.728 | 90.449 | 73.677 |
Xinjiang | 31.944 | 30.249 | 50.439 | 55.492 | 43.568 | 46.268 | 64.634 |
Guizhou | 35.588 | 38.251 | 40.812 | 44.724 | 35.880 | 39.391 | 47.523 |
Chongqing | 40.058 | 41.370 | 38.697 | 43.399 | 33.961 | 38.926 | 44.971 |
Hebei | 37.920 | 38.875 | 37.914 | 40.725 | 36.658 | 39.850 | 39.823 |
Hubei | 35.663 | 37.579 | 33.807 | 36.968 | 30.687 | 34.416 | 36.289 |
Ningxia | 16.439 | 14.740 | 24.002 | 24.261 | 18.794 | 20.584 | 34.607 |
Shaanxi | 27.823 | 29.018 | 28.937 | 30.942 | 22.979 | 27.229 | 30.584 |
Fujian | 24.409 | 23.892 | 28.645 | 28.896 | 25.255 | 26.074 | 30.045 |
Shanxi | 33.483 | 34.396 | 31.704 | 32.073 | 25.985 | 27.786 | 27.988 |
Hunan | 13.556 | 14.595 | 16.892 | 18.923 | 15.474 | 17.100 | 21.024 |
Jilin | 15.143 | 16.377 | 14.681 | 16.339 | 14.380 | 16.565 | 20.513 |
Shandong | 18.458 | 19.105 | 15.855 | 15.592 | 15.400 | 16.840 | 15.779 |
Guangxi | 8.643 | 9.054 | 11.013 | 12.263 | 9.833 | 10.775 | 14.395 |
Gansu | 10.916 | 11.222 | 11.926 | 12.662 | 9.656 | 10.275 | 11.582 |
Anhui | 7.878 | 8.575 | 9.035 | 10.049 | 8.547 | 10.719 | 11.365 |
Henan | 11.962 | 12.547 | 12.416 | 12.375 | 10.080 | 11.671 | 11.091 |
Sichuan | 10.416 | 11.062 | 10.737 | 11.535 | 9.324 | 10.263 | 11.074 |
Yunnan | 6.922 | 7.811 | 8.728 | 9.220 | 7.445 | 8.011 | 10.277 |
Heilongjiang | 5.713 | 6.504 | 12.837 | 13.921 | 12.080 | 14.406 | 9.324 |
Jiangxi | 4.280 | 4.515 | 5.883 | 6.618 | 5.326 | 5.924 | 8.227 |
Qinghai | 1.626 | 1.620 | 3.064 | 3.775 | 3.080 | 3.215 | 5.852 |
Hainan | 4.393 | 4.200 | 7.220 | 9.690 | 2.874 | 7.996 | 5.543 |
Year | National | East | Central | West | Northeast |
---|---|---|---|---|---|
1997 | 647,982.509 | 5.626 | 1.316 | 0.800 | 3.293 |
1998 | 568747.568 | 2.546 | 1.228 | 0.593 | 3.057 |
1999 | 498,678.736 | 3.688 | 1.377 | 0.757 | 3.408 |
2000 | 621,820.460 | 4.117 | 1.594 | 0.876 | 4.371 |
2001 | 690,551.642 | 4.926 | 1.413 | 0.848 | 3.898 |
2002 | 983,689.255 | 6.093 | 1.829 | 1.051 | 5.097 |
2003 | 1957210.067 | 10.890 | 2.776 | 1.685 | 6.465 |
2004 | 296,8701.161 | 16.084 | 3.581 | 2.350 | 7.944 |
2005 | 527,8385.658 | 30.060 | 5.348 | 4.264 | 11.562 |
2006 | 5601725.844 | 43.438 | 7.529 | 6.187 | 15.791 |
2007 | 664,6945.263 | 54.866 | 8.624 | 7.706 | 18.084 |
2008 | 1092,2095.713 | 66.015 | 10.286 | 10.181 | 20.732 |
2009 | 13712173.278 | 79.048 | 12.893 | 13.005 | 26.387 |
2010 | 18802871.775 | 99.347 | 16.435 | 18.487 | 34.666 |
2011 | 27144148.391 | 114.616 | 22.426 | 31.024 | 48.752 |
2012 | 3078,8302.103 | 121.153 | 23.723 | 32.655 | 53.300 |
2013 | 4659,6107.642 | 104.930 | 22.211 | 37.224 | 41.868 |
2014 | 5636,2173.278 | 118.145 | 24.248 | 39.820 | 43.792 |
2015 | 4843,4659.060 | 106.846 | 20.834 | 32.534 | 35.569 |
2016 | 6088,3347.545 | 121.666 | 23.764 | 35.146 | 39.508 |
2017 | 6914,8049.601 | 121.807 | 24.500 | 42.477 | 42.758 |
Original | 3-Year | 4-Year | 5-Year | |
---|---|---|---|---|
2007 | Survival BB7 | Survival BB7 | Survival BB7 | Survival BB7 |
2008 | Survival BB7 | Survival BB7 | Survival BB7 | Survival BB7 |
2009 | Survival BB7 | Survival BB7 | Survival BB7 | Survival BB7 |
2010 | Survival BB7 | Survival BB7 | Survival BB7 | Survival Clayton |
2011 | Survival Clayton | Survival Clayton | Survival BB7 | Joe |
2012 | Joe | Joe | Joe | Joe |
2013 | Survival Clayton | Survival Clayton | Survival BB7 | Survival Clayton |
2014 | Survival Clayton | Survival Clayton | Survival Clayton | Survival Clayton |
2015 | Joe | Joe | Joe | Joe |
2016 | Joe | Joe | Joe | Joe |
2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
original | 0.437 | 0.444 | 0.437 | 0.431 | 0.327 | 0.339 | 0.317 | 0.320 | 0.333 | 0.276 | |
p-value | 0.014 | 0.014 | 0.012 | 0.009 | 0.054 | 0.044 | 0.033 | 0.037 | 0.019 | 0.090 | |
3-year | 0.436 | 0.470 | 0.447 | 0.441 | 0.363 | 0.368 | 0.346 | 0.333 | 0.333 | 0.279 | |
p-value | 0.014 | 0.008 | 0.009 | 0.006 | 0.029 | 0.031 | 0.021 | 0.028 | 0.023 | 0.084 | |
4-year | 0.446 | 0.455 | 0.444 | 0.441 | 0.375 | 0.368 | 0.360 | 0.338 | 0.347 | 0.277 | |
p-value | 0.011 | 0.010 | 0.009 | 0.006 | 0.035 | 0.031 | 0.017 | 0.028 | 0.019 | 0.104 | |
5-year | 0.422 | 0.443 | 0.446 | 0.389 | 0.360 | 0.378 | 0.364 | 0.346 | 0.353 | 0.293 | |
p-value | 0.010 | 0.010 | 0.009 | 0.009 | 0.020 | 0.021 | 0.019 | 0.023 | 0.017 | 0.090 |
2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
0.9 | 0.334 | 0.365 | 0.346 | 0.328 | 0.251 | 0.276 | 0.283 | 0.239 | 0.304 | 0.315 | |
p-value | 0.000 | 0.000 | 0.000 | 0.001 | 0.005 | 0.002 | 0.002 | 0.006 | 0.001 | 0.001 | |
0.8 | 0.328 | 0.347 | 0.328 | 0.290 | 0.238 | 0.257 | 0.256 | 0.211 | 0.278 | 0.288 | |
p-value | 0.001 | 0.000 | 0.001 | 0.002 | 0.006 | 0.004 | 0.004 | 0.013 | 0.002 | 0.002 | |
0.7 | 0.328 | 0.344 | 0.328 | 0.289 | 0.238 | 0.257 | 0.256 | 0.211 | 0.276 | 0.265 | |
p-value | 0.001 | 0.000 | 0.001 | 0.002 | 0.006 | 0.004 | 0.004 | 0.013 | 0.002 | 0.003 |
2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
0.9 | 0.338 | 0.363 | 0.367 | 0.341 | 0.323 | 0.306 | 0.308 | 0.271 | 0.277 | 0.311 | |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.003 | 0.002 | 0.001 | |
0.8 | 0.337 | 0.356 | 0.352 | 0.314 | 0.279 | 0.269 | 0.300 | 0.263 | 0.252 | 0.279 | |
p-value | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.003 | 0.001 | 0.003 | 0.004 | 0.002 | |
0.7 | 0.337 | 0.355 | 0.352 | 0.313 | 0.279 | 0.269 | 0.300 | 0.263 | 0.252 | 0.257 | |
p-value | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.003 | 0.001 | 0.003 | 0.004 | 0.004 |
2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
0.9 | 0.350 | 0.370 | 0.369 | 0.360 | 0.322 | 0.315 | 0.345 | 0.276 | 0.265 | 0.294 | |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.002 | 0.003 | 0.001 | |
0.8 | 0.350 | 0.366 | 0.358 | 0.338 | 0.276 | 0.274 | 0.327 | 0.274 | 0.253 | 0.259 | |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.002 | 0.001 | 0.002 | 0.004 | 0.004 | |
0.7 | 0.350 | 0.365 | 0.358 | 0.338 | 0.276 | 0.274 | 0.327 | 0.274 | 0.253 | 0.239 | |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.002 | 0.001 | 0.002 | 0.004 | 0.006 |
2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
0.9 | 0.341 | 0.363 | 0.357 | 0.354 | 0.315 | 0.334 | 0.340 | 0.310 | 0.294 | 0.312 | |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | |
0.8 | 0.341 | 0.357 | 0.348 | 0.336 | 0.277 | 0.291 | 0.312 | 0.300 | 0.288 | 0.293 | |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.002 | 0.001 | 0.001 | 0.002 | 0.001 | |
0.7 | 0.341 | 0.357 | 0.348 | 0.336 | 0.277 | 0.291 | 0.312 | 0.300 | 0.288 | 0.262 | |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.002 | 0.001 | 0.001 | 0.002 | 0.003 |
Group 1 | Group2 | Group 3 | Group 4 | Group 5 | |
---|---|---|---|---|---|
Provinces | Yunnan | Xinjiang | Guangxi | Shaanxi | Liaoning |
Sichuan | Zhejiang | Guizhou | Jilin | Gansu | |
Xinjiang | Jiangxi | Anhui | InnerMongolia | Guangdong | |
Chongqing | Qinghai | Henan | Shandong | Shanghai | |
Beijing | Fujian | Hainan | Hebei | Ningxia | |
Hubei | Tianjin | Heilongjiang | Jiangsu | Shanxi | |
Rank | 1, 2, 3, | 4, 5, 6, | 7, 8, 9, | 10, 11, 12, | 13, 14, 15, |
28, 29, 30 | 25, 26, 27 | 22, 23, 24 | 19, 20, 21 | 16, 17, 18 | |
Kendall’s | −0.117 | ||||
p-value | 0.677 |
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | |
---|---|---|---|---|---|
Provinces | Henan | InnerMongolia | Shandong | Tianjin | Fujian |
Qinghai | Shanxi | Hebei | Jilin | Liaoning | |
Shaanxi | Jiangxi | Anhui | Jiangsu | Chongqing | |
Shanghai | Heilongjiang | Hunan | Sichuan | Zhejiang | |
Hainan | Yunnan | Xinjiang | Hubei | Ningxia | |
Beijing | Guizhou | Gansu | Guangxi | Guangdong | |
Rank | 1, 2, 3, | 4, 5, 6, | 7, 8, 9, | 10, 11, 12, | 13, 14, 15, |
28, 29, 30 | 25, 26, 27 | 22, 23, 24 | 19, 20, 21 | 16, 17, 18 | |
Kendall’s | −0.194 | ||||
p-value | 0.409 | 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, J.; Lin, H. Evaluating Regional Carbon Inequality and Its Dependence with Carbon Efficiency: Implications for Carbon Neutrality. Energies 2022, 15, 7022. https://doi.org/10.3390/en15197022
Ji J, Lin H. Evaluating Regional Carbon Inequality and Its Dependence with Carbon Efficiency: Implications for Carbon Neutrality. Energies. 2022; 15(19):7022. https://doi.org/10.3390/en15197022
Chicago/Turabian StyleJi, Jingyu, and Hang Lin. 2022. "Evaluating Regional Carbon Inequality and Its Dependence with Carbon Efficiency: Implications for Carbon Neutrality" Energies 15, no. 19: 7022. https://doi.org/10.3390/en15197022
APA StyleJi, J., & Lin, H. (2022). Evaluating Regional Carbon Inequality and Its Dependence with Carbon Efficiency: Implications for Carbon Neutrality. Energies, 15(19), 7022. https://doi.org/10.3390/en15197022