Does Renewable Energy Sector Affect Industrialization-CO2 Emissions Nexus in Europe and Central Asia?
Abstract
:1. Introduction
2. Review of Recent Empirical Evidence
2.1. Renewable Energy and CO2 Emissions
2.2. Industrialization and CO2 Emissions
3. Methodology
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Augmented mean group (AMG) |
Autoregressive Distributed Lag (ARDL) |
Brazil, Russia, India, China and South Africa (BRICS) |
Carbon dioxide (CO2) |
Organization for Economic Co-operation and Development (OECD) |
Environmental Kuznets curve (EKC) |
European Union (EU) |
Foreign direct investment (FDI) |
Fully Modified OLS (FMOLS) |
Gross domestic product (GDP) |
Generalized method of moments (GMM) |
Information and communication technologies (ICT) |
Middle East and North Africa (MENA) |
Non-linear autoregressive distributed lag (NARDL) |
Organization of the Petroleum Exporting Countries (OPEC) |
Pooled mean group (PMG) |
Vector error correction model approach (VECM). |
References
- Mentel, U.; Wolanin, E.; Eshov, M.; Salahodjaev, R. Industrialization and CO2 Emissions in Sub-Saharan Africa: The Mitigating Role of Renewable Electricity. Energies 2022, 15, 946. [Google Scholar] [CrossRef]
- Kuldasheva, Z.; Salahodjaev, R. Renewable Energy and CO2 Emissions: Evidence from Rapidly Urbanizing Countries. J. Knowl. Econ. 2022, 1–19. [Google Scholar] [CrossRef]
- Shahbaz, M.; Bhattacharya, M.; Ahmed, K. CO2 emissions in Australia: Economic and non-economic drivers in the long-run. Appl. Econ. 2017, 49, 1273–1286. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Youssef, A.B.; M’Henni, H.; Rault, C. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–349. [Google Scholar] [CrossRef]
- Saboori, B.; Sulaiman, J.; Mohd, S. Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve. Energy Policy 2012, 51, 184–191. [Google Scholar] [CrossRef]
- Cherniwchan, J. Economic growth, industrialization, and the environment. Resour. Energy Econ. 2012, 34, 442–467. [Google Scholar] [CrossRef]
- Shahbaz, M.; Solarin, S.A.; Sbia, R.; Bibi, S. Does energy intensity contribute to CO2 emissions? A trivariate analysis in selected African countries. Ecol. Indic. 2015, 50, 215–224. [Google Scholar] [CrossRef]
- Zhou, S.; Kyle, G.P.; Yu, S.; Clarke, L.E.; Eom, J.; Luckow, P.; Chaturvedi, V.; Zhang, X.; Edmonds, J.A. Energy use and CO2 emissions of China’s industrial sector from a global perspective. Energy Policy 2013, 58, 284–294. [Google Scholar] [CrossRef]
- Zoundi, Z. CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renew. Sustain. Energy Rev. 2017, 72, 1067–1075. [Google Scholar] [CrossRef]
- Kaika, D.; Zervas, E. The Environmental Kuznets Curve (EKC) theory—Part A: Concept, causes and the CO2 emissions case. Energy Policy 2013, 62, 1392–1402. [Google Scholar] [CrossRef]
- Murshed, M.; Nurmakhanova, M.; Elheddad, M.; Ahmed, R. Value addition in the services sector and its heterogeneous impacts on CO2 emissions: Revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environ. Sci. Pollut. Res. 2020, 27, 38951–38973. [Google Scholar] [CrossRef] [PubMed]
- Pata, U.K. Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: Testing EKC hypothesis with structural breaks. J. Clean. Prod. 2018, 187, 770–779. [Google Scholar] [CrossRef]
- Iwata, H.; Okada, K.; Samreth, S. Empirical study on the determinants of CO2 emissions: Evidence from OECD countries. Appl. Econ. 2012, 44, 3513–3519. [Google Scholar] [CrossRef]
- Haseeb, A.; Xia, E.; Baloch, M.A.; Abbas, K. Financial development, globalization, and CO2 emission in the presence of EKC: Evidence from BRICS countries. Environ. Sci. Pollut. Res. 2018, 25, 31283–31296. [Google Scholar] [CrossRef] [PubMed]
- Szetela, B.; Majewska, A.; Jamroz, P.; Djalilov, B.; Salahodjaev, R. Renewable Energy and CO2 Emissions in Top Natural Resource Rents Depending Countries: The Role of Governance. Front. Energy Res. 2022, 10, 242. [Google Scholar] [CrossRef]
- Shahbaz, M.; Uddin, G.S.; Rehman, I.U.; Imran, K. Industrialization, electricity consumption and CO2 emissions in Bangladesh. Renew. Sustain. Energy Rev. 2014, 31, 575–586. [Google Scholar] [CrossRef]
- Pao, H.-T.; Fu, H.-C. Renewable energy, non-renewable energy and economic growth in Brazil. Renew. Sustain. Energy Rev. 2013, 25, 381–392. [Google Scholar] [CrossRef]
- Ntanos, S.; Skordoulis, M.; Kyriakopoulos, G.; Arabatzis, G.; Chalikias, M.; Galatsidas, S.; Batzios, A.; Katsarou, A. Renewable Energy and Economic Growth: Evidence from European Countries. Sustainability 2018, 10, 2626. [Google Scholar] [CrossRef]
- Koçak, E.; Şarkgüneşi, A. The renewable energy and economic growth nexus in Black Sea and Balkan countries. Energy Policy 2017, 100, 51–57. [Google Scholar] [CrossRef]
- Sadorsky, P. Renewable energy consumption, CO2 emissions and oil prices in the G7 countries. Energy Econ. 2009, 31, 456–462. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter? Renew. Sustain. Energy Rev. 2015, 52, 1107–1122. [Google Scholar] [CrossRef]
- Amri, F. Renewable and non-renewable categories of energy consumption and trade: Do the development degree and the industrialization degree matter? Energy 2019, 173, 374–383. [Google Scholar] [CrossRef]
- Abbasi, K.R.; Adedoyin, F.F.; Abbas, J.; Hussain, K. The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation. Renew. Energy 2021, 180, 1439–1450. [Google Scholar] [CrossRef]
- Chunark, P.; Limmeechokchai, B.; Fujimori, S.; Masui, T. Renewable energy achievements in CO2 mitigation in Thailand’s NDCs. Renew. Energy 2017, 114, 1294–1305. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, K.; Velayutham, E. Reduction of CO2 emissions: The role of renewable energy, technological innovation and export quality. Energy Rep. 2022, 8, 2793–2805. [Google Scholar] [CrossRef]
- İnal, V.; Addi, H.M.; Çakmak, E.E.; Torusdağ, M.; Çalışkan, M. The nexus between renewable energy, CO2 emissions, and economic growth: Empirical evidence from African oil-producing countries. Energy Rep. 2022, 8, 1634–1643. [Google Scholar] [CrossRef]
- Saidi, K.; Omri, A. Reducing CO2 emissions in OECD countries: Do renewable and nuclear energy matter? Prog. Nucl. Energy 2020, 126, 103425. [Google Scholar] [CrossRef]
- Chiu, C.-L.; Chang, T.-H. What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries? Renew. Sustain. Energy Rev. 2009, 13, 1669–1674. [Google Scholar] [CrossRef]
- Zaghdoudi, T. Oil prices, renewable energy, CO2 emissions and economic growth in OECD countries. Econ. Bull. 2017, 37, 1844–1850. [Google Scholar]
- Azam, A.; Rafiq, M.; Shafique, M.; Yuan, J. An empirical analysis of the non-linear effects of natural gas, nuclear energy, renewable energy and ICT-Trade in leading CO2 emitter countries: Policy towards CO2 mitigation and economic sustainability. J. Environ. Manag. 2021, 286, 112232. [Google Scholar] [CrossRef]
- Yu, J.; Tang, Y.M.; Chau, K.Y.; Nazar, R.; Ali, S.; Iqbal, W. Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation. Renew. Energy 2022, 182, 216–226. [Google Scholar] [CrossRef]
- Namahoro, J.; Wu, Q.; Zhou, N.; Xue, S. Impact of energy intensity, renewable energy, and economic growth on CO2 emissions: Evidence from Africa across regions and income levels. Renew. Sustain. Energy Rev. 2021, 147, 111233. [Google Scholar] [CrossRef]
- De Souza Mendonça, A.K.; Barni, G.D.A.C.; Moro, M.F.; Bornia, A.C.; Kupek, E.; Fernandes, L. Hierarchical modeling of the 50 largest economies to verify the impact of GDP, population and renewable energy generation in CO2 emissions. Sustain. Prod. Consum. 2020, 22, 58–67. [Google Scholar] [CrossRef]
- Ding, Y.; Li, F. Examining the effects of urbanization and industrialization on carbon dioxide emission: Evidence from China’s provincial regions. Energy 2017, 125, 533–542. [Google Scholar] [CrossRef]
- Liu, X.; Bae, J. Urbanization and industrialization impact of CO2 emissions in China. J. Clean. Prod. 2018, 172, 178–186. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models. Energy Econ. 2015, 48, 188–202. [Google Scholar] [CrossRef]
- Mahmood, H.; Alkhateeb, T.T.Y.; Furqan, M. Industrialization, urbanization and CO2 emissions in Saudi Arabia: Asymmetry analysis. Energy Rep. 2020, 6, 1553–1560. [Google Scholar] [CrossRef]
- Musa, K.S.; Maijama’a, R.; Yakubu, M. The causality between urbanization, industrialization and CO2 emissions in Nigeria: Evidence from Toda and Yamamoto Approach. Energy Econ. Lett. 2021, 8, 1–14. [Google Scholar] [CrossRef]
- Appiah, M.; Li, F.; Korankye, B. Modeling the linkages among CO2 emission, energy consumption, and industrialization in sub-Saharan African (SSA) countries. Environ. Sci. Pollut. Res. 2021, 28, 38506–38521. [Google Scholar] [CrossRef]
- Martínez-Zarzoso, I.; Bengochea-Morancho, A.; Morales-Lage, R. The impact of population on CO2 emissions: Evidence from European countries. Environ. Resour. Econ. 2007, 38, 497–512. [Google Scholar] [CrossRef]
- Munksgaard, J.; Pade, L.L.; Minx, J.; Lenzen, M. Influence of trade on national CO2 emissions. Int. J. Glob. Energy Issues 2005, 23, 324–336. [Google Scholar] [CrossRef]
- Asongu, S.A.; Le Roux, S.; Biekpe, N. Enhancing ICT for environmental sustainability in sub-Saharan Africa. Technol. Forecast. Soc. Change 2018, 127, 209–216. [Google Scholar] [CrossRef]
- Muhammad, B.; Khan, S. Understanding the relationship between natural resources, renewable energy consumption, economic factors, globalization and CO2 emissions in developed and developing countries. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2021; Volume 45, No. 2; pp. 138–156. [Google Scholar]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econ. 1995, 68, 29–51. [Google Scholar] [CrossRef]
- Alam, J. Impact of agriculture, industry and service sector’s value added in the GDP on CO2 emissions of selected South Asian countries. World Rev. Bus. Res. 2015, 5, 39–59. [Google Scholar]
- Isaeva, A.; Salahodjaev, R.; Khachaturov, A.; Tosheva, S. The Impact of Tourism and Financial Development on Energy Consumption and Carbon Dioxide Emission: Evidence from Post-communist Countries. J. Knowl. Econ. 2022, 13, 773–786. [Google Scholar] [CrossRef]
- Heinbach, K.; Aretz, A.; Hirschl, B.; Prahl, A.; Salecki, S. Renewable energies and their impact on local value added and employment. Energy, Sustain. Soc. 2014, 4, 1. [Google Scholar] [CrossRef]
- Salahodjaev, R.; Sharipov, K.; Rakhmanov, N.; Khabirov, D. Tourism, renewable energy and CO2 emissions: Evidence from Europe and Central Asia. Environ. Dev. Sustain. 2022, 1–12. [Google Scholar] [CrossRef]
- Bibi, F.; Jamil, M. Testing environment Kuznets curve (EKC) hypothesis in different regions. Environ. Sci. Pollut. Res. 2021, 28, 13581–13594. [Google Scholar] [CrossRef]
- Pata, U.K. The influence of coal and noncarbohydrate energy consumption on CO2 emissions: Revisiting the environmental Kuznets curve hypothesis for Turkey. Energy 2018, 160, 1115–1123. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K.; Ozturk, I. The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation. Renew. Sustain. Energy Rev. 2016, 62, 1226–1235. [Google Scholar] [CrossRef]
- Salahodjaev, R.; Isaeva, A. Post-Soviet states and CO2 emissions: The role of foreign direct investment. Post-Communist Econ. 2021, 1–22. [Google Scholar] [CrossRef]
- Blanco, L.; Gonzalez, F.; Ruiz, I. The impact of FDI on CO2 emissions in Latin America. Oxf. Dev. Stud. 2013, 41, 104–121. [Google Scholar] [CrossRef]
- Katircioglu, S.T.; Feridun, M.; Kilinc, C. Estimating tourism-induced energy consumption and CO2 emissions: The case of Cyprus. Renew. Sustain. Energy Rev. 2014, 29, 634–640. [Google Scholar] [CrossRef]
- Sherafatian-Jahromi, R.; Othman, M.S.; Law, S.H.; Ismail, N.W. Tourism and CO2 emissions nexus in Southeast Asia: New evidence from panel estimation. Environ. Dev. Sustain. 2017, 19, 1407–1423. [Google Scholar] [CrossRef]
- Eyuboglu, K.; Uzar, U. The impact of tourism on CO2 emission in Turkey. Curr. Issues Tour. 2020, 23, 1631–1645. [Google Scholar] [CrossRef]
- Paramati, S.R.; Alam, S.; Lau, C.K.M. The effect of tourism investment on tourism development and CO2 emissions: Empirical evidence from the EU nations. J. Sustain. Tour. 2018, 26, 1587–1607. [Google Scholar] [CrossRef]
- Paramati, S.R.; Alam, M.S.; Chen, C.-F. The Effects of Tourism on Economic Growth and CO2 Emissions: A Comparison between Developed and Developing Economies. J. Travel Res. 2017, 56, 712–724. [Google Scholar] [CrossRef]
- Shahnazi, R.; Shabani, Z.D. The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU. Renew. Energy 2021, 169, 293–307. [Google Scholar] [CrossRef]
- Khan, Z.U.; Ahmad, M.; Khan, A. On the remittances-environment led hypothesis: Empirical evidence from BRICS economies. Environ. Sci. Pollut. Res. 2020, 27, 16460–16471. [Google Scholar] [CrossRef]
Variable | Description | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
CO2 | tCO2 emissions per capita | 6.91 | 3.86 | 0 | 26.44 |
GDP | GDP per capita, adjusted for PPP, international dollars per person | 30,389.71 | 21,180.69 | 1252.46 | 115,415.4 |
TO | Trade as % of GDP | 100.81 | 48.55 | 22.49 | 408.36 |
UR | Urbanization rate, % | 66.22 | 18.49 | 14.303 | 100 |
PG | Population growth, % | 0.37 | 0.90 | −3.85 | 4.37 |
IND | Industry value added as % of GDP | 25.25 | 8.07 | 7.43 | 66.58 |
ICT | Internet users as % of the population | 52.28 | 28.74 | 0.05 | 99.01 |
FDI | FDI net inflows as % of GDP | 16.86 | 87.01 | −58.32 | 1282.63 |
EXP | Exports as % of GDP | 48.86 | 26.83 | 8.78 | 205.48 |
TEXP | Tourism receipts as % of exports | 12.16 | 12.77 | 0.62 | 73.74 |
RE | Renewable energy consumption, % | 18.33 | 16.65 | 0 | 78.2135 |
Variable | VIF |
---|---|
Lagged CO2 | 3.68 |
GDP | 4.11 |
TO | 1.15 |
UR | 2.98 |
PG | 1.04 |
IND | 1.33 |
RE | 1.39 |
OVERALL | 2.03 |
I | II | |
---|---|---|
CO2t−1 | 0.8735 | 0.8196 |
(32.08) *** | (37.65) *** | |
GDP | 0.4394 | 0.5193 |
(2.25) ** | (2.24) ** | |
GDP2 | −0.0200 | −0.0221 |
(1.99) * | (1.82) * | |
TO | 0.0001 | 0.0000 |
(1.32) | (0.16) | |
UR | 0.0016 | 0.0016 |
(2.23) ** | (2.21) ** | |
PG | 0.0118 | 0.0090 |
(2.56) ** | (1.80) * | |
IND | 0.0026 | 0.0036 |
(2.40) ** | (3.75) *** | |
RE | −0.0022 | −0.0021 |
(3.96) *** | (4.62) *** | |
IND * RE | −0.0001 | |
(3.40) *** | ||
Constant | −2.3152 | −2.8460 |
(2.46) ** | (2.55) ** | |
AR (1) | 0.001 | 0.001 |
AR (2) | 0.946 | 0.932 |
Hansen p-value | 0.145 | 0.176 |
Fisher p-value | 0.00 | 0.00 |
Number of countries | 48 | 48 |
N | 849 | 849 |
I | II | III | IV | |
---|---|---|---|---|
IND | 0.0022 | 0.0032 | 0.0033 | 0.0061 |
(1.69) * | (2.86) *** | (3.36) *** | (4.14) *** | |
RE | −0.0033 | −0.0030 | −0.0027 | −0.0057 |
(5.96) *** | (3.98) *** | (2.58) ** | (4.34) *** | |
IND * RE | −0.0003 | −0.0002 | −0.0001 | −0.0002 |
(6.80) *** | (4.27) *** | (2.82) *** | (2.99) *** | |
ICT | 0.0006 | |||
(1.83) * | ||||
FDI | 0.0001 | 0.0001 | ||
(2.99) *** | (2.14) ** | |||
EXP | 0.0002 | −0.0009 | ||
(0.71) | (1.81) * | |||
TEXP | −0.0037 | |||
(3.97) *** | ||||
Constant | −0.2783 | −2.4640 | −2.4015 | −4.3507 |
(0.30) | (1.51) | (1.32) | (1.55) | |
AR (1) | 0.001 | 0.001 | 0.001 | 0.001 |
AR (2) | 0.916 | 0.604 | 0.433 | 0.908 |
Hansen p-value | 0.389 | 0.462 | 0.386 | 0.865 |
Fisher p-value | 0.000 | 0.00 | 0.000 | 0.000 |
Number of countries | 48 | 48 | 48 | 45 |
N | 833 | 836 | 835 | 685 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mentel, G.; Tarczyński, W.; Dylewski, M.; Salahodjaev, R. Does Renewable Energy Sector Affect Industrialization-CO2 Emissions Nexus in Europe and Central Asia? Energies 2022, 15, 5877. https://doi.org/10.3390/en15165877
Mentel G, Tarczyński W, Dylewski M, Salahodjaev R. Does Renewable Energy Sector Affect Industrialization-CO2 Emissions Nexus in Europe and Central Asia? Energies. 2022; 15(16):5877. https://doi.org/10.3390/en15165877
Chicago/Turabian StyleMentel, Grzegorz, Waldemar Tarczyński, Marek Dylewski, and Raufhon Salahodjaev. 2022. "Does Renewable Energy Sector Affect Industrialization-CO2 Emissions Nexus in Europe and Central Asia?" Energies 15, no. 16: 5877. https://doi.org/10.3390/en15165877
APA StyleMentel, G., Tarczyński, W., Dylewski, M., & Salahodjaev, R. (2022). Does Renewable Energy Sector Affect Industrialization-CO2 Emissions Nexus in Europe and Central Asia? Energies, 15(16), 5877. https://doi.org/10.3390/en15165877