A Phase-Shift-Modulated LLC-Resonant Micro-Inverter Based on Fixed Frequency Predictive-MPPT
Abstract
:1. Introduction
- (1)
- Stand-alone PV systems (off-grid), and
- (2)
- Grid-connected PV systems.
2. Analysis of the LLC Phase-Shift Modulated Resonant Converter
3. Proposed Fixed-Frequency Phase-Shift Modulated MPC-MPPT Control
4. Simulation Results
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fraunhofer, I.S.E. Photovoltaics Report, Tech. Rep. Nov. 2019. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed on 14 November 2019).
- Jäger-Waldau, A. PV Status Report 2018. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC113626/pv_status_report_2018_online.pdf (accessed on 4 November 2018).
- Global Market Outlook for Solar Power/2018–2022. Available online: https://www.solarpowereurope.org/wp-content/uploads/2018/09/Global-Market-Outlook-2018-2022.pdf (accessed on 17 November 2017).
- Renewables 2019 Fuel Report—October 2019. Available online: https://www.iea.org/reports/renewables-2019 (accessed on 21 October 2019).
- Kjaer, S.B.; Pedersen, J.K.; Blaabjerg, F. A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 2005, 41, 1292–1306. [Google Scholar] [CrossRef]
- Abdel-Rahim, O.; Funato, H.; Haruna, J. An efficient and high-gain inverter based on the 3s inverter employs model predictive control for PV. J. Electr. Eng. Technol. 2017, 12, 1484–1494. [Google Scholar]
- Roman, E.; Alonso, R.; Ibanez, P.; Elorduizapatarietxe, S.; Goitia, D. Intelligent PV Module for Grid-Connected PV Systems. IEEE Trans. Ind. Electron. 2006, 53, 1066–1073. [Google Scholar] [CrossRef]
- Parimita, M.; Muneer, T.; KolheSolar, M. Photovoltaic System Applications: A Guidebook for off-Grid Electrification; Springer: Berlin, Germany, 2015; p. 50. [Google Scholar]
- Li, J.; Chen, Y.; Liu, Y. Research on a stand-alone photovoltaic system with a supercapacitor as the energy storage device. Energy Procedia 2012, 16, 1693–1700. [Google Scholar] [CrossRef] [Green Version]
- Merei, G.; Berger, C.; Sauer, D.U. Optimization of an off-grid hybrid PV–Wind–Diesel system with different battery technologies using genetic algorithm. Sol. Energy 2013, 97, 460–473. [Google Scholar] [CrossRef]
- Mohammed, O.; Amirat, Y.; Benbouzid, M.; Elbast, A. Optimal Design of a PV/Fuel Cell Hybrid Power System for the City of Brest in France; IEEEICGE: Sfax, Tunisia, 2014; pp. 119–123. [Google Scholar]
- Kouro, B.W.S.; Abu-Rub, H.; Blaabjerg, F. Power electronics for renewable energy systems, transportation, and industrial applications. In Photovoltaic Energy Conversion Systems, 1st ed.; Wile: Hoboken, NJ, USA, 2014; Chart 7. [Google Scholar]
- Meinhardt, M.; Cramer, G.; Burger, B.; Zacharias, P. Multi-string-converter with reduced specific costs and enhanced functionality. Sol. Energy 2001, 69, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Kim, K.A.; Blaabjerg, F.; Sangwongwanich, A. 1-Introduction, in Advances in Grid-Connected Photovoltaic Power Conversion Systems; Yang, Y., Kim, K.A., Blaabjerg, F., Sangwongwanich, A., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 1–13. [Google Scholar]
- Ahmed, M.E.; Orabi, M.; AbdelRahim, O.M. Two-stage micro-grid inverter with high-voltage gain for photovoltaic applications. IET Power Electron. 2013, 6, 1812–1821. [Google Scholar] [CrossRef]
- Kouro, S.; Leon, J.I.; Vinnikov, D.; Franquelo, L.G. Grid-Connected Photovoltaic Systems: An Overview of Recent Research and Emerging PV Converter Technology. IEEE Ind. Electron. Mag. 2015, 9, 47–61. [Google Scholar] [CrossRef]
- Chen, L.; Amirahmadi, A.; Zhang, Q.; Kutkut, N.; Batarseh, I. Design and Implementation of Three-Phase Two-Stage Grid-Connected Module Integrated Converter. IEEE Trans. Power Electron. 2014, 29, 3881–3892. [Google Scholar] [CrossRef]
- Çelik, Ö.; Teke, A.; Tan, A. Overview of micro-inverters as a challenging technology in photovoltaic applications. Renew. Sustain. Energy Rev. 2018, 82, 3191–3206. [Google Scholar] [CrossRef]
- Orabi, M.; Ahmed, M.; Abdel-Rahim, O. A Single-stage High Boosting Ratio Converter for Grid-connected Photovoltaic Systems. Electr. Power Compon. Syst. 2013, 41, 896–911. [Google Scholar] [CrossRef]
- Razi, A.; Hidayat, M.N.; Seroji, M.N. Microinverter Topology based Single-stage Grid-connected Photovoltaic System: A Review. Indones. J. Electr. Eng. Comput. Sci. 2018, 11, 645–651. [Google Scholar] [CrossRef]
- Oriti, G.; Julian, A.L.; Bailey, T.D. PV power conditioning system with LLC resonant converter in DCM. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 4262–4268. [Google Scholar]
- Darwish, A.; Holliday, D.; Ahmed, S.; Massoud, A.M.; Williams, B.W. A Single-Stage Three-Phase Inverter Based on Cuk Converters for PV Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 797–807. [Google Scholar] [CrossRef]
- Abdel-Rahim, O.; Funato, H.; Haruna, J. A comprehensive study of three high gain dc-dc topologies based on cockcroft-walton voltage-multiplier for reduced power pv applications IEEJ Transactions on Electrical and Electronic Engineering(TEEE D). IEEJ Trans. 2018, 13, 642–651. [Google Scholar]
- Liang, Z.; Guo, R.; Li, J.; Huang, A.Q. A High-Efficiency PV Module-Integrated DC/DC Converter for PV Energy Harvest in FREEDM Systems. IEEE Trans. Power Electron. 2011, 26, 897–909. [Google Scholar] [CrossRef]
- Jang, S.; Won, C.; Lee, B.; Hur, J. Fuel Cell Generation System With a New Active Clamping Current-Fed Half-Bridge Converter. IEEE Trans. Energy Convers. 2007, 22, 332–340. [Google Scholar] [CrossRef]
- Bai, C.; Han, B.; Kim, M. Current-fed dual-half-bridge converter directly connected with half-bridge inverter for residential photovoltaic system. Sol. Energy 2018, 174, 108–120. [Google Scholar] [CrossRef]
- Kasa, N.; Iida, T.; Liang, C. Flyback inverter controlled by sensorless current MPPT for photovoltaic power system. IEEE Trans. Ind. Electron. 2005, 52, 1145–1152. [Google Scholar] [CrossRef]
- Hasan, R.; Mekhilef, S. Highly efficient flyback microinverter for grid-connected rooftop PV system. Sol. Energy 2017, 146, 511–522. [Google Scholar] [CrossRef]
- Geury, T.; Pinto, S.; Gyselinck, J. Direct control method for a PV system integrated in an Indirect Matrix Converter-based UPQC. In Proceedings of the 2016 IEEE Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 21–24 August 2016; pp. 117–122. [Google Scholar]
- Haque, M.M.; Wolfs, P.; Alahakoon, S. Dual active bridge and matrix converter based three-port converter topology for grid interactive PV-battery system. In Proceedings of the 2017 Australasian Universities Power Engineering Conference (AUPEC), Melbourne, VIC, Australia, 19–22 November 2017; pp. 1–6. [Google Scholar]
- Yilei, G.; Zhengyu, L.; Zhaoming, Q. Three-level LLC series resonant DC/DC converter. IEEE Trans. Power Electron. 2004, 20, 781–789. [Google Scholar]
- Beiranvand, R.; Rashidian, B.; Zolghadri, M.R.; Alavi, S.M.H. Using LLC Resonant Converter for Designing Wide-Range Voltage Source. IEEE Trans. Ind. Electron. 2011, 58, 1746–1756. [Google Scholar] [CrossRef]
- Harischandrappa, N.; Bhat, A.K.S. A Fixed-Frequency $LCL$-Type Series Resonant Converter With a Capacitive Output Filter Using a Modified Gating Scheme. IEEE Trans. Ind. Appl. 2014, 50, 4056–4064. [Google Scholar] [CrossRef]
- Cha, W.J.; Kwon, J.M.; Kwon, B.H. Highly efficient step-up DC-DC converter for photovoltaic micro-inverter. Sol. Energy 2016, 135, 14–21. [Google Scholar] [CrossRef]
- Rashid, M.H.; Hui, S.Y.; Chung, H.S.H. 12-Resonant and Soft-Switching Converters. In Power Electronics Handbook, 4th ed.; Rashid, M.H., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 339–383. [Google Scholar]
- Salem, M.; Jusoh, A.; Idris, N.R.N.; Das, S.H.; Alhamrouni, I. Resonant power converters with respect to passive storage (LC) elements and control techniques–An overview. Renew. Sustain. Energy Rev. 2018, 91, 504–520. [Google Scholar] [CrossRef]
- Abdel-Rahim, O.; Funato, H.; Haruna, J. Novel predictive maximum power point tracking techniques for photovoltaic applications. J. Power Electron. 2016, 16, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Metry, M.; Shadmand, M.B.; Balog, R.S.; Rub, H.A. High-efficiency MPPT by model predictive control considering load disturbances for photovoltaic applications under dynamic weather condition. In Proceedings of the IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 004092–004095. [Google Scholar]
- Metry, M.; Shadmand, M.B.; Balog, R.S.; Rub, H.A. A variable step-size MPPT for sensorless current model predictive control for photovoltaic systems. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–8. [Google Scholar]
- Sajadian, S.; Ahmadi, R. Model Predictive-Based Maximum Power Point Tracking for Grid-Tied Photovoltaic Applications Source Inverter. IEEE Trans. Power Electron. 2016, 31, 7611–7620. [Google Scholar] [CrossRef]
- Fang, X. Analysis and Design Optimization of Resonant DC-DC Converters. Doctoral Dissertation, University of Central Florida, Orlando, FL, USA, 2012. [Google Scholar]
- Shahul, A.; Oommen, A.P.; Kuruvilla, J. PMPPT Based Resonant Converter for A Standalone Water Pumping System. Int. J. Eng. Appl. Sci. Technol. 2017, 2, 148–154. [Google Scholar]
- Conesa, A.; Velasco, G.; Martinez, H.; Roman, M. LCLC resonant converter as maximum power point tracker in PV systems. In Proceedings of the 2009 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 8–10 September 2009; pp. 1–9. [Google Scholar]
- Zhang, Q.; Hu, C.; Chen, L.; Amirahmadi, A.; Kutkut, N.; Shen, Z.J.; Batarseh, I. A Center Point Iteration MPPT Method With Application on the Frequency-Modulated LLC Microinverter. IEEE Trans. Power Electron. 2014, 29, 1262–1274. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Hu, G. Modeling of a fixed-frequency resonant LLC DC/DC converter with capacitive output filter. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 5456–5461. [Google Scholar]
- Alamir, N.; Ismeil, M.A.; Orabi, M. New MPPT technique using phase-shift modulation for LLC resonant micro-inverter. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 19–21 December 2017; pp. 1465–1470. [Google Scholar]
- Abdel-Rahim, O.; Alamir, N.; Orabi, M. Mohamed Ismeil Fixed-frequency phase-shift modulated PV-MPPT for LLC resonant converters. J. Power Electron. 2019, 20, 279–291. [Google Scholar]
- Alamir, N.; Abdel-Rahim, O.; Ismeil, M.; Orabi, M.; Kennel, R. Fixed Frequency Predictive MPPT for Phase-Shift Modulated LLC Resonant Micro-Inverter. In Proceedings of the 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), Riga, Latvia, 17–21 September 2018; pp. 1–9. [Google Scholar]
Rated Power | 250 W |
Transformer Core Size | RM14 |
Turns Ratio | 7 |
Magnetizing Inductance | 20.5 μH |
Switch S1-S4 | IRFB4510PBF |
Output Rectifier D1-D2 | QH03TZ600 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Rahim, O.; Alamir, N.; Abdelrahem, M.; Orabi, M.; Kennel, R.; Ismeil, M.A. A Phase-Shift-Modulated LLC-Resonant Micro-Inverter Based on Fixed Frequency Predictive-MPPT. Energies 2020, 13, 1460. https://doi.org/10.3390/en13061460
Abdel-Rahim O, Alamir N, Abdelrahem M, Orabi M, Kennel R, Ismeil MA. A Phase-Shift-Modulated LLC-Resonant Micro-Inverter Based on Fixed Frequency Predictive-MPPT. Energies. 2020; 13(6):1460. https://doi.org/10.3390/en13061460
Chicago/Turabian StyleAbdel-Rahim, Omar, Nehmedo Alamir, Mohamed Abdelrahem, Mohamed Orabi, Ralph Kennel, and Mohamed A. Ismeil. 2020. "A Phase-Shift-Modulated LLC-Resonant Micro-Inverter Based on Fixed Frequency Predictive-MPPT" Energies 13, no. 6: 1460. https://doi.org/10.3390/en13061460
APA StyleAbdel-Rahim, O., Alamir, N., Abdelrahem, M., Orabi, M., Kennel, R., & Ismeil, M. A. (2020). A Phase-Shift-Modulated LLC-Resonant Micro-Inverter Based on Fixed Frequency Predictive-MPPT. Energies, 13(6), 1460. https://doi.org/10.3390/en13061460