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Abstract: Maximum Power Point Tracking (MPPT) control is an essential part of every photovoltaic
(PV) system, in order to overcome any change in ambient environmental conditions and ensure
operation at maximum power.. Recently, micro-inverters have gained a lot of attention due to their
ability to track the true MPP for each individual PV module, which is considered a powerful solution
to overcome the partial shading and power mismatch problems which exist in series-connected
panels. Although the LLC resonant converter has high efficiency and high boosting ability, traditional
MPPT techniques based on Pulse Width Modulation (PWM) do not work well with it. In this paper,
a fixed frequency predictive MPPT technique is presented for the LLC resonant converter to be used
as the first-stage in a PV micro-inverter. Using predictive control enhances the tracking efficiency and
reduces the steady state oscillation. Operation with fixed switching frequency for the LLC resonant
converter improves the total harmonic distortion profile of the system and ease the selection of circuit
magnetic component. To demonstrate the effectiveness of the proposed MPPT technique, the system is
simulated using MATLAB/Simulink platform. Furthermore, a 150 W hardware prototype is developed
and tested. Both simulation and experimental results are consistent and validate the proper operation
of the developed system.

Keywords: micro-inverter; LLC resonant converter; MPPT; phase-shift control; fixed frequency

1. Introduction

Photovoltaic (PV) cells are one of the promising kinds of renewable energy. The compound annual
growth rate (CAGR) of PV installations was 36.8% between the years 2010 to 2018 [1,2]. It is worth
noting that the annual installation of PV stations in 2017 alone was the same as the total PV capacity
until the end of 2012 [3]. It is expected that renewable power capacity will continue to increase by
50% between 2019 and 2024 [4]. PV systems have different classifications, but they could be classified
according to grid integration into [5–7]:

(1) Stand-alone PV systems (off-grid), and
(2) Grid-connected PV systems.

In the stand-alone (off-grid) mode, the PV system is isolated from the main grid, and hence the
PV-voltage is converted to AC-voltage to feed AC-loads. Battery storage is an essential component
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in off-grid PV systems, in order to feed essential loads during emergencies [8]. There are different
categories of storage systems like lead acid batteries. For example, the usage of supercapacitors is a
good solution in case of limited energy storage capacity [9]. On the other hand, when the storage
station is not able to cover all load demands, a hybrid system can represent a good solution [10].
Hybrid system using PV generation and hydrogen energy storage system is presented in [11].

In grid integrated PV systems, the PV panels are connected to the grid via a DC/AC converter.
The grid voltage is fixed, and hence, the PV system is working as a current source which is injecting a
sinusoidal current into the grid. The different formations which are developed in the literature for
grid-tied PV systems are summarized as follows:

(i) Centralized PV arrays, where a huge number of PV panels are connected in series and parallel
configuration and then they are connected to a centralized DC/AC converter. This configuration is
commonly used in very high power PV plants. However, this system requires expensive switches and
high voltage wiring [12], and in case of partial shading or mismatches, the system fails to extract the
maximum power [12,13].

(ii) Multi-string inverter. This configuration is used in medium power PV power plants. Strings
are connected in parallel and each group of the parallel string is connected to their own DC-DC
converter. All these converters are connected to the utility grid through a central DC/AC converter.
Partial shading problems have less effect than in the centralized formation case, however as it still
depends on a centralized inverter, inverter failures can shut down the whole plant [13].

(iii) Micro-inverter. This configuration is well suited for low power PV applications, where each
PV panel has its own DC/AC converter [14–16]. Such a formation overcomes partial shading and
power mismatch problems. Due to their compactness and high efficiency, micro-inverters have gained
a lot of attention in grid-tie applications [17–19]. The main advantage of using a micro-inverter is that
each PV module has its own power conversion, and hence independent MPPT control. Consequently,
a global MPPT system is not required, as each PV module is operating at its maximum power in an
independent way. Micro-inverters can be classified into single-stage micro-inverters and two-stage
microinverters [20]. Two stage micro-inverters consist of DC-DC converters to perform voltage boosting
and MPPT extraction and DC-AC converter to convert the DC voltage into AC voltage, while single
stage micro-inverters consist of only one stage that performs voltage boosting, MPPT tracking and
converts the DC voltage into AC voltage.

The general structure of a micro-inverter is illustrated in Figure 1. The general requirements of
micro-inverters include the ability to operate at high efficiency, high power density and operation over
a wide range of dynamic load changes [21]. The first stage of a micro-inverter is constituted by a DC-DC
converter. Different types of DC-DC converters are described in the literature, but the high frequency
(HF) resonant converter has small-size magnetic components, galvanic isolation, and higher efficiency
over a wide load range. Such features make resonant converters a perfect choice for micro-inverter
applications. Soft switching techniques are applied to the resonant converter to improve the overall
system efficiency and reduce the switching losses of the system. Micro-inverter topologies can be
classified into isolated micro-inverters and non-isolated micro-inverters. In non-isolated micro-inverters,
the configuration does not include any transformer and the DC/DC stage is used such as boost,
buck-boost or cuk converters [22–24]. Isolated micro-inverters include a transformer, high frequency
or line frequency transformer, such as current-feed push-pull [25,26], flyback converters [27,28], matrix
converters [29,30] and resonant converters [31–34]. Converters operating in soft switching mode are
preferred more than hard-switching converters. Hard-switching causes higher switching losses, lower
efficiency and damage to the switching devices. Resonant converters represent a superior solution
for PV applications due to their high efficiency and zero-voltage switching (ZVS) and/or zero-current
switching (ZCS) operation [35,36].

Different MPPT techniques for PV applications have been reported in the literature like perturb
and observe (P&O), incremental conductance (INC), or fuzzy logic MPPT. MPPT techniques based
on predictive control have been introduced in [37–40]. Fixed-frequency fixed-step INC predictive



Energies 2020, 13, 1460 3 of 16

MPPT proposed in [37] with an enhancement of the ordinary INC method by predicting the error
before applying the switching signal. In [38], a variable-frequency fixed-step P&O predictive control
method was implemented with a good dynamic response and small power ripple at steady state,
while a variable step size sensorless predictive MPPT was proposed in [39]. In [40], a predictive
MPPT is presented for a Z-source grid-connected inverter using variable frequency control. All the
previously mentioned techniques are implemented for PWM converters, but none of them could be
applied directly to resonant topologies. Due to the nonlinearity of the voltage gain versus frequency
relationship, MPPT with a special design mast be considered for frequency-modulated LLC resonant
converters. Most of the old MPPT methods have been modified to be compatibile with different
resonant converters. A modified P&O for a resonant converter is presented in [41,42]. Although this
method is easy, it has some limitations that can be summarized as: fixed-step P&O delays the response
of the system, and the long tracking time leads to an increase in power losses.

In [43] a fixed step P&O variable frequency control method is proposed for the LLC resonant
converter. Although it is a simple technique, it suffers from a long transient period. A variable step
variable frequency MPPT control is implemented in [44], but it suffers from a wide range of harmonics
and bigger EMI, due to its variable frequency operation. Also, the design of the magnetic component is
a cumbersome operation; a phase-shift fixed-frequency modulation control is used to overcome those
disadvantages [44,45]. The use of fixed-frequency modulation with the LLC resonant converter is first
addressed in [46,47], which use a fixed-frequency P&O MPPT but with high steady state oscillation.
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Figure 1. A two-stage PV grid-connected system.

This manuscript presents a novel fixed-frequency phase-shift (FFPS) predictive MPPT for
LLC resonant converters to be used in the two-stage micro-inverter configuration for grid-tied
PV applications. This manuscript modifies the content developed in [48], where the system is briefly
discussed and only simple simulation results are included. On the other hand, here complete hardware
results are presented, as well as an extensive system analysis.

The proposed fixed frequency predictive MPPT for LLC resonant converters has several advantages
over other MPPT techniques suitable to be applied for tLLC resonant converters, which are as follows:
(1) small steady state error due to the use of a PI controller. (2) Fast transient performance due to the
prediction of reference voltage, and (3) simple parameter design due to the usage of fixed frequency
modulation.The developed two-stage micro-inverter schematic is shown in Figure 2. It is constructed
from a LLC resonant converter and an h-bridge inverter. This manuscript considers only the DC-DC
part. The choice of the LLC resonant converter, the first stage in the proposed system, comes from its
distinct features over other resonant converter topologies such as the ability to operate at ZVS/ZCS,
wide input-voltage range, step-up ability, and high efficiency.

This paper is organized as follows: Section 2 discusses the analysis of LLC resonant DC/DC
converter, then Section 3 discusses the proposed MPPT technique using the predictive Fixed-Frequency
phase-shift control, Section 4 presents the simulation results for the proposed MPPT technique and
experimental results, and finally Section 5 presents the experimental validation of the proposed
MPPT technique.
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2. Analysis of the LLC Phase-Shift Modulated Resonant Converter

The LCC resonant converter depicted in Figure 2 consists of s phase-shift switching network,
resonant tank, high frequency transformer, and voltage doubler. The switching network depends on the
voltage gain requirements, and it may be constructed from a half-bridge or full-bridge. The switching
network chops the input DC voltage into high-frequency square pulses. The resonant network consists
of a series of Ls and Cs, and Cp in parallel with the rectifier input. The energy applied across the
resonant tank by the switching network is circulated through the resonant tank network. Applied
energy is delivered to the output either in the same or the next switching cycle.

The gating signal and key waveforms of the LLC resonant converter are shown in Figure 3.
The converter is analyzed based on the fundamental harmonic approximation (FHA) technique given
in [44]. The equivalent phasor circuit of the LLC converter is illustrated in Figure 4. The DC-input
voltage is converted to a square wave waveform by the switching network. The output of the switched
network appears between X and Y terminals. The root mean square (RMS) value of the fundamental
component of the AC voltage VXY is given by:

VXY =

√
2
π

Vpv(1− cosδ) (1)

where δ is the pulse width angle. it has an angle complementary to the phase shift angle α and
α = π − δ as shown in Figure 2. By using high switching transformer with turns ration n, the RMS
value of primary voltage VLp can be obtained as:

VLp =
1
2

nVo(ac) (2)

Then from (1) and (2):
VLp

VXY
= (2/(1− cos δ))

(
nVo(ac)/Vpv

)
(3)

Referring to the phasor equivalent circuit of the converter in Figure 4, the following relation can
be obtained:

VLp

VXY1
=

1[{
1 + ( Ls

LP
)(1− F2)

}2
+

{
π2

8 Q
(
F− 1

F

)}2
] 1

2

(4)

Thus from (3) and (4), the converter voltage gain M can be obtained by (5) as follows:

M =
n(1− cosδ)/2[{

1 + ( Ls
LP
)(1− F2)

}2
+

{
π2

8 Q
(
F− 1

F

)}2
] 1

2

(5)

where: Q = ωr
Ls
R′l

, F = ωs
ωr

=
fs
fr

, ωs = 2π fs, R′l =
Rl
n2 .

Here ωr = 2π fr = 1/
√

LsCs, and Rac = ( 8
π2 )R′l . fs refers to the switching frequency, and fr: is the

resonant frequency. Vo(ac) is the RMS of the output voltage. Vxy1 is the r.m.s. value of the output
voltage of the inverter across terminals XY. R′l is the load resistance referred to primary-side.
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3. Proposed Fixed-Frequency Phase-Shift Modulated MPC-MPPT Control

Unlike the previously mentioned works, this manuscript presents a novel fixed frequency
predictive maximum power point technique with an adaptive step-size for a phase-shift modulated
LLC resonant converter. The schematic of the control feedback system is depicted in Figure 5.

The operation of the proposed methodology is performed in four steps, as follows:
Step 1: The PV terminals voltage value VPV (K), may be increased or decreased, depending on the

applied switching state, during the next sampling time (K+1), And hence the next sampling time of PV
voltage VPV (K+1) is defined as: {

VPV(K + 1)1 = VPV(K) + ∆V
VPV(K + 1)2 = VPV(K) − ∆V

(6)

where ∆V is the step size. This step size could be set as a fixed value or could be designed to be variable
according to change in the power level. A variable step size could be defined from the following
equation:

∆V = σ
∣∣∣Pmax(K + 1) − PPV(K )

∣∣∣ (7)

where σ is normalizing weigh factor, which is tuned to get good steady state performance by trial and
error, Pmax(K + 1) is the next sampling time predicted maximum extracted PV power, the steps for
calculating the value of Pmax (K + 1) will be explained in this section later. However, at starting an
initial value of ∆V can be set.Energies 2020, 13, x FOR PEER REVIEW 6 of 15 
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Step 2: The next sampling time of the PV terminals voltage VPV(K + 1) and the PV current
IPV(K + 1) are predicted. In order to reduce the number of sensors, a digital observer is used. Figure 6
presents the equivalent circuit of PV module using the Thevenin theorem. Designed digital observer
is presented to calculate the required equivalent voltage (Veq) and the equivalent resistance (Req)
as follows:

Req = −
VPV(k) −VPV(k− 1)
IPV(k) − IPV(k− 1)

(8)

Veq = VPV(k) + ReqIPV(K) (9)
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Then the next sampling time predicted PV current can be calculated as: IPV(K + 1)1 =
Veq(K)−VPV(K+1)1

Req(K)

IPV(K + 1)2 =
Veq(K)−VPV(K+1)2

Req(K)

(10)

Step 3: Next the predicted next sampling time PV that can be extracted from the PV is calculated
as follows: {

PPV(K + 1)1 = IPV(K + 1)1 ×VPV(K + 1)1
PPV(K + 1)2 = IPV(K + 1)2 ×VPV(K + 1)2

(11)
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After calculating all possible output power of each switching state, during the next sampling time.
Maximum power could be calculated as:

Pmax(K + 1) = MAX(PPV(K + 1)1, PPV(K + 1)2 (12)

Step 4: Then the cost function can be evaluated as:

J[1,2] = PPV(K + 1)[1,2] − PPV(K) (13)

After evaluation of the cost function by the proposed FFPS predictive MPPT to track the maximum
available power from the PV, a reference voltage will be chosen for the next sampling period, that the
larger value of cost function will be the next sampling time target, as example, if the cost function J1

is greater than J2, the PV voltage must be shifted to VPV(k + 1)1, else if J2 is greater than J1 so the PV
reference voltage will be VPV(k + 1)2. PI controller is added to track the measured PV voltage with the
predicted reference voltage. Prediction of the reference voltage improves the transient performance
of the system, while using PI controller to track the reference voltage improves the steady state
performance of the system.

4. Simulation Results

The operation of the proposed predictive MPPT technique is validated using a 300 W MATLAB/

Simulink model. The input voltage was changed over a wide range from 25 V to 41 V. The resonant
frequency Fr is selected to be 140 kHz, while switching frequency is set to 154 kHz. The resonant
parameters are set to 4.1/3415 µH/nF for the resonant inductor and resonant capacitor, respectively.
The transformer turns ratio is 1:7. The PV module used in the simulation has maximum power
characteristics (9.6 A/31.25 V). In order to demonstrate the superior behavior of the proposed technique,
different operating condition are taken into account. Figure 7 illustrates a case of study of using fixed
step-size, the irradiation level is set to 100% at the start, then, at time t = 0.7 s, a reduction of the
radiation level to 50% is applied as shown in Figure 7a. The proposed technique can extract maximum
power. Figure 7b,c shows the change of the phase-shift to track the maximum power.
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Another case study is taken into account where a variable step-size FFPS predictive MPPT is
considered. The results are depicted in Figure 8. The solar irradiation is shown in Figure 8a, the power
extracted from the PV panel is shown in Figure 8b, as it is indicated in Figure 8c the oscillation around
the MPPT is reduced with oscillations of less than ±1%.

Another simulation case study is depicted in Figure 9, where the solar irradiation was changed
from 100% to 30% and then back again to 100% (Figure 9a). As can be seen from Figure 9b, the FFPS
predictive MPPT technique is able to extract the maximum power at all different conditions. The phase
shift variation for this case study is depicted in Figure 9c.
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5. Experimental Results

A laboratory prototype for the LLC resonant converter with its proposed FFPS Predictive MPPT
technique was implemented. A general schematic for the hardware layout is depicted in Figure 10.
It consists of a LLC resonant converter, TMS320F2835 DSP controller kit, and resistive load, in addition
to the PV terminals. A JWP 250 PV module is used and the key parameters of the prototype hardware
are listed in Table 1.
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Table 1. Experimental prototype parameters.

Rated Power 250 W

Transformer Core Size RM14

Turns Ratio 7

Magnetizing Inductance 20.5 µH

Switch S1-S4 IRFB4510PBF

Output Rectifier D1-D2 QH03TZ600

Different study cases have been investigated in the laboratory for the proposed FFPS predictive
MPPT for the LLC resonant converter, and one of these cases is depicted in Figure 11. In this study
case, the available maximum power from the real system is 100 W. As can be seen from the graph,
the proposed algorithm is efficiently able to extract the 100 W with efficiency around 99%. The steady
state oscillation for the proposed phase-shift MPPT technique is illustrated in Figure 12, where it is
shown the power oscillates around the MPP within a ±0.5 W range.
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To prove the validity of the proposed MPPT technique under partial shading conditions and
abrupt change in solar radiation conditions, a partial shading test and abrupt change in solar radiation
test are performed, illustrated in Figures 14 and 15. In the partial shading case of study, depicted in
Figure 14, a part of the real PV module is under lower radiation comditions. The radiation level and the
maximum monitored available power were found to be 55 W. As the figure demonstrates, the proposed
MPPT algorithm extracts the real maximum power from the module with low oscillation and small
transient time. Figure 15 depicts a case study where there is a sudden change in the solar radiation
level, where the proposed MPPT technique able to track the maximum power with low oscillation and
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small transient time. A two-step test is performed and the result is shown in Figure 16, where partial
shading conditions are formed by shading a part of the PV module, then this shading is removed, and
as shown in the figure, the proposed fixed-frequency predictive MPPT effectively tracks the MPP.
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Figure 15. Proposed fixed-frequency predictive MPPT operation waveforms after removing the partial
shading condition (step up in the irradiation) (Ch2 (green) is PV voltage, Ch4 (pink line) is the PV
current), the PV extracted power (lavender line).
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The turn-on ZVS is indicated in Figure 17. During turning on the switch, its current should be
negative by passing through the switch body diode. So that the switch capacitance is discharged and
ZVS is achieved.

Energies 2020, 13, x FOR PEER REVIEW 12 of 15 

 

 

Figure 15. Proposed fixed-frequency predictive MPPT operation waveforms after removing the 
partial shading condition (step up in the irradiation) (Ch2 (green) is PV voltage, Ch4 (pink line) is the 
PV current), the PV extracted power (lavender line). 

 
Figure 16. Proposed Fixed-Frequency Predictive  MPPT operation waveforms under partial shading 
condition (two-step step down then step up in the irradiation) ) (Ch2 (green) is PV voltage, Ch4 (pink 
line) is the PV current), the PV extracted power (lavender line ). 

 

Figure 17. The turn on ZVS for the bridge. 

6. Conclusions 

This manuscript has presented a fixed frequency predictive-MPPT for phase-shift modulated 
LLC resonant converters for PV applications. Design steps for the control algorithm with the LLC 
resonant converter have been presented in a comprehensive way. The proposed FFPS predictive 
MPPT achieved the maximum available power from the PV module with an efficiency around 99% 
and steady state oscillation around ±0.5 W @ 115 W. The proposed fixed frequency predictive MPPT 

Figure 17. The turn on ZVS for the bridge.

6. Conclusions

This manuscript has presented a fixed frequency predictive-MPPT for phase-shift modulated LLC
resonant converters for PV applications. Design steps for the control algorithm with the LLC resonant
converter have been presented in a comprehensive way. The proposed FFPS predictive MPPT achieved
the maximum available power from the PV module with an efficiency around 99% and steady state
oscillation around ±0.5 W @ 115 W. The proposed fixed frequency predictive MPPT for LLC resonant
converters demonstrated several advantages over other MPPT techniques suitable to be applied to
LLC resonant converters such as: (1) a small steady state error due to the use of a PI controller. (2) Fast
transient performance due to prediction of the reference voltage, and (3) a simple parameter design
due to the usage of fixed frequency modulation. A 300 W simulation model was implemented, then a
250 W hardware step-up was tested. Both simulation and hardware results are consistent and proved
the high performance of the proposed predictive MPPT algorithm for LLC resonant converters.
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