Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm
Abstract
:1. Introduction
2. PV System Characteristics and Models
2.1. Characteristics Analysis of PV Module
2.2. Characteristic Analysis of PV Array
2.3. DC-DC Converter
3. Standard DE Algorithm and Proposed Adaptive DE MTTP Algorithm
3.1. Standard DE Algorithm
3.1.1. Initialization
3.1.2. Mutation
3.1.3. Crossover
3.1.4. Selection
3.2. Proposed Adaptive Improved DE Algorithm for Partial Shading MTTP
3.2.1. Optimal Mutation Strategy
3.2.2. Adaptive Control Strategy of Scaling Factor F
3.2.3. Adaptive Strategy of Cross Factor CR
3.2.4. Self-Adaptive Mutation
3.2.5. Conditions for Algorithm Termination and Restart
4. Simulation Results
- 3.
- When the shading situation changes abruptly, light intensity changes from 1200 W/m2 to 1000 W/m2 and finally to 800 W/m2, Figure 14 shows the output power curve of the improved DE algorithm.
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hosenuzzaman, M.; Rahim, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.A.; Nahar, A. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Z.; Zhou, D. Current situation and development of solar photovoltaic power generation technology. Electr. Appl. 2007, 26, 6–10. [Google Scholar]
- Ramyar, A.; Iman-Eini, H.; Farhangi, S. Global Maximum Power Point Tracking Method for Photovoltaic Arrays under Partial Shading Conditions. IEEE Trans. Ind. Electron. 2017, 64, 2855–2864. [Google Scholar] [CrossRef]
- Esram, T.; Chapman, P.L. Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. IEEE Trans. Energy Convers. 2007, 22, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Ishaque, K.; Salam, Z.; Amjad, M.; Mekhilef, S. An Improved Particle Swarm Optimization (PSO)–Based MPPT for PV With Reduced Steady-State Oscillation. IEEE Trans. Power Electron. 2012, 27, 3627–3638. [Google Scholar] [CrossRef]
- Li, H.; Yang, D.; Su, W.; Lü, J.; Yu, X. An Overall Distribution Particle Swarm Optimization MPPT Algorithm for Photovoltaic System under Partial Shading. IEEE Trans. Ind. Electron. 2018, 66, 265–275. [Google Scholar] [CrossRef]
- Zhou, T.; Sun, W. Maximum power point tracking of photovoltaic array under nonuniform shadow conditions. Power Syst. Autom. 2015, 39, 42–49. [Google Scholar]
- Larbes, C.; Ait Cheikh, S.M.; Obeidi, T.; Zerguerras, A. Genetic Algorithms Optimized Fuzzy Logic Control for the Maximum Power Point Tracking in Photovoltaic System. Renew. Energy 2009, 34, 2093–2100. [Google Scholar] [CrossRef]
- Alajmi, B.N.; Ahmed, K.H.; Finney, S.J.; Williams, B.W. Fuzzy-Logic-Control Approach of a Modified Hill-Climbing Method for Maximum Power Point in Microgrid Standalone Photovoltaic System. IEEE Trans. Power Electron. 2010, 26, 1022–1030. [Google Scholar] [CrossRef]
- Kwan, T.H.; Wu, X. Maximum power point tracking using a variable antecedent fuzzy logic controller. Sol. Energy 2016, 137, 189–200. [Google Scholar] [CrossRef]
- Veerachary, M.; Senjyu, T.; Uezato, K. Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Trans. Ind. Electron. 2003, 50, 749–758. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.J.; Lu, K.C.; Yang, B.H. Recurrent Fuzzy Cerebellar Model Articulation Neural Network Based Power Control of Single-Stage Three-Phase Grid-Connected Photovoltaic System During Grid Faults. IEEE Trans. Ind. Electron. 2016, 64, 1258–1268. [Google Scholar] [CrossRef]
- Ramaprabha, R.; Mathur, B.; Ravi, A.; Aventhika, S. Modified Fibonacci Search Based MPPT Scheme for SPVA under Partial Shaded Conditions. In Proceedings of the Third International Conference on Emerging Trends in Engineering and Technology, Goa, India, 19–21 November 2010; IEEE Computer Society: Washington, DC, USA, 2010. [Google Scholar]
- Fei, Y.; Jing, H. MPPT for Photovoltaic Generation Based on Fibonacci Numbers Search Control Strategy. Mod. Electron. Tech. 2009, 32, 182–185. [Google Scholar]
- Kobayashi, K.; Takano, I.; Sawada, Y. A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions. Sol. Energy Mater. Sol. Cells 2006, 90, 2975–2988. [Google Scholar] [CrossRef]
- Gosumbonggot, J.; Fujita, G. Partial Shading Detection and Global Maximum Power Point Tracking Algorithm for Photovoltaic with the Variation of Irradiation and Temperature. Energies 2019, 12, 202. [Google Scholar] [CrossRef] [Green Version]
- Javed, K.; Ashfaq, H.; Singh, R. A new simple MPPT algorithm to track MPP under partial shading for solar photovoltaic systems. Int. J. Green Energy 2020, 17, 48–61. [Google Scholar] [CrossRef]
- Premkumar, M.; Sowmya, R. An effective maximum power point tracker for partially shaded solar photovoltaic systems. Energy Rep. 2019, 5, 1445–1462. [Google Scholar] [CrossRef]
- Pilakkat, D.; Kanthalakshmi, S. An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions. Sol. Energy 2019, 178, 37–47. [Google Scholar]
- Zhu, Y.; Shi, X.; Yang, Q.; Li, P.; Liu, W.; Wei, D.; Fu, C. Application of particle swarm optimization algorithm in multi peak maximum power point tracking of photovoltaic array. Chin. J. Electr. Eng. 2012, 32, 42–48. [Google Scholar]
- Vimalarani, C.; Kamaraj, N.; Chitti, B.B. Improved Method of Maximum Power Point Tracking of Photovoltaic (PV) Array using Hybrid Intelligent Controller. Opt. Int. J. Light Electron Opt. 2018, 168, 403–415. [Google Scholar]
- Ashouri-Zadeh, A.; Toulabi, M.; Dobakhshari, A.S.; Taghipour-Broujeni, S.; Ranjbar, A.M. A novel technique to extract the maximum power of photovoltaic array in partial shading conditions. Int. J. Electr. Power Energy Syst. 2018, 101, 500–512. [Google Scholar] [CrossRef]
- Tang, R.-L.; Wu, Z.; Fang, Y.-J. Maximum power point tracking of large-scale photovoltaic array. Sol. Energy 2016, 134, 503–514. [Google Scholar] [CrossRef]
- Liu, B.; Wang, L.; Jin, Y. Research progress of differential evolution algorithm. Control. Decis. 2007, 22, 3–11. [Google Scholar]
- Taheri, H.; Salam, Z.; Ishaque, K. A Novel Maximum Power Point Tracking Control of Photovoltaic System Under Partial and Rapidly Fluctuating Shadow Conditions Using Differential Evolution. In Proceedings of the IEEE Symposium on Industrial Electronics & Applications (ISIEA), Penang, Malaysia, 3–5 October 2010; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar]
- Tey, K.S.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B.; Oo, A.T.; Stojcevski, A. Improved Differential Evolution-based MPPT Algorithm using SEPIC for PV Systems under Partial Shading Conditions and Load Variation. IEEE Trans. on Ind. Inform. 2018, 14, 4322–4333. [Google Scholar] [CrossRef]
- Su, Y.-X.; Chi, R. Multi-objective particle swarm-differential evolution algorithm. Neural Comput. Appl. 2017, 28, 407–418. [Google Scholar] [CrossRef]
Components | Parameters |
---|---|
Open circuit voltage of PV module, Voc | 43.6 V |
Short circuit current of PV module, Isc | 8.35 A |
Peak power voltage of PV module, Vmp | 35 V |
Peak power current of PV module, Imp | 7.6 A |
C1 | 50 uF |
C2 | 100 uF |
L | 10 mH |
R | 50 Ω |
Convergence Time (s) | Steady State Oscillation Loss (W) | Iterations (time) | |
---|---|---|---|
Case 1 | |||
PSO | 0.035 | 0.7 | 46 |
DE | 0.032 | 0.83 | 58 |
Improved DE | 0.019 | 0.3 | 40 |
Case 2 | |||
PSO | 0.042 | 0.8 | 50 |
DE | 0.039 | 0.79 | 56 |
Improved DE | 0.02 | 0.32 | 45 |
Case 1 | Case 2 | |||||
---|---|---|---|---|---|---|
P1 | P2 | η | P1 | P2 | η | |
PSO | 644.30 (W) | 714.23 (W) | 90.20% | 856.23 (W) | 887.34 (W) | 96.49% |
DE | 645.15 (W) | 714.23 (W) | 90.33% | 855.14 (W) | 887.34 (W) | 96.37% |
Improved DE | 644.57 (W) | 714.23 (W) | 90.24% | 857.56 (W) | 887.34 (W) | 96.64% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Sui, H. Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm. Energies 2020, 13, 1254. https://doi.org/10.3390/en13051254
Zhang P, Sui H. Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm. Energies. 2020; 13(5):1254. https://doi.org/10.3390/en13051254
Chicago/Turabian StyleZhang, Peng, and Huibin Sui. 2020. "Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm" Energies 13, no. 5: 1254. https://doi.org/10.3390/en13051254
APA StyleZhang, P., & Sui, H. (2020). Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm. Energies, 13(5), 1254. https://doi.org/10.3390/en13051254