Comparison of Power Output Forecasting on the Photovoltaic System Using Adaptive Neuro-Fuzzy Inference Systems and Particle Swarm Optimization-Artificial Neural Network Model
Abstract
1. Introduction
2. Energy Efficiency Analysis in Thailand
2.1. Energy Sources in Thailand
2.2. Solar Radiation
3. PV Power Output Forecasting Model
3.1. ANFIS Model
3.2. PSO-ANN Model
3.3. Accuracy of the Simulation Results
4. PV Power Output Data Analysis
5. Simulation Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alternative Energy. Available online: https://en.wikipedia.org/wiki/Alternative_energy (accessed on 10 July 2019).
- Zehner, O. Green Illusions; University of Nebraska Press: Lincoln, NE, USA; London, UK, 2012; pp. 1–169; 331–342. [Google Scholar]
- Jacobson, M.Z.; Delucchi, M.A. A path to sustainable energy by 2030. Sci. Am. 2009, 301, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z.; Delucchi, M.A. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 2011, 39, 1154–1169. [Google Scholar] [CrossRef]
- Inthacha, S. The Climatology of Thailand and Future Climate Change Projections Using the Regional Climate Model Precis. Ph.D. Thesis, University of East Anglia, Norwich, UK, May 2011. [Google Scholar]
- Prospect of Limiting the Global Increase in Temperature to 2·°C is Getting Bleaker. Available online: https://www.iea.org/newsroom/news/2011/may/2011-05-30-.html (accessed on 10 July 2019).
- Papaioannou, G.; Nikolidakis, G.; Asimakopoulos, D.; Retalis, D. Photosynthetically active radiation in Athens. Agric. For. Meteorol. 1996, 81, 287–298. [Google Scholar] [CrossRef]
- Codato, G.; Oliveira, A.P.; Soares, J.; Escobedo, J.F.; Gomes, E.N.; Pai, A.D. Global and diffuse solar irradiances in urban and rural areas in southeast Brazil. Theor. Appl. Climatol. 2017, 93, 57–73. [Google Scholar] [CrossRef]
- Janjai, S. Solar Radiation; Department of Physics, Faculty of Science, Silpakorn University Campus: Nakhon Pathom, Thailand, 2014. [Google Scholar]
- The Industrial Internet of Things Volume T3: Analytics Framework. Available online: https://www.iiconsortium.org/pdf/IIC_Industrial_Analytics_Framework_Oct_2017.pdf (accessed on 1 December 2019).
- Kittisontirak, S.; Dawan, P.; Atiwongsangthong, N.; Titiroongruang, W.; Chinnavornrungsee, P.; Hongsingthong, A.; Manosukritkul, P. A novel power output model for photovoltaic system. In Proceedings of the International Electrical Engineering Congress (iEECON), Pattaya, Thailand, 8–10 March 2017; pp. 209–212. [Google Scholar]
- Monteiro, C.; Santos, T.; Fernandez-Jimenez, L.; Ramirez-Rosado, I.; Terreros-Olarte, M. Short-term power forecasting model for photovoltaic plants based on historical similarity. Energies 2013, 6, 2624–2643. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Aung, Z. Ensemble learning approach for probabilistic forecasting of solar power generation. Energies 2016, 9, 1017. [Google Scholar] [CrossRef]
- Agoua, X.G.; Girard, R.; Kariniotakis, G. Probabilistic models for spatio-temporal photovoltaic power forecasting. IEEE Trans. Sustain. Energy 2019, 10, 780–789. [Google Scholar] [CrossRef]
- Piorno, J.R.; Bergonzini, C.; Atienza, D.; Rosing, T.S. Prediction and management in energy harvested wireless sensor nodes. In Proceedings of the 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, Aalborg, Denmark, 17–20 May 2009. [Google Scholar]
- Pano-Azucena, A.; Tlelo-Cuautle, E.; Tan, S.; Ovilla-Martinez, B.; Fraga, L.D.L. FPGA-based implementation of a multilayer perceptron suitable for chaotic time series prediction. Technologies 2018, 6, 90. [Google Scholar] [CrossRef]
- Abuella, M.; Chowdhury, B. Solar power forecasting using artificial neural networks. In Proceedings of the North American Power Symposium (NAPS), Charlotte, NC, USA, 4–6 October 2015. [Google Scholar]
- Omid, M.; Ramedani, Z.; Keyhani, A.R. Forecasting of daily solar radiation using neuro-fuzzy approach. In Proceedings of the 5th International Mechanical Engineering Forum, Prague, Czech Republic, 20–22 June 2012; pp. 728–742. [Google Scholar]
- Hoballah, A.; Erlich, I. PSO-ANN approach for transient stability constrained economic power generation. In Proceedings of the IEEE Bucharest Power Tech Conference, Bucharest, Romania, 28 June–2 July 2009; pp. 1–6. [Google Scholar]
- Department of Alternative Energy Development and Efficiency. Ministry of Energy in Thailand. Energy Situation. Available online: https://www.dede.go.th/download/stat62/sit_2_61_dec.pdf (accessed on 10 July 2019).
- Solar Energy Distribution at the Top of the Atmosphere and at the Surface of the Earth. Available online: http://www.physics.usyd.edu.au/teach_res/hsp/sp/mod7/m7emrSpectra.pdf (accessed on 20 October 2019).
- Ministry of Energy. Promotion of Using Hot Water from Solar Energy, Power Point Presentation. Available online: https://www.slideserve.com/pete/outline (accessed on 10 July 2019).
- Solar Resource Maps of Thailand. Available online: https://solargis.com/maps-and-gis-data/download/Thailand (accessed on 10 July 2019).
- Jang, J.-S.R. ANFIS: Adaptive network-based fuzzy inference system. IEEE Trans. Syst. Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Hosseinpour, S.; Mujumdar, A.S. Artificial neural network-based modeling and controlling of drying systems. Intell. Control Dry. 2018, 1, 155–172. [Google Scholar]
- Brahim, K.; Zell, A. ANFIS-SNNS: Adaptive network fuzzy inference system in the stuttgart neural network simulator. Fuzzy Syst. Comput. Sci. 1994, 1, 117–127. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Jumpasri, N.; Pinsuntia, K.; Woranetsuttikul, K.; Nilsakorn, T.; Khan-Ngern, W. Improved particle swarm optimization algorithm using average model on MPPT for partial shading in PV array. In Proceedings of the International Electrical Engineering Congress (IEECON), Chonburi, Thailand, 19–21 March 2014. [Google Scholar]
- Esmin, A.A.A.; Coelho, R.A.; Matwin, S. A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artif. Intell. Rev. 2013, 44, 23–45. [Google Scholar] [CrossRef]
- Abdullah, A.G.; Suranegara, G.M.; Hakim, D.L. Hybrid PSO-ANN application for improved accuracy of short-term load forecasting. IEEE Trans. Power Syst. 2014, 9, 446–451. [Google Scholar]
- Nespoli, A.; Ogliari, E.; Leva, S.; Pavan, A.M.; Mellit, A.; Lughi, V.; Dolara, A. Day-ahead photovoltaic forecasting: A comparison of the most effective techniques. Energies 2019, 12, 1621. [Google Scholar] [CrossRef]
- Martins, R.P.; Ferreira, V.H.; Lopes, T.T. Artificial neural network for probabilistic forecasting of the output power of photovoltaic systems. In Proceedings of the Simposio Brasileiro De Sistemas Eletricos (SBSE), Niteroi, Brazil, 12–16 May 2018. [Google Scholar]
- Le, L.T.; Nguyen, H.; Dou, J.; Zhou, J. A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings’ energy efficiency for smart city planning. Appl. Sci. 2019, 9, 2630. [Google Scholar] [CrossRef]
- Houria, B.; Mahdi, K.; Zohra, T.F. PSO-ANN’s based suspended sediment concentration in Ksob basin, Algeria. J. Eng. Technol. Res. 2014, 6, 129–136. [Google Scholar]
- Said, S.Z.; Thiaw, L. Performance of artificial neural network and particle swarm optimization technique based maximum power point tracking for photovoltaic systems under different environmental conditions. J. Phys. Conf. Ser. 2018, 1049, 012047. [Google Scholar] [CrossRef]
- Yousif, J.H.; Kazem, H.A.; Alattar, N.N.; Elhassan, I.I. A comparison study based on artificial neural network for assessing PV/T solar energy production. Case Stud. Therm. Eng. 2019, 13, 100407. [Google Scholar] [CrossRef]
- Lee, D.; Kim, K. Recurrent neural network-based hourly prediction of photovoltaic power output using meteorological information. Energies 2019, 12, 215. [Google Scholar] [CrossRef]
Particle Swarm | Iterations | Lower-Upper Bound | Inertia Weight | Damping Ratio | Personal Learning Coefficient | Global Learning Coefficient | Number of Neurons |
---|---|---|---|---|---|---|---|
100 | 100 | −5 to 5 | 1 | 0.99 | 1.5 | 2.0 | 4 |
Models | MSE | RMSE | MAE | MAPE (%) | Accuracy (%) | Calculation Efficiency (s) |
---|---|---|---|---|---|---|
PSO-ANN | 0.3234 | 0.5687 | 8.8233 | 1.0842 | 98.9157 | 429.522 |
ANFIS | 0.0140 | 0.1184 | 1.1952 | 0.1468 | 99.8532 | 3.5675 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawan, P.; Sriprapha, K.; Kittisontirak, S.; Boonraksa, T.; Junhuathon, N.; Titiroongruang, W.; Niemcharoen, S. Comparison of Power Output Forecasting on the Photovoltaic System Using Adaptive Neuro-Fuzzy Inference Systems and Particle Swarm Optimization-Artificial Neural Network Model. Energies 2020, 13, 351. https://doi.org/10.3390/en13020351
Dawan P, Sriprapha K, Kittisontirak S, Boonraksa T, Junhuathon N, Titiroongruang W, Niemcharoen S. Comparison of Power Output Forecasting on the Photovoltaic System Using Adaptive Neuro-Fuzzy Inference Systems and Particle Swarm Optimization-Artificial Neural Network Model. Energies. 2020; 13(2):351. https://doi.org/10.3390/en13020351
Chicago/Turabian StyleDawan, Promphak, Kobsak Sriprapha, Songkiate Kittisontirak, Terapong Boonraksa, Nitikorn Junhuathon, Wisut Titiroongruang, and Surasak Niemcharoen. 2020. "Comparison of Power Output Forecasting on the Photovoltaic System Using Adaptive Neuro-Fuzzy Inference Systems and Particle Swarm Optimization-Artificial Neural Network Model" Energies 13, no. 2: 351. https://doi.org/10.3390/en13020351
APA StyleDawan, P., Sriprapha, K., Kittisontirak, S., Boonraksa, T., Junhuathon, N., Titiroongruang, W., & Niemcharoen, S. (2020). Comparison of Power Output Forecasting on the Photovoltaic System Using Adaptive Neuro-Fuzzy Inference Systems and Particle Swarm Optimization-Artificial Neural Network Model. Energies, 13(2), 351. https://doi.org/10.3390/en13020351