Process Integration of Green Hydrogen: Decarbonization of Chemical Industries
Abstract
1. Introduction
2. Economic Trends
2.1. Renewable Energy
2.2. Electrolysis
2.3. CO2 Conversion Economics
3. Process Integration Framework
3.1. Reverse Water Gas Shift (RWGS)
3.2. Example Pathway: Biogas to Liquid Process
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ASU | Air Separation Unit |
ATR | Autothermal Reformer |
BNEF | Bloomberg New Energy Finance |
CapEx | Capital Expenditure |
DRI | Direct Reduction of Iron |
FLH | Full Load Hours |
IEA | International Energy Agency |
LCOE | Levelized Cost of Electricity |
LHV | Lower Heating Value |
MBtu | Million British thermal units |
OpEx | Operating Expenditure |
PEM | Polymer-Electrolyte Membrane or alternatively Proton-Exchange Membrane |
PV | Photovoltaics |
RWGS | Reverse Water Gas Shift |
SOEC | Solid Oxide Electrolyser Cell |
References
- Ray, D. Lazard ’s Levelized Cost of Energy Analysis—Version 13.0; Lazard: New York, NY, USA, 2019. [Google Scholar]
- Mitchell, C. Momentum is increasing towards a flexible electricity system based on renewables. Nat. Energy 2016, 1, 15030. [Google Scholar] [CrossRef]
- Fumagalli, E. Energy investment: The many lives of energy storage. Nat. Energy 2016, 1, 16096. [Google Scholar] [CrossRef]
- Song, C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 2006, 115, 2–32. [Google Scholar] [CrossRef]
- Jamasb, T. Electricity storage: Friend or foe of the networks? Nat. Energy 2017, 2, 17092. [Google Scholar] [CrossRef]
- Asensio, O.I.; Delmas, M.A. The effectiveness of US energy efficiency building labels. Nat. Energy 2017, 2, 17033. [Google Scholar] [CrossRef]
- Hittinger, E. Distributed generation: Residential storage comes at a cost. Nat. Energy 2017, 2, 17006. [Google Scholar] [CrossRef]
- Needell, Z.A.; McNerney, J.; Chang, M.T.; Trancik, J.E. Potential for widespread electrification of personal vehicle travel in the United States. Nat. Energy 2016, 1, 16112. [Google Scholar] [CrossRef]
- New Energy Outlook 2017; Bloomberg New Energy Finance: New York, NY, USA, 2017.
- Ottmar Edenhofer, E.A. Climate Change 2014: Mitigation of Climate Change Technical Summary; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Clémençon, R. The Two Sides of the Paris Climate Agreement:Dismal Failure or Historic Breakthrough? J. Environ. Dev. 2016, 25, 3–24. [Google Scholar] [CrossRef]
- Tymoczko, J.; Calle-Vallejo, F.; Schuhmann, W.; Bandarenka, A.S. Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster. Nat. Commun. 2016, 7, 10990. [Google Scholar]
- Bertuccioli, L.; Chan, A.; Hart, D.; Lehner, F.; Madden, B.; Standen, E. Study on Development of Water Electrolysis in the EU; Fuel Cells and Hydrogen Joint Undertaking; E4tech Sàrl: Lausanne, Switzerland, 2014. [Google Scholar]
- Bustamante, F.; Enick, R.M.; Cugini, A.; Killmeyer, R.P.; Howard, B.H.; Rothenberger, K.S.; Ciocco, M.V.; Morreale, B.D.; Chattopadhyay, S.; Shi, S. High-temperature kinetics of the homogeneous reverse water–gas shift reaction. AIChE J. 2004, 50, 1028–1041. [Google Scholar] [CrossRef]
- Correa, A.; Martín, R. Metal-Catalyzed Carboxylation of Organometallic Reagents with Carbon Dioxide. Angew. Chem. Int. Ed. 2009, 48, 6201–6204. [Google Scholar]
- Kuhl, K.P.; Hatsukade, T.; Cave, E.R.; Abram, D.N.; Kibsgaard, J.; Jaramillo, T.F. Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113. [Google Scholar] [CrossRef] [PubMed]
- Rego de Vasconcelos, B.; Lavoie, J.-M. Recent Advances in Power-to-X Technology for the Production of Fuels and Chemicals. Front. Chem. 2019, 7. [Google Scholar] [CrossRef]
- Schmidt, P.; Batteiger, V.; Roth, A.; Weindorf, W.; Raksha, T. Power-to-Liquids as Renewable Fuel Option for Aviation: A Review. Chem. Ing. Tech. 2018, 90, 127–140. [Google Scholar]
- Dieterich, V.; Buttler, A.; Hanel, A.; Spliethoff, H.; Fendt, S. Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: A review. Energy Environ. Sci. 2020. [Google Scholar] [CrossRef]
- Rafiee, A.; Khalilpour, K.R.; Milani, D.; Panahi, M. Trends in CO2 conversion and utilization: A review from process systems perspective. J. Environ. Chem. Eng. 2018, 6, 5771–5794. [Google Scholar] [CrossRef]
- New Energy Outlook 2019; Bloomberg New Energy Finance: New York, NY, USA, 2019.
- Green, M.A. Commercial progress and challenges for photovoltaics. Nat. Energy 2016, 1, 15015. [Google Scholar]
- Svarc, J. Most Efficient Solar Panels 2020; Clean Energy Reviews: Dulwich Hill, Australia, 2020. [Google Scholar]
- Most Efficient Solar Panels. 2020. Available online: https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels (accessed on 3 September 2020).
- IEA. The Future of Hydrogen; IEA: Paris, France, 2019. [Google Scholar]
- Blanco, H.; Faaij, A. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renew. Sustain. Energy Rev. 2018, 81, 1049–1086. [Google Scholar] [CrossRef]
- Al-Musleh, E.I.; Mallapragada, D.S.; Agrawal, R. Continuous power supply from a baseload renewable power plant. Appl. Energy 2014, 122, 83–93. [Google Scholar] [CrossRef]
- Gençer, E.; Al-Musleh, E.; Mallapragada, D.S.; Agrawal, R. Uninterrupted renewable power through chemical storage cycles. Curr. Opin. Chem. Eng. 2014, 5, 29–36. [Google Scholar] [CrossRef]
- Graves, C.R.; Ebbesen, S.D.; Mogensen, M.B.; Lackner, K.S. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sustain. Energy Rev. 2011, 15, 1–23. [Google Scholar] [CrossRef]
- Nordic Blue Crude. 2020. Available online: https://nordicbluecrude.no/ (accessed on 3 August 2020).
- Sunfire. 2020. Available online: https://www.sunfire.de/ (accessed on 3 August 2020).
- Retail Prices or Gasoline. Available online: https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=emm_epm0_pte_nus_dpg&f=m (accessed on 16 September 2020).
- Henry Hub Natural Gas Spot Price. Available online: https://www.eia.gov/dnav/ng/hist/rngwhhdM.htm (accessed on 3 August 2020).
- IRENA. Innovation Landscape Brief: Renewable Power-to-Hydrogen; International Renewable Energy Agency: Abu Dhabi, UAE, 2019. [Google Scholar]
- Ostadi, M.; Hillestad, M. Enriched Air or Pure Oxygen as Oxidant for Gas-to-Liquid Process with Microchannel Reactors. Chem. Eng. Technol. 2017, 40, 1946–1951. [Google Scholar] [CrossRef]
- Bilika, J.; Pustejovskab, P.; Brozovac, S.; Jursova, S. Efficiency of hydrogen utilization in reduction processes in ferrous metallurgy. Sci. Iran. 2013, 20, 337–342. [Google Scholar]
- Lawoko, M.; Berggren, R.; Berthold, F.; Henriksson, G.; Gellerstedt, G. Changes in the lignin-carbohydrate complex in softwood kraft pulp during kraft and oxygen delignification. Holzforschung 2004, 58, 603. [Google Scholar] [CrossRef]
- Xu, Y.; Isom, L.; Hanna, M.A. Adding value to carbon dioxide from ethanol fermentations. Bioresour. Technol. 2010, 101, 3311–3319. [Google Scholar] [CrossRef]
- Hillestad, M.; Ostadi, M.; Del Alamo, G.; Rytter, E.; Austbø, B.; Pharoah, J.G.; Burheim, O. Improving carbon efficiency and profitability of the biomass to liquid process with hydrogen from renewable power. Fuel 2018, 234, 1431–1451. [Google Scholar] [CrossRef]
- Amsterchem. 2020. Available online: https://www.amsterchem.com/ (accessed on 3 August 2020).
- Peters, R.; Decker, M.; Eggemann, L.; Schemme, S.; Schorn, F.; Breuer, J.L.; Weiske, S.; Pasel, J.; Samsun, R.C.; Stolten, D. Thermodynamic and ecological preselection of synthetic fuel intermediates from biogas at farm sites. Energy Sustain. Soc. 2020, 10, 4. [Google Scholar] [CrossRef]
- Marchese, M.; Giglio, E.; Santarelli, M.; Lanzini, A. Energy performance of Power-to-Liquid applications integrating biogas upgrading, reverse water gas shift, solid oxide electrolysis and Fischer-Tropsch technologies. Energy Convers. Manag. X 2020, 6, 100041. [Google Scholar] [CrossRef]
- Verbeeck, K.; Buelens, L.C.; Galvita, V.; Marin, G.B.; Van Geem, K.M.; Rabaey, K. Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane. Energy Environ. Sci. 2018, 11, 1788–1802. [Google Scholar] [CrossRef]
- Ostadi, M.; Rytter, E.; Hillestad, M. Boosting carbon efficiency of the biomass to liquid process with hydrogen from power: The effect of H2/CO ratio to the Fischer-Tropsch reactors on the production and power consumption. Biomass Bioenergy 2019, 127, 105282. [Google Scholar] [CrossRef]
- Ostadi, M.; Dalane, K.; Rytter, E.; Hillestad, M. Conceptual design of an autonomous once-through gas-to-liquid process—Comparison between fixed bed and microchannel reactors. Fuel Process. Technol. 2015, 139, 186–195. [Google Scholar] [CrossRef]
- Ostadi, M.; Rytter, E.; Hillestad, M. Evaluation of kinetic models for Fischer–Tropsch cobalt catalysts in a plug flow reactor. Chem. Eng. Res. Des. 2016, 114, 236–246. [Google Scholar] [CrossRef]
- Ostadi, M.; Austbø, B.; Hillestad, M. Parametric Optimization of a Power and Biomass to Liquid Process. In Computer Aided Chemical Engineering; Muñoz, S.G., Laird, C.D., Realff, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 287–292. [Google Scholar]
- Ostadi, M.; Austbø, B.; Hillestad, M. Exergy analysis of a process converting power and biomass to a liquid fuel. Chem. Eng. Trans. 2019, 76, 205–210. [Google Scholar]
Parameter | Methanation | Fischer–Tropsch |
---|---|---|
CO2 transport and storage costs for CCUS (USD/t CO2) | 20 | 20 |
CapEx (USD/kWliquid) | 565 | 565 |
Efficiency % (LHV) | 77 | 73 |
Annual OPEX (% of CapEx) | 4 | 4 |
Lifetime (years) | 30 | 30 |
Electricity consumption (GJe/GJprod) | 0.013 | 0.018 |
Stage 1 | Stage 2 | Stage 3 | |
---|---|---|---|
Volume [m3] | 950 | 490 | 260 |
Inlet H2/CO | 1.8 | 1.8 | 1.8 |
H2 addition between stage [kmol/h] | 0 | 1085 | 486 |
CH4 selectivity [%] | 4 | 4.4 | 5 |
CO conversion [%] | 56 | 55 | 50 |
Syncrude production [t/h] | 46.6 | 20.9 | 8.7 |
Stream | 100 | 101 | 102 | 103 | 104 | 105 | 106 |
---|---|---|---|---|---|---|---|
Temperature (°C) | 650 | 1010 | 210 | 210 | 210 | 40 | 40 |
Pressure (bar) | 40 | 38.5 | 36.5 | 34.5 | 32.5 | 30.5 | 30.5 |
Mass flow (t/h) | 270 | 523.6 | 349.8 | 237.8 | 188.5 | 25.2 | 142.8 |
Molar flow (kmol/h) | 11,916 | 31,566 | 21,919 | 11,668 | 7231 | 786 | 4454 |
Mole fractions | |||||||
CO | 0 | 0.210 | 0.303 | 0.249 | 0.179 | 0.123 | 0.123 |
H2 | 0 | 0.379 | 0.545 | 0.448 | 0.322 | 0.183 | 0.183 |
H2O | 0.496 | 0.306 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 |
CH4 | 0.302 | 0.006 | 0.009 | 0.029 | 0.057 | 0.085 | 0.085 |
C2-C4 | 0 | 0 | 0 | 0.006 | 0.013 | 0.021 | 0.021 |
CO2 | 0.201 | 0.098 | 0.141 | 0.262 | 0.421 | 0.578 | 0.578 |
N2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Overall Results of Biogas to Liquid Process | |
---|---|
Conversion of CO in the Fischer–Tropsch section, defined in terms of each single pass (%) | 90 |
Carbon efficiency (overall) (%) | 88 |
Fischer–Tropsch production (overall) (t/h) | 76 |
Fischer–Tropsch production (overall) (L/h) | 95,000 |
Fischer–Tropsch Reactor volume (m3) | 1700 |
Required power to the SOEC (MW) | 549 |
Steam to SOEC (t/h) | 188 |
Recycle flow to the ATR (t/h) | 142 |
Tail gas compositions (mol%) | |
H2 | 18.3 |
CO | 12.3 |
CH4 | 8.5 |
CO2 | 57.8 |
N2 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostadi, M.; Paso, K.G.; Rodriguez-Fabia, S.; Øi, L.E.; Manenti, F.; Hillestad, M. Process Integration of Green Hydrogen: Decarbonization of Chemical Industries. Energies 2020, 13, 4859. https://doi.org/10.3390/en13184859
Ostadi M, Paso KG, Rodriguez-Fabia S, Øi LE, Manenti F, Hillestad M. Process Integration of Green Hydrogen: Decarbonization of Chemical Industries. Energies. 2020; 13(18):4859. https://doi.org/10.3390/en13184859
Chicago/Turabian StyleOstadi, Mohammad, Kristofer Gunnar Paso, Sandra Rodriguez-Fabia, Lars Erik Øi, Flavio Manenti, and Magne Hillestad. 2020. "Process Integration of Green Hydrogen: Decarbonization of Chemical Industries" Energies 13, no. 18: 4859. https://doi.org/10.3390/en13184859
APA StyleOstadi, M., Paso, K. G., Rodriguez-Fabia, S., Øi, L. E., Manenti, F., & Hillestad, M. (2020). Process Integration of Green Hydrogen: Decarbonization of Chemical Industries. Energies, 13(18), 4859. https://doi.org/10.3390/en13184859