Parameter Analysis of Savonius Hydraulic Turbine Considering the Effect of Reducing Flow Velocity
Abstract
:1. Introduction
2. Geometry and Property Parameter Definitions
3. Numerical Simulation
3.1. Simulation Domain Size and Boundary Conditions
3.2. Meshing and Simulation Model Selection
3.3. Simulation Validation
4. Results Analysis
4.1. Analysis of Flow Velocity Reduction Characteristics
4.2. The Influence of TSR
4.3. The Influence of Blade Curvature ()
4.4. The Influence of Overlap Ratio ()
4.5. The Influence of the Blade Number (N)
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, H.W.; Ma, S.; Li, W.; Gu, H.G.; Lin, Y.G.; Sun, X.J. A review on the development of tidal current energy in China. Renew. Sustain. Energy Rev. 2011, 15, 1141–1146. [Google Scholar] [CrossRef]
- Savonius, S.J. The S-rotor and its applications. Mech. Eng. 1931, 53, 333–338. [Google Scholar]
- Kumar, A.; Saini, R.P. Performance parameters of Savonius type hydrokinetic turbine—A Review. Renew. Sustain. Energy Rev. 2016, 64, 289–310. [Google Scholar] [CrossRef]
- Akwa, J.V.; Vielmo, H.A.; Petry, A.P. A review on the performance of Savonius wind turbines. Renew. Sustain. Energy Rev. 2012, 16, 3054–3064. [Google Scholar] [CrossRef]
- Tummala, A.; Velamati, R.K.; Sinha, D.K.; Indraja, V.; Krishna, V.H. A review on small scale wind turbines. Renew. Sustain. Energy Rev. 2016, 56, 1351–1371. [Google Scholar] [CrossRef]
- Cao, L.; Wang, W.; Yang, Y.; Yang, C.; Yuan, Z.; Xiong, S.; Diana, J. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environ. Sci. Pollut. Res. 2007, 14, 452–462. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Bai, X.D.; Dong, G.H.; Bi, C.W.; Gui, F.K. Numerical analysis of the elastic response of a floating collar in waves. Ocean Eng. 2015, 95, 175–182. [Google Scholar] [CrossRef]
- Lader, P.F.; Enerhaug, B. Experimental investigation of forces and geometry of a net cage in uniform flow. IEEE J. Ocean. Eng. 2005, 30, 79–84. [Google Scholar] [CrossRef]
- Talukdar, P.K.; Sardar, A.; Kulkarni, V.; Saha, U.K. Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations. Energy Convers. Manag. 2018, 158, 36–49. [Google Scholar] [CrossRef]
- Saha, U.K.; Thotla, S.; Maity, D. Optimum design configuration of Savonius rotor through wind tunnel experiments. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1359–1375. [Google Scholar] [CrossRef]
- Tian, W.; Song, B.; Mao, S. Numerical investigation of a Savonius wind turbine with elliptical blades. Proc. CSEE 2014, 34, 5796–5802. [Google Scholar] [CrossRef]
- Kamoji, M.A.; Kedare, S.B.; Prabhu, S.V. Performance tests on helical Savonius rotors. Renew. Energy 2009, 34, 521–529. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, R.P. Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades. Renew. Energy 2017, 113, 461–478. [Google Scholar] [CrossRef]
- Tian, W.; Song, B.; VanZwieten, J.; Pyakurel, P. Computational fluid dynamics prediction of a modified savonius wind turbine with novel blade shapes. Energies 2015, 8, 7915–7929. [Google Scholar] [CrossRef]
- Kerikous, E.; Thevenin, D. Optimal shape of thick blades for a hydraulic Savonius turbine. Renew. Energy 2019, 134, 629–638. [Google Scholar] [CrossRef]
- Golecha, K.; Eldho, T.I.; Prabhu, S.V. Influence of the deflector plate on the performance of modified Savonius water turbine. Appl. Energy 2011, 88, 3207–3217. [Google Scholar] [CrossRef]
- Irabu, K.; Roy, J.N. Characteristics of wind power on Savonius rotor using a guide-box tunnel. Therm. Fluid Sci. 2007, 32, 580–586. [Google Scholar] [CrossRef]
- Tartuferi, M.; D’Alessandro, V.; Montelpareb, S.; Ricci, R. Enhancement of Savonius wind rotor aerodynamic performance: A computational study of new blade shapes and curtain systems. Energy 2015, 79, 371–384. [Google Scholar] [CrossRef]
- Yao, Y.X.; Tang, Z.P.; Wang, X.W. Design based on a parametric analysis of a drag driven VAWT with a tower cowling. J. Wind Eng. Ind. Aerodyn. 2013, 116, 32–39. [Google Scholar] [CrossRef]
- Ostos, I.; Ruiz, I.; Gajic, M.; Gómez, W.; Bonilla, A.; Collazos, C. A modified novel blade configuration proposal for a more efficient VAWT using CFD tools. Energy Convers. Manag. 2019, 180, 733–746. [Google Scholar] [CrossRef]
- Gupta, R.; Biswas, A.; Sharma, K.K. Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius–three-bladed Darrieus rotor. Renew. Energy 2008, 33, 1974–1981. [Google Scholar] [CrossRef]
Symbol | Description | Symbol | Description |
---|---|---|---|
a | blade radius (m) | Pin | power available in the water (W) |
b | blade height (m) | Pout | power output of the turbine (W) |
Ca | attenuation coefficient | u | instantaneous velocity (m/s) |
Cm | torque coefficient (-) | U | incoming flow speed (m/s) |
Cp | power coefficient (-) | TSR | Tip speed ratio (-) |
d | overlap distance (m) | y+ | dimensionless wall distance (-) |
D | turbine diameter (m) | blade curvature (-) | |
D0 | endplate diameter (m) | θ | present turbine rotation angle () |
e | overlap ratio (-) | density of water (kg/m3) | |
H | height of turbine (m) | ω | rotational speed (rad/s) |
L | velocity reduction length (m) | CFD | computational fluid dynamics |
La | relative attenuation length (-) | SHT | Savonius hydrokinetic turbine |
M | turbine torque (N-m) | VMP | Velocity measurement probe |
N | blade number (-) |
Parameter | Value |
---|---|
Number of blades (N) | 2 |
Aspect ratio (H/D) | 1.325 |
Overlap ratio (e) | 0.11 |
Blade curvature (ε) | 1 |
Rotor diameter (D) | 0.36 m |
Rotor height (H) | 0.477 m |
Endplate diameter (D0) | 0.52 m |
Parameters | Value | Ca | La | Cp | TSR |
---|---|---|---|---|---|
Curvature () | 0.669 | 13.25 | 0.203 | 0.8 | |
0.678 | 14.86 | 0.207 | 0.9 | ||
0.694 | 13.59 | 0.206 | 1.0 | ||
0.680 | 13.62 | 0.225 | 0.8 | ||
0.709 | 13.78 | 0.227 | 0.9 | ||
0.708 | 13.37 | 0.224 | 1.0 | ||
0.639 | 13.59 | 0.221 | 0.8 | ||
0.647 | 15.10 | 0.228 | 0.9 | ||
0.660 | 13.90 | 0.212 | 1.0 | ||
Overlap () | 0.667 | 13.37 | 0.186 | 0.8 | |
0.671 | 10.78 | 0.171 | 0.9 | ||
0.663 | 8.87 | 0.126 | 1.0 | ||
0.639 | 13.59 | 0.221 | 0.8 | ||
0.647 | 15.1 | 0.228 | 0.9 | ||
0.660 | 13.90 | 0.212 | 1.0 | ||
0.568 | 5.08 | 0.176 | 0.8 | ||
0.579 | 12.06 | 0.181 | 0.9 | ||
0.634 | 11.89 | 0.176 | 1.0 | ||
Blade (N) | N = 2 | 0.639 | 13.59 | 0.221 | 0.8 |
0.647 | 15.1 | 0.228 | 0.9 | ||
0.660 | 13.90 | 0.212 | 1.0 | ||
N = 3 | 0.706 | 5.16 | 0.145 | 0.8 | |
0.726 | 5.38 | 0.138 | 0.9 | ||
0.733 | 4.15 | 0.121 | 1.0 | ||
N = 4 | 0.722 | 3.24 | 0.082 | 0.8 | |
0.722 | 3.40 | 0.072 | 0.9 | ||
0.726 | 3.10 | 0.058 | 1.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, J.; Li, F.; Chen, J.; Yuan, Z.; Mai, W. Parameter Analysis of Savonius Hydraulic Turbine Considering the Effect of Reducing Flow Velocity. Energies 2020, 13, 24. https://doi.org/10.3390/en13010024
Yao J, Li F, Chen J, Yuan Z, Mai W. Parameter Analysis of Savonius Hydraulic Turbine Considering the Effect of Reducing Flow Velocity. Energies. 2020; 13(1):24. https://doi.org/10.3390/en13010024
Chicago/Turabian StyleYao, Jianjun, Fengshen Li, Junhua Chen, Zheng Yuan, and Wangeng Mai. 2020. "Parameter Analysis of Savonius Hydraulic Turbine Considering the Effect of Reducing Flow Velocity" Energies 13, no. 1: 24. https://doi.org/10.3390/en13010024
APA StyleYao, J., Li, F., Chen, J., Yuan, Z., & Mai, W. (2020). Parameter Analysis of Savonius Hydraulic Turbine Considering the Effect of Reducing Flow Velocity. Energies, 13(1), 24. https://doi.org/10.3390/en13010024