Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production
Abstract
1. Introduction
2. Lignocelluloses
2.1. Cellulose
2.2. Hemicellulose
2.3. Lignin
3. Biodegradation of Lignocellulose
4. Concepts of Pretreatment
4.1. Physical and Chemical Pretreatment
4.2. Biological Pretreatment
4.2.1. Micro-Aerobic Pretreatment
4.2.2. Ensiling, Composting
4.2.3. Physical Separation of Digestion Phases or Microbial Consortia
4.2.4. Aerobic Pretreatment with Defined Fungal Cultures
5. By-Product Formation
6. Closing Remarks—Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sawatdeenarunat, C.; Surendra, K.C.; Takara, D.; Oechsner, H.; Khanal, S.K. Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresour. Technol. 2015, 178, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Martínez-Gutiérrez, E. Biogas production from different lignocellulosic biomass sources: Advances and perspectives. 3 Biotech 2018, 8, 233–286. [Google Scholar] [CrossRef] [PubMed]
- Amin, F.R.; Khalid, H.; Zhang, H.; Rahman, S.U.; Zhang, R.; Liu, G.; Chen, C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017, 7, 72. [Google Scholar] [CrossRef] [PubMed]
- Börjesson, P.; Mattiasson, B. Biogas as a resource-efficient vehicle fuel. Trends Biotechnol. 2008, 26, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.-Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y.Y. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 2005, 96, 1959–1966. [Google Scholar] [CrossRef] [PubMed]
- Capolupo, L.; Faraco, V. Green methods of lignocellulose pretreatment for biorefinery development. Appl. Microbiol. Biotechnol. 2016, 100, 9451–9467. [Google Scholar] [CrossRef] [PubMed]
- Zieminski, K.; Romanowska, I.; Kowalska, M. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag. 2012, 32, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef] [PubMed]
- Hermosilla, E.; Schalchli, H.; Mutis, A.; Diez, M.C. Combined effect of enzyme inducers and nitrate on selective lignin degradation in wheat straw by Ganoderma lobatum. Environ. Sci. Pollut. Res. Int. 2017, 24, 21984–21996. [Google Scholar] [CrossRef] [PubMed]
- Dahadha, S.; Amin, Z.; Bazyar Lakeh, A.A.; Elbeshbishy, E. Evaluation of Different Pretreatment Processes of Lignocellulosic Biomass for Enhanced Biomethane Production. Energy Fuels 2017, 31, 10335–10347. [Google Scholar] [CrossRef]
- Paudel, S.R.; Banjara, S.P.; Choi, O.K.; Park, K.Y.; Kim, Y.M.; Lee, J.W. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresour. Technol. 2017, 245, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Howard, R.I.; Abotsi, E.; van Jansen Regensburg, E.L.; Howard, S. Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2003, 2. [Google Scholar] [CrossRef]
- Prassad, S.; Singh, A.; Joshi, H.C. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 2007, 50, 1–15. [Google Scholar] [CrossRef]
- Pérez, J.; Muñoz-Dorado, J.; de La Rubia, T.; Martínez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. Off. J. Span. Soc. Microbiol. 2002, 5, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Tuomela, M.; Vikman, M.; Hatakka, A.; Itvaara, M. Biodegradation of lignin in a compost environment: A review. Bioresour. Technol. 1999, 72, 169–178. [Google Scholar] [CrossRef]
- Sánchez, C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 2009, 27, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.M., Jr.; Saxena, I.M. Cellulose biosynthesis: A model for understanding the assembly of biopolymers. Plant Physiol. Biochem. 2000, 38, 57–67. [Google Scholar] [CrossRef]
- Atalla, R.H.; Hackney, J.M.; Uhlin, I.; Thompson, N.S. Hemicelluloses as structure regulators in the aggregation of native cellulose. Int. J. Biol. Macromol. 1993, 15, 109–112. [Google Scholar] [CrossRef]
- Fan, L.T.; Lee, Y.-H.; Beardmore, D.H. Mechanism of the enzymatic hydrolysis of cellulose: Effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol. Bioeng. 1980, 22, 177–182. [Google Scholar] [CrossRef]
- Malherbe, S.; Cloete, T.E. Lignocellulose biodegradation: Fundamentals and applications. Rev. Environ. Sci. Biotechnol. 2002, 1, 105–114. [Google Scholar] [CrossRef]
- Gerardi, M.H. The Microbiology of Anaerobic Digesters; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Adney, W.S.; Rivard, C.J.; Ming, S.A.; Himmel, M.E. Anaerobic digestion of lignocellulosic biomass and wastes: Cellulases and related enzymes. Appl. Biochem. Biotechnol. 1991, 30, 165–183. [Google Scholar] [CrossRef] [PubMed]
- Dashtban, M.; Schraft, H.; Qin, W. Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives. Int. J. Biol. Sci. 2009, 5, 578–595. [Google Scholar] [PubMed]
- Shrestha, S.; Fonoll, X.; Khanal, S.K.; Raskin, L. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives. Bioresour. Technol. 2017, 245, 1245–1257. [Google Scholar] [CrossRef] [PubMed]
- Desvaux, M. The cellulosome of Clostridium cellulolyticum. Enzym. Microbiol. Technol. 2005, 37, 373–385. [Google Scholar] [CrossRef]
- Vodovnik, M.; Marinsek-Logar, R. Cellulosomes—Promising supramolecular machines of anaerobic cellulolytic microorganisms. Acta Chem. Slov. 2010, 57, 767–774. [Google Scholar]
- Leschine, S.B. Cellulose degradiation in anaerobic environment. Annu. Rev. Microbiol. 1995, 49, 399–426. [Google Scholar] [CrossRef] [PubMed]
- Orpin, C.G. Studies on rumen flagellate Neocallimastix frontalis. J. Gen. Microbiol. 1975, 91, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, M.J.; Dencamp, H.J.M.O.; Orpin, C.G.; Veld, J.H.; Vogels, G.D. Comparsion of growth-characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium. J. Gen. Microbiol. 1991, 137, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Dollhofer, V.; Podmirseg, S.M.; Callaghan, T.M.; Griffith, G.W.; Fliegerova, K. Anaerobic Fungi and Their Potential for Biogas Production. Adv. Biochem. Eng. Biotechnol. 2015, 151, 41–61. [Google Scholar] [CrossRef]
- Leis, S.; Dresch, P.; Peintner, U.; Fliegerová, K.; Sandbichler, A.M.; Insam, H.; Podmirseg, S.M. Finding a robust strain for biomethanation: Anaerobic fungi (Neocallimastigomycota) from the Alpine ibex (Capra ibex) and their associated methanogens. Anaerobe 2014, 29, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Nakashimada, Y.; Srinivasan, K.; Murakami, M.; Nishio, N. Direct conversion of cellulose to methane by anaerobic fungus Neocallimastix frontalis and defined methanogens. Biotechnol. Lett. 2000, 22, 223–227. [Google Scholar] [CrossRef]
- Rabinovich, M.L.; Bolobova, A.V.; Vasilchenko, N. Fungal decomposition of natural aromatic structures and xenobiotics: A review. Appl. Biochem. Microbiol. 2004, 40, 1–17. [Google Scholar] [CrossRef]
- Manzanares, P.; Fajardo, S.; Martin, C. Production of ligniolytic activities when treating paper pulp effluents by Trymes versicolor. J. Biotechnol. 1995, 43, 125–132. [Google Scholar] [CrossRef]
- Brown, M.E.; Chang, M.C.Y. Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 2014, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.-J.; Shimizu, Y.; Ikeda, K.; Kim, S.-K.; Park, C.-H.; Matsui, S. Biodegradation of high molecular weight lignin under sulfate reducing conditions: Lignin degradability and degradation by-products. Bioresour. Technol. 2009, 100, 1622–1627. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhao, J.; Xu, F.; Li, Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 2014, 42, 35–53. [Google Scholar] [CrossRef]
- Bayer, E.A.; Lamed, R.; Himmel, M.E. The potential of cellulases and cellulosomes for cellulosic waste management. Curr. Opin. Biotechnol. 2007, 18, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Sawatdeenarunat, C.; Sung, S.; Khanal, S.K. Enhanced volatile fatty acids production during anaerobic digestion of lignocellulosic biomass via micro-oxygenation. Bioresour. Technol. 2017, 237, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Kaparaju, P.; Serrano, M.; Thomsen, A.B.; Kongjan, P.; Angelidaki, I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 2009, 100, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Zhang, Z.; Luo, Y.; Sun, S.; Qiao, W.; Xiao, M. Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour. Technol. 2011, 102, 11177–11182. [Google Scholar] [CrossRef] [PubMed]
- Zimbardi, F.; Viggiano, D.; Nanna, F.; Demichele, M.; Cuna, D.; Cardinale, G. Steam explosions of straw in batch and continous systems. Appl. Biochem. Biotechnol. 1999, 77, 117–125. [Google Scholar] [CrossRef]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Coord. Dev. Lead. Biomass Pretreat. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Karimi, K.; Taherzadeh, M.J. A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresour. Technol. 2016, 200, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Parthiba Karthikeyan, O.; Trably, E.; Mehariya, S.; Bernet, N.; Wong, J.W.C.; Carrere, H. Pretreatment of food waste for methane and hydrogen recovery: A review. Bioresour. Technol. 2018, 249, 1025–1039. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.R.; Lastra Milone, T.; Petersen, G.; Andersen, H.R. Accelerated anaerobic hydrolysis rates under a combination of intermittent aeration and anaerobic conditions. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2017, 75, 1944–1951. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, S.; Vielma, S.; Borja, R.; Huiliñir, C.; Guerrero, L. Increase in biogas production in anaerobic sludge digestion by combining aerobic hydrolysis and addition of metallic wastes. Renew. Energy 2018, 123, 541–548. [Google Scholar] [CrossRef]
- Henze, M. Wastewater Treatment. Biological and Chemical Processes, 3rd ed.; Springer: Berlin, Germany; London, UK, 2011. [Google Scholar]
- Lim, J.W.; Wang, J.-Y. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. Waste Manag. 2013, 33, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Liu, J.; Zhang, M. Short-term pre-aeration applied to the dry anaerobic digestion of MSW, with a focus on the spectroscopic characteristics of dissolved organic matter. Chem. Eng. J. 2017, 313, 1222–1232. [Google Scholar] [CrossRef]
- Sarkar, O.; Venkata Mohan, S. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane. Bioresour. Technol. 2017, 242, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Tsapekos, P.; Kougias, P.G.; Vasileiou, S.A.; Lyberatos, G.; Angelidaki, I. Effect of micro-aeration and inoculum type on the biodegradation of lignocellulosic substrate. Bioresour. Technol. 2017, 225, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Fu, S.; Yang, Z.; Lu, J.; Guo, R. Improved methane production from corn straw by microaerobic pretreatment with a pure bacteria system. Bioresour. Technol. 2018, 259, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Shi, J.; Wan, C.; Li, Y. Comparison of alkaline- and fungi-assisted wet-storage of corn stover. Bioresour. Technol. 2012, 109, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Heidarzadeh Vazifehkhoran, A.; Triolo, J.; Larsen, S.; Stefanek, K.; Sommer, S. Assessment of the Variability of Biogas Production from Sugar Beet Silage as Affected by Movement and Loss of the Produced Alcohols and Organic Acids. Energies 2016, 9, 368. [Google Scholar] [CrossRef]
- Prapinagsorn, W.; Sittijunda, S.; Reungsang, A. Co-Digestion of Napier Grass and Its Silage with Cow Dung for Methane Production. Energies 2017, 10, 1654. [Google Scholar] [CrossRef]
- Vervaeren, H.; Hostyn, K.; Ghekiere, G.; Willems, B. Biological ensilage additives as pretreatment for maize to increase the biogas production. Renew. Energy 2010, 35, 2089–2093. [Google Scholar] [CrossRef]
- Wagner, A.O.; Janetschek, J.; Illmer, P. Using Digestate Compost as a Substrate for Anaerobic Digestion. Chem. Eng. Technol. 2018, 41, 747–754. [Google Scholar] [CrossRef]
- Qin, Y.; Higashimori, A.; Wu, L.-J.; Hojo, T.; Kubota, K.; Li, Y.-Y. Phase separation and microbial distribution in the hyperthermophilic-mesophilic-type temperature-phased anaerobic digestion (TPAD) of waste activated sludge (WAS). Bioresour. Technol. 2017, 245, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenès, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Pretreat. Biomass 2016, 199, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Gavala, H.N.; Skiadas, I.V.; Mladenovska, Z.; Ahring, B.K. Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step. J. Environ. Manag. 2008, 88, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.O.; Malin, C.; Gstraunthaler, G.; Illmer, P. Survival of selected pathogens in diluted sludge of a thermophilic waste treatment plant and in NaCl-solution under aerobic and anaerobic conditions. Waste Manag. 2009, 29, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.O.; Gstraunthaler, G.; Illmer, P. Survival of bacterial pathogens during the thermophilic anaerobic digestion of biowaste: Laboratory experiments and in situ validation. Anaerobe 2008, 14, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, S.; Shiota, N.; Katsura, K.; Akashi, A. Solubilization of organic sludge by thermophilic aerobic bacteria as a pretreatment for anaerobic digestion. Water Sci. Technol. 2000, 41. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; Benyounis, K.Y.; Olabi, A.G. Pretreatment techniques used in biogas production from grass. Renew. Sustain. Energy Rev. 2017, 68, 1193–1204. [Google Scholar] [CrossRef]
- Rouches, E.; Herpoël-Gimbert, I.; Steyer, J.P.; Carrere, H. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review. Renew. Sustain. Energy Rev. 2016, 59, 179–198. [Google Scholar] [CrossRef]
- Hattaka, A.I. Pretreatment of wheat straw by white-rot fungi for enzymatic saccharification of cellulose. Appl. Microbiol. Biotechnol. 1983, 82, 131–137. [Google Scholar]
- Isroi; Millati, R.; Syamsiah, S.; Niklasson, C.; Cahyanto, M.N.; Lundquist, K.; Taherzadeh, M.J. Biological pretreatment of lignocelluloses with white-rot fungi and its applications: A review. BioResources 2011, 6, 5224–5259. [Google Scholar]
- Liu, X.; Hiligsmann, S.; Gourdon, R.; Bayard, R. Anaerobic digestion of lignocellulosic biomasses pretreated with Ceriporiopsis subvermispora. J. Environ. Manag. 2017, 193, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Matsumoto, T.; Keith, L.; Li, Y. Fungal Pretreatment of Albizia Chips for Enhanced Biogas Production by Solid-State Anaerobic Digestion. Energy Fuels 2015, 29, 200–204. [Google Scholar] [CrossRef]
- Muthangya, M.; Mshandete, A.M.; Kivaisi, A.K. Two-stage fungal pre-treatment for improved biogas production from sisal leaf decortication residues. Int. J. Mol. Sci. 2009, 10, 4805–4815. [Google Scholar] [CrossRef] [PubMed]
- Take, H.; Andou, Y.; Nakamura, Y.; Kobayashi, F.; Kurimoto, Y.; Kuwahara, M. Production of methane gas from Japanese cedar chips pretreated by various delignification methods. Biochem. Eng. J. 2006, 28, 30–35. [Google Scholar] [CrossRef]
- Amirta, R.; Tanabe, T.; Watanabe, T.; Honda, Y.; Kuwahara, M.; Watanabe, T. Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsis subvermispora. J. Biotechnol. 2006, 123, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Phutela, U.G.; Sahni, N. Effect of Fusarium sp. on Paddy Straw Digestibility and Biogas Production. J. Adv. Lab. Res. Biol. 2012, 3, 9–12. [Google Scholar]
- Rouches, E.; Zhou, S.; Sergent, M.; Raouche, S.; Carrere, H. Influence of white-rot fungus Polyporus brumalis BRFM 985 culture conditions on the pretreatment efficiency for anaerobic digestion of wheat straw. Biomass Bioenergy 2018, 110, 75–79. [Google Scholar] [CrossRef]
- Vasmara, C.; Cianchetta, S.; Marchetti, R.; Galletti, S. Biogas produciton from wheat straw pre-treated with ligninolytic fungi and co-digestion with pig slurry. Environ. Eng. Manag. J. 2015, 14, 1751–1760. [Google Scholar]
- Mustafa, A.M.; Poulsen, T.G.; Sheng, K. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl. Energy 2016, 180, 661–671. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Poulsen, T.G.; Xia, Y.; Sheng, K. Combinations of fungal and milling pretreatments for enhancing rice straw biogas production during solid-state anaerobic digestion. Bioresour. Technol. 2017, 224, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zheng, Y.; Li, Y. Fungal pretreatment of yard trimmings for enhancement of methane yield from solid-state anaerobic digestion. Bioresour. Technol. 2014, 156, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Mutschlechner, M.; Illmer, P.; Wagner, A.O. Biological pre-treatment: Enhancing biogas production using the highly cellulolytic fungus Trichoderma viride. Waste Manag. 2015, 43, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.O.; Schwarzenauer, T.; Illmer, P. Improvement of methane generation capacity by aerobic pre-treatment of organic waste with a cellulolytic Trichoderma viride culture. J. Environ. Manag. 2013, 129, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, X.; Wu, S.; He, J.; Pang, C.; Deng, Y.; Dong, R. Fungal pretreatment by Phanerochaete chrysosporium for enhancement of biogas production from corn stover silage. Appl. Biochem. Biotechnol. 2014, 174, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Tišma, M.; Planinić, M.; Bucić-Kojić, A.; Panjičko, M.; Zupančič, G.D.; Zelić, B. Corn silage fungal-based solid-state pretreatment for enhanced biogas production in anaerobic co-digestion with cow manure. Bioresour. Technol. 2018, 253, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Srilatha, H.R.; Nand, K.; Sudhakar, K.; Madhukara, K. Fungal pretreatment of orange processing waste by solid-state fermentation for improved production of methane. Process Biochem. 1995, 30, 327–331. [Google Scholar] [CrossRef]
- Mackuľak, T.; Prousek, J.; Švorc, Ľ.; Drtil, M. Increase of biogas production from pretreated hay and leaves using wood-rotting fungi. Chem. Pap. 2012, 66, 3498. [Google Scholar] [CrossRef]
- Klein, D.; Eveleigh, D.E. Ecology of Trichoderma. In Trichoderma & Gliocladium, Basic Biology, Taxonomy and Genetics; Kubicek, C.P., Harmna, G.E., Eds.; Taylor and Francis: London, UK, 1998; Volume 1, pp. 57–69. ISBN 0-7484-0572-0. [Google Scholar]
- Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, R.; Binod, P.; Pandey, A. Biological pretreatment of lignocellulosic biomass—An overview. Bioresour. Technol. 2016, 199, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Ximenes, E.; Nichols, N.N.; Zhang, L.; Ladisch, M. Biological abatement of cellulase inhibitors. Bioresour. Technol. 2013, 146, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Chantho, P.; Musikavong, C.; Suttinun, O. Removal of phenolic compounds from palm oil mill effluent by thermophilic Bacillus thermoleovorans strain A2 and their effect on anaerobic digestion. Int. Biodeterior. Biodegrad. 2016, 115, 293–301. [Google Scholar] [CrossRef]
- Borja, R.; Martin, A.; Alonso, V.; Garcia, I.; Banks, J. Influence of different aerobic pretreatments on the kinetics of anaerobic digestion of olive mill wastewater. Water Res. 1995, 29, 489–495. [Google Scholar] [CrossRef]
- Panagiotou, G.; Olsson, L. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol. Bioeng. 2006, 96, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Haghighi Mood, S.; Hossein Golfeshan, A.; Tabatabaei, M.; Salehi Jouzani, G.; Najafi, G.H.; Gholami, M.; Ardjmand, M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 2013, 27, 77–93. [Google Scholar] [CrossRef]
- Pienkos, P.T.; Zhang, M. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 2009, 16, 743–762. [Google Scholar] [CrossRef]
Pretreatment Organism (Type of Fungus 1) | Substrate | Pretreatment Incubation Conditions 2 | Additional Information on Fungal Pretreatment Process 3 | Anaerobic Digestion Conditions 4 | Impact of Pretreatment on Substrate | Impact of Pretreatment on Biogas Production | Reference |
---|---|---|---|---|---|---|---|
Ceriporiopsis subvermispora (wrf) | Japanese cedar wood | 8 weeks a 28 °C b 70% c | orig, hyphal biomass grown on agar added, substrate supplemented with 10% wheat bran. | batch, mp, t 60 | 28% lignin removal in initial substrate, ~75%cleavage of ß-O-4 aryl ether | 35% and 5% conversion of holocellulose to methane with and without pretreatment, respectively | [77] |
Ceriporiopsis subvermispora (wrf) | Albizia biomass (forestry waste) | 48 days a 28 °C b 60% c | e, autoc | batch, mp, ssAD, t 58 | 24% lignin removal of initial substrate, 4-fold increase in xylose and glucose production after 72 h of enzymatic hydrolysis | 3.7-fold increase in methane production | [74] |
Ceriposiopsis subvermispora (wrf) | Hazel and acacia branches, barley straw, and sugarcane bagasse | 28 days a 28 °C b | e, autoc, grinded substrate | batch, mp | 2- to 4-fold increase in enzymatic cellulose degradability for hazel and bagasse, decrease for straw and acacia | Increase of biomethane potential (BMP) for hazel (60%), loss of BMP for acacia (34%), straw and sugarcane bagasse | [73] |
Phanerochaete chrysosporium (wrf) | Corn stover silage | 30 days a 28 °C b Stable ambient d | f, autoc, washed substrate | batch, mp, t 30 | 39% lignin removal of initial substrate, improved degradation of substrate cell wall components | 19.6–32.6% increase in methane production compared with controls | [86] |
Fusarium sp. (wrf) | Paddy straw | 10 days a 30 °C b 70% c | g, orig | batch, mp, t 35 | 17.1% decrease in lignin content, 10.8% decrease in silica content compared with controls | 53.8% increase in biogas production | [78] |
Trametes versicolor (wrf) | Corn silage | 7 days a 27 °C b 70–80% c | g, orig | cont, mp, co-digestion with cow manure | 70% increase in lignin degradation compared with control approach | Increased pH stability and biogas productivity, enhanced anaerobic degradation | [87] |
Ceriporiopsis subvermispora (wrf) | Yard trimmings | 30 days a 28 °C b 60% c | e, autoc | batch, mp, ssAD, t 40 | 20.9% degradation of initial lignin content | 54% increase in methane production compared with controls, increased cellulose degradation | [83] |
Polyporus brumalis (wrf) | Wheat straw | 12.5 to 20 days a 20–30 °C b wet weight to initial solid ratio of 2.1 to 4.5 | e, autoc, addition of metal supplement solution | batch, mp, t 57 | Decrease in methane production compared with the control. Within fungal pretreatment, best methane production after 12.5 days incubation at 30 °C at 3.7 ww/ts ratio | [79] | |
Pleurotus ostreatus (wrf) Trichoderma reesei (srf 5) | Rice straw | 20 days a 28 °C b 75% c | g, autoc | batch, mp, ssAD, t 45 | 33% lignin removal of initial substrate with wrf and 23.6% with brf Lignin-to-cellulose ratio after treatment: wrf 4.2, brf 2.88 | 20% increase in methane production with wrf and 21.7% decrease for brf treatment | [81] |
CCHT-1 (wrf) Trichoderma reesei (srf 5) | Sisal leaf decortication residues | 4 + 8 days a 28 °C b | g, orig, two fungal stages: wrf followed by brf | batch, mp, t 84 | 22.5%. decrease in neutral detergent fiber content, 21% increase in cellulose content | 30–101% increase in biogas production compared to control | [75] |
Sporotrichum sp. Aspergillus sp. Fusarium sp. Penicillium sp. | Orange processing waste | 3 days a 30 °C b 65% c | g, orig, mixed culture pretreatment. | cont, mp, t 25 | Reduction in inhibitory limonene content in the substrate. | Pretreatment leads to higher possible organic loading rates that improve overall productivity | [88] |
Trichoderma viride (srf 5) | Organic waste | 4 days a 25 °C b | e, orig | batch, tp, t 18 | Increased cellulase activity during pretreatment compared with controls | Up to 400% increase in methane production compared with controls | [85] |
Trichoderma viride (srf 5) | Organic waste | 10 days a 22 °C b 70% c | f, orig | batch, tp, t 14 | Increased cellulase and dehydrogenase activity compared to control | More than 2-fold increase in methane production | [84] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, A.O.; Lackner, N.; Mutschlechner, M.; Prem, E.M.; Markt, R.; Illmer, P. Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production. Energies 2018, 11, 1797. https://doi.org/10.3390/en11071797
Wagner AO, Lackner N, Mutschlechner M, Prem EM, Markt R, Illmer P. Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production. Energies. 2018; 11(7):1797. https://doi.org/10.3390/en11071797
Chicago/Turabian StyleWagner, Andreas Otto, Nina Lackner, Mira Mutschlechner, Eva Maria Prem, Rudolf Markt, and Paul Illmer. 2018. "Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production" Energies 11, no. 7: 1797. https://doi.org/10.3390/en11071797
APA StyleWagner, A. O., Lackner, N., Mutschlechner, M., Prem, E. M., Markt, R., & Illmer, P. (2018). Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production. Energies, 11(7), 1797. https://doi.org/10.3390/en11071797