Esterification of Jatropha Oil with Isopropanol via Ultrasonic Irradiation
Abstract
1. Introduction
2. Results and Discussion
2.1. The Properties of Jatropha Oil
2.2. Effects of Molar Ratio of IPA to Oil on the Performance of Semi-Batch Esterification
2.3. Effects of Esterification Temperature on Performance of Semi-Batch Esterification
2.4. Comparisons of Esterified JO by Different Types of UI Processes
3. Experimental Methods
3.1. Materials
3.2. Equipment
3.3. Experiments
3.3.1. Semi-Batch System
3.3.2. Batch System
3.4. Analyses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
| AV | Acid value (mg KOH/g) |
| BP | Boiling point (K) |
| IV | Iodine value (100g I2/g) |
| KV | Kinematic viscosity (mm2/s) |
| MFFA | Content of free fatty acid FFA (wt.%) |
| MH/HO | Weight percent of sulfuric acid to sum of sulfuric acid and oil (wt.%) |
| MIOE | Molar ratio of isopropyl alcohol to JO (mol/mol) |
| MW | Water content (wt.%) |
| mO | Mass of initial oil (g) |
| MHFT | Mechanical mixing with temperature controlled by employing external thermal heating using water bath of 338 K |
| MHFT-E30S10 | MHFT with tE = 30 min and settling time = 10 min after tE |
| MNAT | Mechanical mixing without temperature control with initial temperature at ambient temperature |
| MNAT-E30S10 | MNAT with tE = 30 min and settling time = 10 min after tE |
| PUI | Power of ultrasonic irradiation (W) |
| QIPA/H | Flow rate of IPA/H mixture (mL/min) |
| R | Carbon chain of fatty acid |
| TE | Esterification temperature (K) |
| tE | Esterification time (min) |
| UNVT | UI with temperature-rise effect without temperature control, while temperature varied from initial ambient temperature |
| UNVT-E30S10 | UNVT with tE = 30 min and settling time = 10 min after tE |
| VO | Volume of oil (mL) |
| YF | Yield of biodiesel of FAIE, = (2 × Integral of proton signal at 4.9 ppm / Integral of proton signal at 2.3 ppm) × 100 (%) |
| ρLO | Density of liquid or oil (kg/m3) |
| ηA | Conversion efficiency of FFA via esterification (%) |
Abbreviation
| ASTM | American standards of testing methods |
| CNS | Chinese National Standards |
| EN | European standards |
| FAIE | Fatty acid isopropyl ester |
| FAME | Fatty acid methyl ester |
| FFA | Free fatty acid |
| IPA | Isopropyl alcohol |
| IPA/H | Mixture of IPA/H2SO4 |
| JO | Jatropha oil |
| M/H | Mixture of methanol and H2SO4 |
| NMR | Nuclear magnetic resonance |
| SDC | Simulated distillation characteristic |
| UI | Ultrasonic irradiation |
References
- Abdullah, R.; Sianipar, R.N.; Ariyani, D.; Nata, I.F. Conversion of palm oil sludge to biodiesel using alum and KOH as catalysts. Sustain. Environ. Res. 2017, 27, 291–295. [Google Scholar] [CrossRef]
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S.A. Comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability. Renew. Sustain. Energy Rev. 2011, 15, 1314–1324. [Google Scholar] [CrossRef]
- Kathirvelu, B.; Subramanian, S.; Govindan, N.; Santhanam, S. Emission characteristics of biodiesel obtained from jatropha seeds and fish wastes in a diesel engine. Sustain. Environ. Res. 2017, 27, 283–290. [Google Scholar] [CrossRef]
- Shankar, V.; Jambulingam, R. Waste crab shell derived CaO impregnated Na-ZSM-5 as a solid base catalyst for the transesterification of neem oil into biodiesel. Sustain. Environ. Res. 2017, 27, 273–278. [Google Scholar] [CrossRef]
- Jayed, M.H.; Masjuki, H.H.; Kalam, M.A.; Mahlia, T.M.I.; Husnawan, M.; Liaquat, A.M. Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia. Renew. Sustain. Energy Rev. 2011, 15, 220–235. [Google Scholar] [CrossRef]
- Lim, S.; Teong, L.K. Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Renew. Sustain. Energy Rev. 2010, 14, 938–954. [Google Scholar] [CrossRef]
- Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Norhasyima, R.S. Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review. Renew. Sustain. Energy Rev. 2011, 15, 3501–3515. [Google Scholar] [CrossRef]
- Sarin, R.; Sharma, M.; Sinharay, S.; Malhotra, R.K. Jatropha–Palm biodiesel blends: An optimum mix for Asia. Fuel 2007, 86, 1365–1371. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, M.P. Prospects of biodiesel from Jatropha in India: A review. Renew. Sustain. Energy Rev. 2010, 14, 763–771. [Google Scholar] [CrossRef]
- Yang, S.Q. Trend of refinery of toxin plants. Bus. Week Mag. 2007, 1041, 166. (In Chinese) [Google Scholar]
- Romano, S.D.; Sorichetti, P.A. Dielectric Spectroscopy in Biodiesel Production and Characterization; Springer: London, UK, 2011. [Google Scholar]
- Ghanei, R. Improving cold-flow properties of biodiesel through blending with nonedible castor oil methyl ester. Environ. Prog. Sustain. Energ. 2015, 34, 897–902. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Progress in biodiesel processing. Appl. Energ. 2010, 87, 1815–1835. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, L.; Wang, Q.; Ma, H.; Niu, R.; Gao, Z. Synergistic effect of mixed methanol/ethanol on transesterification of waste food oil using p-toluenesulfonic acid as catalyst. Environ. Prog. Sustain. Energy 2015, 34, 1547–1553. [Google Scholar] [CrossRef]
- Go, A.W.; Sutanto, S.; Liu, Y.T.; Nguyen, P.L.; Ismadji, S.; Ju, Y.H. In situ transesterification of Jatropha curcas L. seeds in subcritical solvent system. J. Taiwan Inst. Chem. Eng. 2014, 45, 1516–1522. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, S.C.; Wu, T.Y.; Yang, P.M.; Jhang, S.R.; Lin, J.F. Energy-saving and rapid transesterification of jatropha oil using a microwave heating system with ionic liquid catalyst. J. Taiwan Inst. Chem. Eng. 2015, 49, 72–78. [Google Scholar] [CrossRef]
- Satar, I.; Wan Isahak, W.N.R.; Salimon, J. Characterization of biodiesel from second generation gamma-irradiated Jatropha curcas. J. Taiwan Inst. Chem. Eng. 2015, 49, 85–89. [Google Scholar] [CrossRef]
- Zarei, A.; Amin, N.A.S.; Talebian-Kiakalaieh, A.; Zain, N.A.M. Immobilized lipase-catalyzed transesterification of Jatropha curcas oil: Optimization and modeling. J. Taiwan Inst. Chem. Eng. 2014, 45, 444–451. [Google Scholar] [CrossRef]
- Karthick, K.; Dinesh, C.; Namasivayam, C. Utilization of ZnCl2 activated Jatropha husk carbon for the removal of reactive and basic dyes: Adsorption equilibrium and kinetic studies. Sustain. Environ. Res. 2014, 24, 139–148. [Google Scholar]
- Hsu, S.H.; Huang, C.S.; Chung, T.W.; Gao, S. Adsorption of chlorinated volatile organic compounds using activated carbon made from Jatropha curcas seeds. J. Taiwan Inst. Chem. Eng. 2014, 45, 2526–2530. [Google Scholar] [CrossRef]
- Singh, A.K.; Ferando, S.D.; Hernandez, R. Base-catalyzed fast transesterification of soybean oil using ultrasonication. Energy Fuel 2007, 21, 1161–1164. [Google Scholar] [CrossRef]
- Achten, W.M.J.; Verchot, L.; Franken, Y.J.; Mathijs, E.; Singh, V.P.; Aerts, R.; Muys, B. Jatropha bio-diesel production and use. Biomass Bioenergy 2008, 32, 1063–1084. [Google Scholar] [CrossRef]
- Achten, W. Sustainability Evaluation of Biodiesel from Jatropha curcas L.; Katholieke Universiteit Leuven, Groep Wetenschap & Technologie: Heverlee, Belgium, 2010. [Google Scholar]
- Andrade-Tacca, C.A.; Chang, C.C.; Chen, Y.H.; Manh, D.V.; Chang, C.Y.; Ji, D.R.; Tseng, J.Y.; Shie, J.L. Esterification of jatropha oil via ultrasonic irradiation with auto-induced temperature-rise effect. Energy 2014, 71, 346–354. [Google Scholar] [CrossRef]
- Andrade-Tacca, C.A.; Chang, C.C.; Chen, Y.H.; Manh, D.V.; Chang, C.Y. Esterification of jatropha oil by sequential ultrasonic irradiation with auto-induced temperature rise and dosing of methanol and sulfuric acid catalyst. J. Taiwan Inst. Chem. Eng. 2014, 45, 1523–1531. [Google Scholar] [CrossRef]
- Zou, H.; Lei, M. Optimum process and kinetic study of Jatropha curcas oil pre-esterification in ultrasonical field. J. Taiwan Inst. Chem. Eng. 2012, 43, 730–735. [Google Scholar] [CrossRef]
- Miao, X.; Li, R.; Yao, H. Effective acid-catalyzed transesterification for biodiesel production. Energy Convers. Manag. 2009, 50, 2680–2684. [Google Scholar] [CrossRef]
- Patil, P.D.; Deng, S. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 2009, 88, 1302–1306. [Google Scholar] [CrossRef]
- Tiwari, K.A.; Kumar, A.; Raheman, H. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass Bioenergy 2007, 31, 569–575. [Google Scholar] [CrossRef]
- Lu, H.; Liu, Y.; Zhou, H.; Yang, Y.; Chen, M.; Liang, B. Production of biodiesel from Jatropha curcas L. oil. Compt. Chem. Eng. 2009, 33, 1091–1096. [Google Scholar] [CrossRef]
- Lu, H.; Chen, M.; Jiang, W.; Liang, B. Biodiesel processes and properties from Jatropha curcas L. oil. J. Biobased Mater. Bioenergy 2011, 5, 546–551. [Google Scholar] [CrossRef]
- Vyas, A.P.; Verma, J.L.; Subrahmanyam, N. A review on FAME production processes. Fuel 2010, 89, 1–9. [Google Scholar] [CrossRef]
- Taiwan Environmental Protection Administration (TEPA). Statistic Data of Industrial Waste from Industrial Waste Management System; TEPA: Taipei, Taiwan, 2013.
- Wang, P.S.; Tat, M.E.; Gerpen, J.V. The production of fatty acid isopropyl esters and their use as a diesel engine fuel. J. Am. Oil Chem. Soc. 2005, 82, 845–849. [Google Scholar] [CrossRef]
- Lee, I.; Johnson, L.A.; Hammond, E.G. Use of branched-chain esters to reduce the crystallization temperature of biodiesel. J. Am. Oil Chem. Soc. 1995, 72, 1155–1160. [Google Scholar] [CrossRef]
- Colucci, J.A.; Borrero, E.E.; Alape, F. Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. J. Am. Oil Chem. Soc. 2005, 82, 525–530. [Google Scholar] [CrossRef]
- Ji, J.; Wang, J.; Li, Y.; Yu, Y.; Xu, Z. Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics 2006, 44, 411. [Google Scholar] [CrossRef] [PubMed]
- Hakoda, A.; Sakaida, K.; Suzuki, T.; Yasui, A. Determination of the Acid Value of Instant Noodles: Interlaboratory Study. J. AOAC Int. 2006, 89, 1341–1346. [Google Scholar] [PubMed]
- Augustine, A.; Okoro, I.C.; Francis, E.U.; Gilbert, U.; Okuchukwu, O. Comparative assessment of lipids and physicochemical properties of African locust beans and shea nut oils. J. Nat. Sci. Res. 2013, 3, 25–31. [Google Scholar]
- Taiwan Bureau of Standards, Metrology & Inspection (TBSMI). CNS-15072 Taiwan Biodiesel-Fatty Acid Methyl Esters Standards; TBSMI: Taipei, Taiwan, 2007.
- Gole, V.L.; Gogate, P.R. Intensification of synthesis of biodiesel from non-edible oil using sequential combination of microwave and ultrasound. Fuel Process. Technol. 2013, 106, 62–69. [Google Scholar] [CrossRef]
- Veljkovic, V.B.; Avramivic, J.M.; Stamenkovic, O.S. Biodiesel production by ultrasound assisted transesterification: State of the art and the perspectives. Renew. Sustain. Energy Rev. 2012, 16, 1193–1209. [Google Scholar] [CrossRef]
- Knothe, G. Review: Analyzing biodiesel: Standards and other methods. J. Am. Oil Chem. Soc. 2006, 83, 823–833. [Google Scholar] [CrossRef]
- American Standards of Testing Methods (ASTM). ASTM D6751; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Choudhury, H.A.; Malani, R.S.; Moholkar, V.S. Acid catalyzed biodiesel synthesis from Jatropha oil: Mechanistic aspects of ultrasonic intensification. Chem. Eng. J. 2013, 231, 262–272. [Google Scholar] [CrossRef]
- Manh, D.V.; Chen, Y.H.; Chang, C.C.; Chang, M.C.; Chang, C.Y. Biodiesel production from Tung oil and blended oil via ultrasonic transesterification process. J. Taiwan Inst. Chem. Eng. 2011, 42, 640–644. [Google Scholar] [CrossRef]
- Knothe, G. Analysis of oxidized biodiesel by H-1-NMR and effect of contact area with air. Eur. J. Lipid Sci. Technol. 2006, 108, 493–500. [Google Scholar] [CrossRef]
- TBSMI. CNS-14474 Method of Test for Density and Relative Density of Liquids by Digital Density Meter; TBSMI: Taipei, Taiwan, 2000.





| MIOE mol/mol | tE min | AV mg KOH/g | KV mm2/s | ρLO kg/m3 | MW wt.% | YF % |
|---|---|---|---|---|---|---|
| 0.5 | 6 | 1.23 | 26.76 | 918.97 | 1.24 | 10.33 |
| 1 | 12 | 0.96 | 25.75 | 914.34 | 0.54 | 10.73 |
| 3 | 35.5 | 0.51 | 21.69 | 910.65 | 0.54 | 23.24 |
| 4 | 47 | 0.50 | 16.61 | 904.83 | 0.61 | 52.67 |
| 5 | 58.5 | 0.27 a | 14.62 a | 901.57 a | 0.27 a | 67.15 a |
| (0.15–0.38) b | (14.47–14.77) b | (901.2–901.93) b | (0.078–0.47) b | (62.88–71.42) b | ||
| 6 | 70.5 | 0.24 | 14.38 | 901.5 | 0.46 | 66.78 |
| 11 | 128.5 | 0.23 | 12.92 | 899.23 | 0.51 | 80.76 |
| TE K | AV mg KOH/g | KV mm2/s | ρLO kg/m3 | MW wt.% | YF % |
|---|---|---|---|---|---|
| 337.0 | 0.14 | 19.45 | 905.6 | 0.47 | 16.4 |
| 354.0 | 0.10 | 18.60 | 904.8 | 0.50 | 20.92 |
| 374.8 | 0.17 | 12.44 | 895 | 0.21 | 75.48 |
| 394.2 (393.8–394.7) | 0.27 (0.15–0.38) | 14.62 (14.46–14.77) | 901.57 (901.2–901.93) | 0.27 (0.078–0.47) | 67.15 (62.88–71.42) |
| 414.6 | 0.14 | 15.02 | 903.23 | 0.077 | 68.51 |
| 434.1 | 0.12 | 24.09 | 910.53 | 0.043 | 29.24 |
| 454.4 | 0.084 | 25.20 | 913.26 | 0.043 | 25.84 |
| Esterified JO by Different Types of UI Processes | AV mg KOH/g | IV (g I2/100 g) | KV mm2/s | ρLO kg/m3 | MW wt.% | YF % |
|---|---|---|---|---|---|---|
| This study a (IPA) | ||||||
| Raw JO | 36.12 | 105.37 | 33.38 | 918.35 | 0.13 | NA g |
| Esterified JO by semi-batch b UI at pre-set 337.0 K | 0.14 | - | 19.45 | 905.6 | 0.47 | 16.4 |
| Esterified JO by semi-batch b UI at pre-set 354.0 K | 0.10 | - | 18.60 | 904.8 | 0.50 | 20.92 |
| Esterified JO by semi-batch b UI at pre-set 394.2 K | 0.27 | - | 14.62 | 901.57 | 0.27 | 67.15 |
| Esterified JO by batch c UI at 340.3 K (average) in 15 min | 3.50 | - | 14.07 | 895.2 | 0.59 | 10.75 |
| Esterified JO by batch c UI at 344.7 K (average) in 30 min | 1.89 | - | 13.43 | 894.8 | 0.57 | 14.51 |
| Esterified JO by batch c UI at 352.8 K (average) in 45 min | 1.48 | - | 13.70 | 896.4 | 0.54 | 19.37 |
| Esterified JO by batch c UI at 354.9 K (average) d in 60 min | 1.16 | - | 14.8 | 899.5 | 0.40 | 24.88 |
| Andrade-Tacca et al. [25,26] (Methanol) | ||||||
| Raw JO | 36.56 | 102.23 | 31.30 | 918.45 | 0.11 | NA |
| Esterified JO by sequential UI e [26] | 0.24 | 124.77 | 9.84 | 901.73 | 0.3 | - |
| UNVT-E30S10 f [25] | 6.13 | 111.22 | 20.49 | 916.1 | 0.33 | - |
| MNAT-E30S10 f [25] | 21.03 | 112.58 | 21.78 | 913.4 | - | - |
| MHFT -E30S10 f [25] | 15.70 | 113.63 | 22.61 | 914.2 | - | - |
| Biodiesel standards | NA | |||||
| CNS 15072/EN 14214 | <0.5 | <120 | 3.5~5.0 | 860~900 | <0.05 | NA |
| ASTM D6751 | <0.8 | - | 1.9~6 | <0.03 | NA |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-C.; Teng, S.; Yuan, M.-H.; Ji, D.-R.; Chang, C.-Y.; Chen, Y.-H.; Shie, J.-L.; Ho, C.; Tian, S.-Y.; Andrade-Tacca, C.A.; et al. Esterification of Jatropha Oil with Isopropanol via Ultrasonic Irradiation. Energies 2018, 11, 1456. https://doi.org/10.3390/en11061456
Chang C-C, Teng S, Yuan M-H, Ji D-R, Chang C-Y, Chen Y-H, Shie J-L, Ho C, Tian S-Y, Andrade-Tacca CA, et al. Esterification of Jatropha Oil with Isopropanol via Ultrasonic Irradiation. Energies. 2018; 11(6):1456. https://doi.org/10.3390/en11061456
Chicago/Turabian StyleChang, Chia-Chi, Syuan Teng, Min-Hao Yuan, Dar-Ren Ji, Ching-Yuan Chang, Yi-Hung Chen, Je-Lueng Shie, Chungfang Ho, Sz-Ying Tian, Cesar Augusto Andrade-Tacca, and et al. 2018. "Esterification of Jatropha Oil with Isopropanol via Ultrasonic Irradiation" Energies 11, no. 6: 1456. https://doi.org/10.3390/en11061456
APA StyleChang, C.-C., Teng, S., Yuan, M.-H., Ji, D.-R., Chang, C.-Y., Chen, Y.-H., Shie, J.-L., Ho, C., Tian, S.-Y., Andrade-Tacca, C. A., Manh, D. V., Tsai, M.-Y., Chang, M.-C., Chen, Y.-H., Huang, M., & Liu, B.-L. (2018). Esterification of Jatropha Oil with Isopropanol via Ultrasonic Irradiation. Energies, 11(6), 1456. https://doi.org/10.3390/en11061456

