A Comparative Study of the NH3-SCR Reactions over an Original and Sb-Modified V2O5–WO3/TiO2 Catalyst at Low Temperatures
Abstract
:1. Introduction
2. Experimental Methods
2.1. Catalyst Preparation
2.2. Activity Test
2.3. Catalyst Characterization
3. Results and Discussion
3.1. Activity Tests
3.2. Characterization of Catalysts
3.2.1. XRF Results
3.2.2. N2 Adsorption and SEM Mapping Results
3.2.3. XRD and Raman Results
3.2.4. XPS Results
3.2.5. FT-IR Results
3.2.6. Thermogravimetric Results
4. Conclusions
- (1)
- Modification of the commercial SCR catalyst significantly increased the denitrification performance of the catalyst in the temperature range of 275–325 °C. After 30 h of operation at 275 °C, the efficiency stabilized at 64.5%, whereas that of the original one continued to decline.
- (2)
- Catalyst characterization results revealed that after 30 h of continuous operation at 275 °C, both of the catalysts exhibited ammonium sulfate deposition. The deposition led to a decrease in the specific surface area, pore volume, and V4+/V5+ ratio, and these changes caused a decline in catalyst activity at low temperatures. However, the ammonium sulfate deposition over the modified catalyst was relatively low.
- (3)
- The XPS, FT-IR, and thermogravimetric results revealed that the deposited ammonium sulfate chemisorbed on the catalyst surfaces, resulting in formation of NH4+ and SO42−. However, catalyst modification caused a decrease in the deposition temperature of ammonium sulfate on the catalyst. At 275 °C, the decomposed NH4+ reacted with the NOx in the flue gas, whereas the generated SO42− interacted with TiO2. The interaction between TiO2 and SO42− was reversible and easy to reproduce; the surface of the TiO2 only becoming partially sulfated. After a certain period, dynamic equilibrium was reached on the surface of the modified catalyst, increasing the stability of the catalyst’s operation at this temperature. This indicated that after modification, the catalyst could operate continuously at low temperatures; thus, the catalyst can be used for part load operation in coal power plants.
Author Contributions
Funding
Conflicts of Interest
References
- Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. App. Catal. B Environ. 1998, 18, 1–36. [Google Scholar] [CrossRef]
- Forzatti, P. Present status and perspectives in de-NOx SCR catalysis. Appl. Catal. A Gen. 2001, 222, 221–236. [Google Scholar] [CrossRef]
- Wang, X.; Du, X.; Zhang, L.; Chen, Y.; Yang, G.; Ran, J. Promotion of NH4HSO4 decomposition in NO/NO2 contained atmosphere at low temperature over V2O5-WO3/TiO2 catalyst for NO reduction. Appl. Catal. A Gen. 2018, 559, 112–121. [Google Scholar] [CrossRef]
- Wang, X.; Du, X.; Zhang, L.; Yang, G.; Chen, Y.; Ran, J. Simultaneous fast decomposition of NH4HSO4 and efficient NOx removal by NO2 addition: An option for NOx removal in H2O/SO2-contained flue gas at low temperature. Energy Fuels 2018, 32, 6990–6994. [Google Scholar] [CrossRef]
- Du, X.S.; Gao, X.; Cui, L.W.; Fu, Y.C.; Luo, Z.Y.; Cen, K.F. Investigation of the effect of Cu addition on the SO2-resistance of a CeTi oxide catalyst for selective catalytic reduction of NO with NH3. Fuel 2012, 92, 49–55. [Google Scholar] [CrossRef]
- Shu, Y.; Sun, H.; Quan, X.; Chen, S. Improvement of water-, sulfur dioxide-, and dust-resistance in selective catalytic reduction of NOx with NH3 using a wire-mesh honeycomb catalyst. Ind. Eng. Chem. Res. 2012, 51, 7867–7873. [Google Scholar] [CrossRef]
- Jiang, Y.; Xing, Z.; Wang, X.; Huang, S.; Wang, X.; Liu, Q. Activity and characterization of a Ce–W–Ti oxide catalyst prepared by a single step sol–gel method for selective catalytic reduction of NO with NH3. Fuel 2015, 151, 124–129. [Google Scholar] [CrossRef]
- Qu, R.; Peng, Y.; Sun, X.; Li, J.; Gao, X.; Cen, K. Identification of the reaction pathway and reactive species for the selective catalytic reduction of NO with NH3 over cerium–niobium oxide catalysts. Catal. Sci. Technol. 2016, 6, 2136–2142. [Google Scholar] [CrossRef]
- Yang, S.; Qi, F.; Xiong, S.; Dang, H.; Liao, Y.; Wong, P.K.; Li, J. MnOx supported on Fe–Ti spinel: A novel Mn based low temperature SCR catalyst with a high N2 selectivity. App. Catal. B Environ. 2016, 181, 570–580. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Liu, S.; Zheng, C.; Gao, X.; Nova, I.; Tronconi, E. Improvement in activity and alkali resistance of a novel V-Ce(SO4)2/Ti catalyst for selective catalytic reduction of NO with NH3. App. Catal. B Environ. 2017, 206, 449–460. [Google Scholar] [CrossRef]
- Boningari, T.; Koirala, R.; Smirniotis, P.G. Low-temperature selective catalytic reduction of NO with NH3 over V/ZrO2 prepared by flame-assisted spray pyrolysis: Structural and catalytic properties. App. Catal. B Environ. 2012, 127, 255–264. [Google Scholar] [CrossRef]
- Smirniotis, P.G.; Peña, D.A.; Uphade, B.S. Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on hombikat TiO2. Angew. Chem. Int. Ed. 2001, 40, 2479–2482. [Google Scholar] [CrossRef]
- Boningari, T.; Ettireddy, P.R.; Somogyvari, A.; Liu, Y.; Vorontsov, A.; McDonald, C.A.; Smirniotis, P.G. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. J. Catal. 2015, 325, 145–155. [Google Scholar] [CrossRef]
- Boningari, T.; Pappas, D.K.; Ettireddy, P.R.; Kotrba, A.; Smirniotis, P.G. Influence of SiO2 on M/TiO2 (M = Cu, Mn, and Ce) formulations for low-temperature selective catalytic reduction of NOx with NH3: Surface properties and key components in relation to the activity of NOx reduction. Ind. Eng. Chem. Res. 2015, 54, 2261–2273. [Google Scholar] [CrossRef]
- Smirniotis, P.G.; Sreekanth, P.M.; Peña, D.A.; Jenkins, R.G. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: A comparison for low-temperature SCR of NO with NH3. Ind. Eng. Chem. Res. 2006, 45, 6436–6443. [Google Scholar] [CrossRef]
- Pappas, D.K.; Boningari, T.; Boolchand, P.; Smirniotis, P.G. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature selective catalytic reduction (SCR) of NOx by NH3. J. Catal. 2016, 334, 1–13. [Google Scholar] [CrossRef]
- Sreekanth, P.M.; Peña, D.A.; Smirniotis, P.G. Titania supported bimetallic transition metal oxides for low-temperature SCR of NO with NH3. Ind. Eng. Chem. Res. 2006, 45, 6444–6449. [Google Scholar] [CrossRef]
- Boningari, T.; Koirala, R.; Smirniotis, P.G. Low-temperature catalytic reduction of NO by NH3 over vanadia-based nanoparticles prepared by flame-assisted spray pyrolysis: Influence of various supports. App. Catal. B Environ. 2013, 140–141, 289–298. [Google Scholar] [CrossRef]
- Xu, W.; He, H.; Yu, Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3. J. Phys. Chem. C 2009, 113, 4426–4432. [Google Scholar] [CrossRef]
- Gao, X.; Jiang, Y.; Fu, Y.; Zhong, Y.; Luo, Z.; Cen, K. Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3. Catal. Commun. 2010, 11, 465–469. [Google Scholar] [CrossRef]
- Du, X.; Gao, X.; Fu, Y.; Gao, F.; Luo, Z.; Cen, K. The co-effect of Sb and Nb on the SCR performance of the V2O5/TiO2 catalyst. J. Colloid Interface Sci. 2012, 368, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Wachs, I.E. Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts. Catal. Today 1996, 27, 437–455. [Google Scholar] [CrossRef]
- Šćepanović, M.J.; Grujić-Brojčin, M.; Dohčević-Mitrović, Z.; Popović, Z. Characterization of anatase TiO2 nanopowder by variable-temperature Raman spectroscopy. Sci. Sinter. 2009, 41, 67–73. [Google Scholar] [CrossRef]
- Guo, X.; Bartholomew, C.; Hecker, W.; Baxter, L.L. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems. App. Catal. B Environ. 2009, 92, 30–40. [Google Scholar] [CrossRef]
- Gan, L.; Guo, F.; Yu, J.; Xu, G. Improved low-temperature activity of V2O5-WO3/TiO2 for denitration using different vanadium precursors. Catalysts 2016, 6, 25. [Google Scholar] [CrossRef]
- Arnarson, L.; Rasmussen, S.B.; Falsig, H.; Lauritsen, J.V.; Moses, P.G. Coexistence of square pyramidal structures of oxo vanadium (+5) and (+4) species over low-coverage VOx/TiO2 (101) and (001) anatase catalysts. J. Phys. Chem. C 2015, 119, 23445–23452. [Google Scholar] [CrossRef]
- Dupin, J.C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324. [Google Scholar] [CrossRef]
- Gu, T.; Liu, Y.; Weng, X.; Wang, H.; Wu, Z. The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3. Catal. Commun. 2010, 12, 310–313. [Google Scholar] [CrossRef]
- Saur, O.; Bensitel, M.; Saad, A.M.; Lavalley, J.; Tripp, C.P.; Morrow, B. The structure and stability of sulfated alumina and titania. J. Catal. 1986, 99, 104–110. [Google Scholar] [CrossRef]
- Liu, S.; Chen, X. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. J. Hazard. Mater. 2008, 152, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, S.; Zhang, Y.; Luo, Z.; Cen, K. Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO2 and NO. J. Hazard. Mater. 2011, 188, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Sohn, J.R.; Kim, H.W. Catalytic and surface properties of ZrO2 modified with sulfur compounds. J. Mol. Catal. 1989, 52, 361–374. [Google Scholar] [CrossRef]
- Chen, J.; Yang, R. Selective catalytic reduction of NO with NH3 on SO42−/TiO2 superacid catalyst. J. Catal. 1993, 139, 277–288. [Google Scholar] [CrossRef]
- Noda, L.K.; de Almeida, R.M.; Probst, L.F.D.; Gonçalves, N.S. Characterization of sulfated TiO2 prepared by the sol–gel method and its catalytic activity in the n-hexane isomerization reaction. J. Mol. Catal. A Chem. 2005, 225, 39–46. [Google Scholar] [CrossRef]
- Ye, D.; Qu, R.; Song, H.; Gao, X.; Luo, Z.; Ni, M.; Cen, K. New insights into the various decomposition and reactivity behaviors of NH4HSO4 with NO on V2O5/TiO2 catalyst surfaces. Chem. Eng. J. 2016, 283, 846–854. [Google Scholar] [CrossRef]
- Ye, D.; Qu, R.; Zheng, C.; Cen, K.; Gao, X. Mechanistic investigation of enhanced reactivity of NH4HSO4 and NO on Nb-and Sb-doped VW/Ti SCR catalysts. Appl. Catal. A Gen. 2018, 549, 310–319. [Google Scholar] [CrossRef]
Sample | V2O5, wt% | WO3, wt% | Sb2O3, wt% | TiO2, wt% | SO3, wt% |
---|---|---|---|---|---|
VWTi | 0.906 | 2.01 | - | 88.1 | 0.207 |
VWSbTi | 0.838 | 1.96 | 2.10 | 85.8 | 0.178 |
VWTi-r | 0.912 | 1.97 | - | 85.8 | 2.00 |
VWSbTi-r | 0.813 | 1.94 | 2.04 | 85.1 | 1.15 |
Sample | Specific Areas, m2/g | Pore Volume, cm3/g | Mean Pore Diameter, nm |
---|---|---|---|
VWTi | 55.7 | 0.285 | 16.9 |
VWSbTi | 50.5 | 0.273 | 17.6 |
VWTi-r | 42.6 | 0.263 | 18.3 |
VWSbTi-r | 45.1 | 0.27 | 17.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Liu, S.; Zhang, M.; Wu, W.; Qu, R.; Zheng, C.; Gao, X. A Comparative Study of the NH3-SCR Reactions over an Original and Sb-Modified V2O5–WO3/TiO2 Catalyst at Low Temperatures. Energies 2018, 11, 3339. https://doi.org/10.3390/en11123339
Song H, Liu S, Zhang M, Wu W, Qu R, Zheng C, Gao X. A Comparative Study of the NH3-SCR Reactions over an Original and Sb-Modified V2O5–WO3/TiO2 Catalyst at Low Temperatures. Energies. 2018; 11(12):3339. https://doi.org/10.3390/en11123339
Chicago/Turabian StyleSong, Hao, Shaojun Liu, Menglei Zhang, Weihong Wu, Ruiyang Qu, Chenghang Zheng, and Xiang Gao. 2018. "A Comparative Study of the NH3-SCR Reactions over an Original and Sb-Modified V2O5–WO3/TiO2 Catalyst at Low Temperatures" Energies 11, no. 12: 3339. https://doi.org/10.3390/en11123339
APA StyleSong, H., Liu, S., Zhang, M., Wu, W., Qu, R., Zheng, C., & Gao, X. (2018). A Comparative Study of the NH3-SCR Reactions over an Original and Sb-Modified V2O5–WO3/TiO2 Catalyst at Low Temperatures. Energies, 11(12), 3339. https://doi.org/10.3390/en11123339