Microsaccades in Applied Environments: Real-World Applications of Fixational Eye Movement Measurements
Abstract
:Introduction
Microsaccades and drift in ecologically-valid contexts
Microsaccades and driving
Microsaccades and driving fatigue:
Microsaccades and drift in air traffic control
Microsaccades and drift in spaceflight
Microsaccades and athletic performance
Microsaccades during high-acuity tasks
Unwanted FEMs in applied scenarios
Limitations intrinsic to FEM measures
Potential future real-world applications
Image processing
User experience and marketing
Healthcare
Deception
Visual prosthetics
Expertise and worker performance
Conclusions
Acknowledgments
Conflicts of Interest
References
- Abell, R. G., P. E. J. Davies, D. Phelan, K. Goemann, Z. E. McPherson, and B. J. Vote. 2014. Anterior capsulotomy integrity after femtosecond laser-assisted cataract surgery. Ophthalmology 121, 1: 17–24. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R. G., S. L. Macknik, and S. Martinez-Conde. 2018. Microsaccade Characteristics in Neurological and Ophthalmic Disease. Frontiers in Neurology 9, 144: 1–9. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R. G., and S. Martinez-Conde. 2019. Fixational Eye Movements. In Eye Movement Research. Edited by C. Klein and U. Ettinger. Cham, Switzerland: Springer, pp. 73–115. [Google Scholar]
- Ashmore, M., A. T. Duchowski, and G. Shoemaker. 2005. Efficient eye pointing with a fisheye lens. Paper presented at the Proceedings of Graphics interface 2005. [Google Scholar]
- Aytekin, M., J. D. Victor, and M. Rucci. 2014. The visual input to the retina during natural head-free fixation. The Journal of Neuroscience 34, 38: 12701–12715. [Google Scholar] [CrossRef] [PubMed]
- Azimipour, M., R. J. Zawadzki, I. Gorczynska, J. Migacz, J. S. Werner, and R. S. Jonnal. 2018. Intraframe motion correction for raster-scanned adaptive optics images using strip-based cross-correlation lag biases. PLoS ONE 13, 10: e0206052. [Google Scholar] [CrossRef]
- Bahill, A. T., M. R. Clark, and L. Stark. 1975. Dynamic overshoot in saccadic eye movements is caused by neurological control signed reversals. Exp Neurol 48, 1: 107–122. [Google Scholar] [CrossRef]
- Bard, C., and M. Fleury. 1976. Analysis of visual search activity during sport problem situations. Journal of Human Movement Studies 3, 2: 14–222. [Google Scholar]
- Barnhart, A. S., F. M. Costela, S. Martinez-Conde, S. L. Macknik, and S. D. Goldinger. 2019. Microsaccades reflect the dynamics of misdirected attention in magic. Journal of Eye Movement Research 12, 6. [Google Scholar] [CrossRef]
- Benedetto, S., M. Pedrotti, and B. Bridgeman. 2011. Microsaccades and exploratory saccades in a naturalistic environment. Journal of Eye Movement Research 4, 2: 1–10. [Google Scholar] [CrossRef]
- Berg, P., and M. Scherg. 1991. Dipole models of eye movements and blinks. Electroencephalography and clinical Neurophysiology 79, 1: 36–44. [Google Scholar] [CrossRef]
- Bria, M., A. Baban, and D. L. Dumitrascu. 2012. Systematic review of burnout risk factors among European healthcare professionals. Cognition, Brain, Behavior: An Interdisciplinary Journal 16, 3: 423–452. [Google Scholar]
- Bridgeman, B., and J. Palca. 1980. The role of microsaccades in high acuity observational tasks. Vision Res 20, 9: 813–817. [Google Scholar] [CrossRef] [PubMed]
- Cañadas-De la Fuente, G. A., C. Vargas, C. San Luis, I. García, G. R. Cañadas, and E. I. De la Fuente. 2015. Risk factors and prevalence of burnout syndrome in the nursing profession. International Journal of Nursing Studies 52, 1: 240–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, A. L., Riley, D. E., King, S. A., Joshi, A. C., Serra, A., Liao, K., ... Strupp, M. 2010. The disturbance of gaze in progressive supranuclear palsy: implications for pathogenesis. Frontiers in Neurology 1, 147: 1–19. [Google Scholar]
- Chuang, A. T., C. E. Margo, and P. B. Greenberg. 2014. Retinal implants: a systematic review. British Journal of Ophthalmology 98, 7: 852–856. [Google Scholar] [CrossRef]
- Costela, F. M., Otero-Millan, J., McCamy, M. B., Macknik, S. L., Troncoso, X. G., Jazi, A. N., ... Martinez-Conde, S. 2014. Fixational eye movement correction of blink-induced gaze position errors. PLoS ONE 9, 10: e110889. [Google Scholar] [CrossRef]
- Cymerman, A., S. R. Muza, D. Ditzler, M. Sharp, and A. Friedlander. 2003. Oculomotor and pupillary reflexes during acute exposure to hypobaric hypoxia. Retrieved from. [Google Scholar]
- Cymerman, A., S. R. Muza, A. L. Friedlander, C. S. Fulco, and P. B. Rock. 2005. Saccadic velocity and pupillary reflexes during acclimatization to altitude (4300 m). Aviation, space, and environmental medicine 76, 7: 627–634. [Google Scholar]
- Dalmaso, M., L. Castelli, P. Scatturin, and G. Galfano. 2017. Working memory load modulates microsaccadic rate. Journal of Vision 17, 3: 6. [Google Scholar] [CrossRef]
- Di Russo, F., S. Pitzalis, and D. Spinelli. 2003. Fixation stability and saccadic latency in élite shooters. Vision Research 43, 17: 1837–1845. [Google Scholar] [CrossRef]
- Di Stasi, L. L., Cabestrero, R., McCamy, M. B., Ríos, F., Catena, A., Quirós, P., ... Martinez-Conde, S. 2014. Intersaccadic drift velocity is sensitive to short-term hypobaric hypoxia. The European Journal of Neuroscience 39, 8: 1384–1390. [Google Scholar] [CrossRef]
- Di Stasi, L. L., A. Catena, J. J. Cañas, S. L. Macknik, and S. Martinez-Conde. 2013. Saccadic velocity as an arousal index in naturalistic tasks. Neuroscience & Biobehavioral Reviews 37, 5: 968–975. [Google Scholar] [CrossRef]
- Di Stasi, L. L., M. Marchitto, A. Antolí, T. Baccino, and J. J. Cañas. 2010. Approximation of on-line mental workload index in ATC simulated multitasks. Journal of Air Transport Management 16: 330–333. [Google Scholar] [CrossRef]
- Di Stasi, L. L., M. B. McCamy, A. Catena, S. L. Macknik, J. J. Cañas, and S. Martinez-Conde. 2013. Microsaccade and drift dynamics reflect mental fatigue. The European Journal of Neuroscience 38, 3: 2389–2398. [Google Scholar] [CrossRef] [PubMed]
- Di Stasi, L. L., M. B. McCamy, S. L. Macknik, J. A. Mankin, N. Hooft, A. Catena, and S. Martinez-Conde. 2014. Saccadic eye movement metrics reflect surgical residents’ fatigue. Annals of surgery 259, 4: 824–829. [Google Scholar] [PubMed]
- Di Stasi, L. L., McCamy, M. B., Martinez-Conde, S., Gayles, E., Hoare, C., Foster, M., ... Macknik, S. L. 2016. Effects of long and short simulated flights on the saccadic eye movement velocity of aviators. Physiol Behav 153: 91–96. [Google Scholar] [CrossRef]
- Di Stasi, L. L., McCamy, M. B., Pannasch, S., Renner, R., Catena, A., Canas, J. J., ... Martinez-Conde, S. 2015. Effects of driving time on microsaccadic dynamics. Exp Brain Res 233, 2: 599–605. [Google Scholar] [CrossRef]
- Di Stasi, L. L., R. Renner, A. Catena, J. J. Cañas, B. M. Velichkovsky, and S. Pannasch. 2012. Towards a driver fatigue test based on the saccadic main sequence: A partial validation by subjective report data. Transportation Research Part C 21: 122–133. [Google Scholar] [CrossRef]
- Diaz-Piedra, C., H. Rieiro, J. Suárez, F. Rios-Tejada, A. Catena, and L. L. Di Stasi. 2016. Fatigue in the military: towards a fatigue detection test based on the saccadic velocity. Physiological measurement 37, 9: N62. [Google Scholar]
- Dimigen, O., M. Valsecchi, W. Sommer, and R. Kliegl. 2009. Human microsaccade-related visual brain responses. J Neurosci 29, 39: 12321–12331. [Google Scholar]
- Engbert, R. 2012. Computational modeling of collicular integration of perceptual responses and attention in microsaccades. J Neurosci 32, 23: 8035–8039. [Google Scholar] [CrossRef]
- Engbert, R., and R. Kliegl. 2003. Microsaccades uncover the orientation of covert attention. Vision Research 43, 9: 1035–1045. [Google Scholar]
- Engbert, R., and R. Kliegl. 2004. Microsaccades keep the eyes’ balance during fixation. Psychological Science 15, 6: 431–436. [Google Scholar] [CrossRef] [PubMed]
- Engbert, R., K. Mergenthaler, P. Sinn, and A. Pikovsky. 2011. An integrated model of fixational eye movements and microsaccades. Proc Natl Acad Sci U S A 108, 39: E765–E770. [Google Scholar] [PubMed]
- Gaba, D. M., and S. K. Howard. 2002. Fatigue among clinicians and the safety of patients. New England Journal of Medicine 347, 16: 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, C., J. Causer, R. Miall, M. Grey, G. Humphreys, and A. Williams. 2017. Identifying the causal mechanisms of the quiet eye. European Journal of Sport Science 17, 1: 74–84. [Google Scholar]
- Guerin-Dugue, A., R. N. Roy, E. Kristensen, B. Rivet, L. Vercueil, and A. Tcherkassof. 2018. Temporal Dynamics of Natural Static Emotional Facial Expressions Decoding: A Study Using Event-and Eye Fixation-Related Potentials. Front Psychol 9: 1190. [Google Scholar] [CrossRef]
- Guerra-Narbona, R., J. M. Delgado-Garcia, and J. C. López-Ramos. 2013. Altitude acclimatization improves submaximal cognitive performance in mice and involves an imbalance of the cholinergic system. Journal of Applied Physiology 114, 12: 1705–1716. [Google Scholar]
- Hafed, Z. M., K. Stingl, K.-U. Bartz-Schmidt, F. Gekeler, and E. Zrenner. 2016. Oculomotor behavior of blind patients seeing with a subretinal visual implant. Vision Research 118: 119–131. [Google Scholar] [CrossRef]
- Heikkilä, H. 2013. Tools for a Gaze-Controlled Drawing Application–Comparing Gaze Gestures against Dwell Buttons. Paper presented at the IFIP Conference on Human-Computer Interaction. [Google Scholar]
- Ishiguro, Y., A. Mujibiya, T. Miyaki, and J. Rekimoto. 2010. Aided eyes: eye activity sensing for daily life. Paper presented at the Proceedings of the 1st Augmented Human International Conference. [Google Scholar]
- Iskander, J., M. Hossny, and S. Nahavandi. 2018. A Review on Ocular Biomechanic Models for Assessing Visual Fatigue in Virtual Reality. IEEE Access 6: 19345–19361. [Google Scholar] [CrossRef]
- Iturrate, I., J. M. Antelis, A. Kubler, and J. Minguez. 2009. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE transactions on robotics 25, 3: 614–627. [Google Scholar]
- Kapoula, Z., Q. Yang, J. Otero-Millan, S. Xiao, S. L. Macknik, A. Lang, and S. Martinez-Conde. 2014. Distinctive features of microsaccades in Alzheimer’s disease and in mild cognitive impairment. Age 36, 2: 535–543. [Google Scholar] [CrossRef]
- Khan, M. J., and K.-S. Hong. 2017. Hybrid EEG–fNIRS-based eight-command decoding for BCI: application to quadcopter control. Frontiers in neurorobotics 11: 6. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.-k., M. Poletti, and M. Rucci. 2010. Microsaccades precisely relocate gaze in a high visual acuity task. Nat Neurosci 13, 12: 1549–1553. [Google Scholar] [CrossRef] [PubMed]
- Kornilova, L. 2004. The role of gravitation-dependent systems in visual tracking. Neuroscience and behavioral physiology 34, 8: 773–781. [Google Scholar] [CrossRef] [PubMed]
- Kornilova, L., Alekhina, M., Temnikova, V., Reshke, M., Sagalovich, S., Malakhov, S., ... Vasin, A. 2006. The effect of a long stay under microgravity on the vestibular function and tracking eye movements. Human Physiology 32, 5: 547–555. [Google Scholar] [CrossRef]
- Kornilova, L., and I. Kozlovskaya. 2003. Neurosensory mechanisms of space adaptation syndrome. Human Physiology 29, 5: 527–538. [Google Scholar] [CrossRef]
- Kornilova, L., Naumov, I., Glukhikh, D., Ekimovskiy, G., Pavlova, A., Khabarova, V., ... Yarmanova, E. 2017. Vestibular function and space motion sickness. Human Physiology 43, 5: 557–568. [Google Scholar] [CrossRef]
- Kowler, E., and R. M. Steinman. 1980. Small saccades serve no useful purpose: reply to a letter by R. W. Ditchburn. Vision Res 20, 3: 273–276. [Google Scholar] [CrossRef]
- Kredel, R., C. Vater, A. Klostermann, and E.-J. Hossner. 2017. Eye-Tracking Technology and the Dynamics of Natural Gaze Behavior in Sports: A Systematic Review of 40 Years of Research. Frontiers in psychology 8: 1845. [Google Scholar] [CrossRef]
- Lansdown, T. C. 2001. Causes, measures and effects of driver visual workload. Stress, workload and fatigue. [Google Scholar]
- Laubrock, J., R. Engbert, and R. Kliegl. 2008. Fixational eye movements predict the perceived direction of ambiguous apparent motion. Journal of Vision 8, 14: 13. [Google Scholar] [CrossRef]
- Laubrock, J., R. Kliegl, M. Rolfs, and R. Engbert. 2010. When do microsaccades follow spatial attention? Percept Psychophys 72, 3: 683–694. [Google Scholar] [CrossRef] [PubMed]
- Lee, S., J. Yoo, and G. Han. 2015. Gaze-Assisted User Intention Prediction for Initial Delay Reduction in Web Video Access. Sensors (Basel) 15, 6: 14679–14700. [Google Scholar] [CrossRef] [PubMed]
- Lungaro, P., R. Sjoberg, A. J. F. Valero, A. Mittal, and K. Tollmar. 2018. Gaze-Aware Streaming Solutions for the Next Generation of Mobile VR Experiences. IEEE Trans Vis Comput Graph 24, 4: 1535–1544. [Google Scholar] [CrossRef]
- Macknik, S. L., Alexander, R. G., Caballero, O., Chanovas, J., Nielsen, K. J., Nishimura, N., ... Martinez-Conde, S. 2019. Advanced Circuit and Cellular Imaging Methods in Nonhuman Primates. The Journal of Neuroscience 39, 42: 8267–8274. [Google Scholar] [CrossRef]
- Martinez-Conde, S. 2006. Fixational eye movements in normal and pathological vision. Prog Brain Res 154: 151–176. [Google Scholar] [CrossRef]
- Martinez-Conde, S., S. L. Macknik, and D. H. Hubel. 2004. The role of fixational eye movements in visual perception. Nature Reviews Neuroscience 5, 3: 229–240. [Google Scholar] [CrossRef]
- Martinez-Conde, S., S. L. Macknik, and J. Otero-Millan. 2010. USA Patent No. US 7,857,452 B2. U. S. P. Office. [Google Scholar]
- Martinez-Conde, S., S. L. Macknik, X. G. Troncoso, and T. A. Dyar. 2006. Microsaccades counteract visual fading during fixation. Neuron 49, 2: 297–305. [Google Scholar] [CrossRef]
- Martinez-Conde, S., S. L. Macknik, X. G. Troncoso, and D. H. Hubel. 2009. Microsaccades: a neurophysiological analysis. Trends Neurosci 32, 9: 463–475. [Google Scholar] [CrossRef]
- Martinez-Conde, S., J. Otero-Millan, and S. L. Macknik. 2013. The impact of microsaccades on vision: towards a unified theory of saccadic function. Nature Reviews Neuroscience 14, 2: 83–96. [Google Scholar] [CrossRef]
- McCamy, M. B., A. Najafian Jazi, J. Otero-Millan, S. L. Macknik, and S. Martinez-Conde. 2013. The effects of fixation target size and luminance on microsaccades and square-wave jerks. PeerJ 1: e9. [Google Scholar] [CrossRef]
- McCamy, M. B., J. Otero-Millan, L. L. Di Stasi, S. L. Macknik, and S. Martinez-Conde. 2014. Highly informative natural scene regions increase microsaccade production during visual scanning. The Journal of Neuroscience 34, 8: 2956–2966. [Google Scholar] [CrossRef] [PubMed]
- Mergenthaler, K., and R. Engbert. 2010. Microsaccades are different from saccades in scene perception. Exp Brain Res 203, 4: 753–757. [Google Scholar] [CrossRef] [PubMed]
- Merz, T. M., Bosch, M. M., Barthelmes, D., Pichler, J., Hefti, U., Schmitt, K. U., ... Schwarz, U. 2013. Cognitive performance in high-altitude climbers: a comparative study of saccadic eye movements and neuropsychological tests. Eur J Appl Physiol 113, 8: 2025–2037. [Google Scholar] [CrossRef]
- Meyberg, S., P. Sinn, R. Engbert, and W. Sommer. 2017. Revising the link between microsaccades and the spatial cueing of voluntary attention. Vision Research 133: 47–60. [Google Scholar] [CrossRef]
- Miki, S., and Y. Hirata. 2013. Microsaccades generated during car driving. Conf Proc IEEE Eng Med Biol Soc 2013: 2148–2151. [Google Scholar] [CrossRef]
- Miniotas, D., and O. Špakov. 2004. An algorithm to counteract eye jitter in gaze-controlled interfaces. Information Technology and Control 1, 30: 65–68. [Google Scholar]
- Morales, J. M., C. Díaz-Piedra, H. Rieiro, J. Roca-González, S. Romero, A. Catena, and L. L. Di Stasi. 2017. Monitoring driver fatigue using a single-channel electroencephalographic device: A validation study by gaze-based, driving performance, and subjective data. Accident Analysis & Prevention 109: 62–69. [Google Scholar] [CrossRef]
- Otero-Millan, R. Schneider, R. J. Leigh, S. L. Macknik, and S. Martinez-Conde. 2013. Saccades during attempted fixation in parkinsonian disorders and recessive ataxia: From microsaccades to square-wave jerks. PLoS ONE 8, 3: 1–9. [Google Scholar] [CrossRef]
- Otero-Millan, J., J. L. Castro, S. L. Macknik, and S. Martinez-Conde. 2014. Unsupervised clustering method to detect microsaccades. J Vis 14, 2. [Google Scholar] [CrossRef]
- Otero-Millan, J., S. L. Macknik, R. E. Langston, and S. Martinez-Conde. 2013. An oculomotor continuum from exploration to fixation. Proceedings of the National Academy of Sciences of the United States of America 110, 15: 6175–6180. [Google Scholar] [CrossRef]
- Otero-Millan, J., L. M. Optican, S. L. Macknik, and S. Martinez-Conde. 2018. Modeling the Triggering of Saccades, Microsaccades, and Saccadic Intrusions. Frontiers in Neurology 9: 346. [Google Scholar] [CrossRef] [PubMed]
- Otero-Millan, J., A. Serra, R. J. Leigh, X. G. Troncoso, S. L. Macknik, and S. Martinez-Conde. 2011. Distinctive features of saccadic intrusions and microsaccades in progressive supranuclear palsy. J Neurosci 31, 12: 4379–4387. [Google Scholar] [CrossRef] [PubMed]
- Otero-Millan, J., S. L. Macknik, and S. Martinez-Conde. 2012. Microsaccades and blinks trigger illusory rotation in the “rotating snakes” illusion. J Neurosci 32, 17: 6043–6051. [Google Scholar] [CrossRef] [PubMed]
- Otero-Millan, J., S. L. Macknik, A. Serra, R. J. Leigh, and S. Martinez-Conde. 2011. Triggering mechanisms in microsaccade and saccade generation: a novel proposal. Ann N Y Acad Sci 1233, 1: 107–116. [Google Scholar] [CrossRef]
- Otero-Millan, J., A. Serra, R. J. Leigh, X. G. Troncoso, S. L. Macknik, and S. Martinez-Conde. 2011. Distinctive features of saccadic intrusions and microsaccades in progressive supranuclear palsy. J Neurosci 31, 12: 4379–4387. [Google Scholar] [CrossRef]
- Otero-Millan, J., X. G. Troncoso, S. L. Macknik, I. Serrano-Pedraza, and S. Martinez-Conde. 2008. Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. J Vis 8, 14: 21. [Google Scholar] [CrossRef]
- Paraskevoudi, N., and J. S. Pezaris. 2019. Eye Movement Compensation and Spatial Updating in Visual Prosthetics: Mechanisms, Limitations and Future Directions. Frontiers in Systems Neuroscience 12: 73. [Google Scholar] [CrossRef]
- Piras, A., M. Raffi, I. M. Lanzoni, M. Persiani, and S. Squatrito. 2015. Microsaccades and Prediction of a Motor Act Outcome in a Dynamic Sport Situation. Investigative Ophthalmology & Visual Science 56, 8: 4520–4530. [Google Scholar] [CrossRef]
- Piras, A., M. Raffi, M. Perazzolo, I. Malagoli Lanzoni, and S. Squatrito. 2017. Microsaccades and interest areas during free-viewing sport task. Journal of sports sciences, 1–8. [Google Scholar]
- Plöchl, M., J. Ossandón, and P. König. 2012. Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Frontiers in human neuroscience 6, 278. [Google Scholar] [CrossRef]
- Poletti, M., and M. Rucci. 2016. A compact field guide to the study of microsaccades: Challenges and functions. Vision Res 118: 83–97. [Google Scholar] [CrossRef] [PubMed]
- Ramey, S., A. MacQuarrie, A. Cochrane, I. McCann, C. W. Johnston, and A. M. Batt. 2019. Drowsy and dangerous? Fatigue in paramedics: an overview.
- Reschke, M., Somers, J. T., Leigh, R. J., Krnavek, J. M., Kornilova, L., Kozlovskaya, I., ... Paloski, W. H. 2004. Sensorimotor recovery following spaceflight may be due to frequent square-wave saccadic intrusions. Aviat Space Environ Med 75, 8: 700–704. [Google Scholar]
- Roberts, J. A., G. Wallis, and M. Breakspear. 2013. Fixational eye movements during viewing of dynamic natural scenes. Front Psychol 4: 797. [Google Scholar] [CrossRef] [PubMed]
- Rolfs, M. 2009. Microsaccades: small steps on a long way. Vision Res 49, 20: 2415–2441. [Google Scholar] [CrossRef]
- Rolfs, M., R. Kliegl, and R. Engbert. 2008. Toward a model of microsaccade generation: the case of microsaccadic inhibition. J Vis 8, 11: 5 1–23. [Google Scholar] [CrossRef]
- Rolfs, M., J. Laubrock, and R. Kliegl. 2006. Shortening and prolongation of saccade latencies following microsaccades. Exp Brain Res 169, 3: 369–376. [Google Scholar] [CrossRef]
- Schleicher, R., N. Galley, S. Briest, and L. Galley. 2008. Blinks and saccades as indicators of fatigue in sleepiness warnings: looking tired? Ergonomics 51, 7: 982–1010. [Google Scholar] [CrossRef]
- Schmidt, D., L. Abel, L. DellOsso, and R. Daroff. 1979. Saccadic velocity characteristics-Intrinsic variability and fatigue. Aviation, space, and environmental medicine 50, 4: 393–395. [Google Scholar]
- Serra, A., K. Liao, S. Martinez-Conde, L. M. Optican, and R. J. Leigh. 2008. Suppression of saccadic intrusions in hereditary ataxia by memantine. Neurology 70, 10: 810–812. [Google Scholar]
- Shepherd, R. K., M. N. Shivdasani, D. A. Nayagam, C. E. Williams, and P. J. Blamey. 2013. Visual prostheses for the blind. Trends In Biotechnology 31, 10: 562–571. [Google Scholar] [CrossRef]
- Siegenthaler, E., Costela, F. M., McCamy, M. B., Di Stasi, L. L., Otero-Millan, J., Sonderegger, A., ... Martinez-Conde, S. 2014. Task difficulty in mental arithmetic affects microsaccadic rates and magnitudes. Eur J Neurosci 39, 2: 287–294. [Google Scholar] [CrossRef]
- Smith, A. M. 2008. Hypoxia symptoms in military aircrew: long-term recall vs. acute experience in training. Aviation, space, and environmental medicine 79, 1: 54–57. [Google Scholar] [PubMed]
- Steinman, R. M., G. M. Haddad, A. A. Skavenski, and D. Wyman. 1973. Miniature eye movement. Science 181, 4102: 810–819. [Google Scholar] [PubMed]
- Stellmach, S., and R. Dachselt. 2012. Look & touch: gaze-supported target acquisition. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. [Google Scholar]
- Stevenson, S. B., and A. Roorda. 2005. Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy. Paper presented at the Proc. SPIE. [Google Scholar]
- Stevenson, S. B., A. Roorda, and G. Kumar. 2010. Eye tracking with the adaptive optics scanning laser ophthalmoscope. Paper presented at the Proceedings of the 2010 symposium on eye-tracking research & applications. [Google Scholar]
- Stevenson, S. B., C. K. Sheehy, and A. Roorda. 2016. Binocular eye tracking with the Tracking Scanning Laser Ophthalmoscope. Vision Research 118: 98–104. [Google Scholar] [CrossRef]
- Stingl, K., K. U. Bartz-Schmidt, D. Besch, A. Braun, A. Bruckmann, F. Gekeler, and C. Kernstock. 2013. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Paper presented at the Proc. R. Soc. B. [Google Scholar]
- Stingl, K., T. Peters, T. Strasser, C. Kelbsch, P. Richter, H. Wilhelm, and B. Wilhelm. 2018. Pupillographic campimetry: an objective method to measure the visual field. Biomed Tech (Berl). [Google Scholar] [CrossRef]
- Suwantarat, N., and A. Apisarnthanarak. 2015. Risks to healthcare workers with emerging diseases: lessons from MERS-CoV, Ebola, SARS, and avian flu. Current opinion in infectious diseases 28, 4: 349–361. [Google Scholar]
- Thropp, J. E., and P. W. Buza. 2018. Modeling Oculomotor Variability During Slow Cabin Decompression Using Infrared Technology. International Journal of Aviation, Aeronautics, and Aerospace 5, 5: 6. [Google Scholar] [CrossRef]
- Troncoso, X. G., S. L. Macknik, and S. Martinez-Conde. 2008. Microsaccades counteract perceptual filling-in. Journal of Vision 8, 14: 15. [Google Scholar] [CrossRef]
- Troncoso, X. G., S. L. Macknik, and S. Martinez-Conde. 2011. Vision’s first steps: anatomy, physiology, and perception in the retina, lateral geniculate nucleus, and early visual cortical areas. In Visual Prosthetics: Physiology, Bioengineering, Rehabilitation, 1st ed. Edited by G. Dagnelie. Springer. [Google Scholar]
- Troncoso, X. G., S. L. Macknik, J. Otero-Millan, and S. Martinez-Conde. 2008. Microsaccades drive illusory motion in the Enigma illusion. Proceedings of the National Academy of Sciences 105, 41: 16033–16038. [Google Scholar] [CrossRef]
- Troost, B. T., and R. B. Daroff. 1977. The ocular motor defects in progressive supranuclear palsy. Ann Neurol 2, 5: 397–403. [Google Scholar] [CrossRef]
- Valsecchi, M., and K. R. Gegenfurtner. 2015. Control of binocular gaze in a high-precision manual task. Vision Research 110: 203–214. [Google Scholar] [CrossRef] [PubMed]
- Valsecchi, M., and M. Turatto. 2009. Microsaccadic responses in a bimodal oddball task. Psychol Res 73, 1: 23–33. [Google Scholar] [CrossRef] [PubMed]
- Van der Post, J., L. Noordzij, M. de Kam, G. Blauw, A. Cohen, and J. Van Gerven. 2002. Evaluation of tests of central nervous system performance after hypoxemia for a model for cognitive impairment. Journal of psychopharmacology 16, 4: 337–343. [Google Scholar] [CrossRef] [PubMed]
- Van Liere, E., and J. Stickney. 1963. Hypoxia, A Detailed Review of the Effects of Oxygen Want on the Body. Chicago: University of Chicago Press. [Google Scholar]
- Veasey, S., R. Rosen, B. Barzansky, I. Rosen, and J. Owens. 2002. Sleep loss and fatigue in residency training: a reappraisal. JAMA 288, 9: 1116–1124. [Google Scholar]
- Waite, S., Kolla, S., Jeudy, J., Legasto, A., Macknik, S. L., Martinez-Conde, S., ... Reede, D. L. 2017. Tired in the Reading Room: The Influence of Fatigue in Radiology. J Am Coll Radiol 14, 2: 191–197. [Google Scholar] [CrossRef]
- Webster, P. 2020. Virtual health care in the era of COVID-19. The Lancet 395, 10231: 1180–1181. [Google Scholar] [CrossRef]
- Wiegmann, D. A., and S. A. Shappell. 2001. Human error analysis of commercial aviation accidents: application of the Human Factors Analysis and Classification system (HFACS). Aviat Space Environ Med 72, 11: 1006–1016. [Google Scholar]
- Winterson, B. J., and H. Collewijn. 1976. Microsaccades during finely guided visuomotor tasks. Vision Res 16, 12: 1387–1390. [Google Scholar] [CrossRef]
- Wisetborisut, A., C. Angkurawaranon, W. Jiraporncharoen, R. Uaphanthasath, and P. Wiwatanadate. 2014. Shift work and burnout among health care workers. Occupational Medicine 64, 4: 279–286. [Google Scholar]
- Woodrow, A. D., J. T. Webb, and G. S. Wier. 2011. Recollection of hypoxia symptoms between training events. Aviat Space Environ Med 82, 12: 1143–1147. [Google Scholar]
- Yuval-Greenberg, S., O. Tomer, A. S. Keren, I. Nelken, and L. Y. Deouell. 2008. Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron 58, 3: 429–441. [Google Scholar] [CrossRef] [PubMed]
- Zrenner, E., Bartz-Schmidt, K. U., Benav, H., Besch, D., Bruckmann, A., Gabel, V.-P., ... Kibbel, S. 2011. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proceedings of the Royal Society of London B: Biological Sciences 278, 1711: 1489–1497. [Google Scholar]
- Zrenner, E., K. U. Bartz-Schmidt, D. Besch, F. Gekeler, A. Koitschev, H. G. Sachs, and K. Stingl. 2017. The subretinal implant ALPHA: implantation and functional results. In Artificial Vision. Springer: pp. 65–83. [Google Scholar]
- Zuber, B. L., L. Stark, and G. Cook. 1965. Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science 150, 3702: 1459–1460. [Google Scholar] [CrossRef] [PubMed]
Copyright © 2020. This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
Alexander, R.G.; Macknik, S.L.; Martinez-Conde, S. Microsaccades in Applied Environments: Real-World Applications of Fixational Eye Movement Measurements. J. Eye Mov. Res. 2019, 12, 1-22. https://doi.org/10.16910/jemr.12.6.15
Alexander RG, Macknik SL, Martinez-Conde S. Microsaccades in Applied Environments: Real-World Applications of Fixational Eye Movement Measurements. Journal of Eye Movement Research. 2019; 12(6):1-22. https://doi.org/10.16910/jemr.12.6.15
Chicago/Turabian StyleAlexander, Robert G., Stephen L. Macknik, and Susana Martinez-Conde. 2019. "Microsaccades in Applied Environments: Real-World Applications of Fixational Eye Movement Measurements" Journal of Eye Movement Research 12, no. 6: 1-22. https://doi.org/10.16910/jemr.12.6.15
APA StyleAlexander, R. G., Macknik, S. L., & Martinez-Conde, S. (2019). Microsaccades in Applied Environments: Real-World Applications of Fixational Eye Movement Measurements. Journal of Eye Movement Research, 12(6), 1-22. https://doi.org/10.16910/jemr.12.6.15