Bevacizumab in Pediatric Neuro-Oncology
Simple Summary
Abstract
1. Introduction
2. Bevacizumab in Pediatric Low-Grade Glioma
Visual Benefit
3. Bevacizumab in High-Grade Glioma
4. Bevacizumab for Diffuse Intrinsic Pontine Glioma
5. Bevacizumab for Other CNS Tumors
6. Bevacizumab for Radiation Necrosis
7. Bevacizumab for Non-Tumor Indications and Miscellaneous
8. Safety and Toxicity of Bevacizumab
9. Discussion and Future Directions
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Sathyakumar, S.; Martinez, M.; Perreault, S.; Legault, G.; Bouffet, E.; Jabado, N.; Larouche, V.; Renzi, S. Advances in pediatric gliomas: From molecular characterization to personalized treatments. Eur. J. Pediatr. 2024, 183, 2549–2562. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Ribatti, D.; Pezzella, F. Overview on the Different Patterns of Tumor Vascularization. Cells 2021, 10, 639. [Google Scholar] [CrossRef]
- Garcia-Romero, N.; Palacin-Aliana, I.; Madurga, R.; Carrion-Navarro, J.; Esteban-Rubio, S.; Jimenez, B.; Collazo, A.; Perez-Rodriguez, F.; Ortiz de Mendivil, A.; Fernandez-Carballal, C.; et al. Bevacizumab dose adjustment to improve clinical outcomes of glioblastoma. BMC Med. 2020, 18, 142. [Google Scholar] [CrossRef]
- Benesch, M.; Windelberg, M.; Sauseng, W.; Witt, V.; Fleischhack, G.; Lackner, H.; Gadner, H.; Bode, U.; Urban, C. Compassionate use of bevacizumab (Avastin) in children and young adults with refractory or recurrent solid tumors. Ann. Oncol. 2008, 19, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019. Neuro Oncol. 2022, 24, v1–v95. [Google Scholar] [CrossRef]
- Manoharan, N.; Liu, K.X.; Mueller, S.; Haas-Kogan, D.A.; Bandopadhayay, P. Pediatric low-grade glioma: Targeted therapeutics and clinical trials in the molecular era. Neoplasia 2023, 36, 100857. [Google Scholar] [CrossRef]
- Packer, R.J.; Jakacki, R.; Horn, M.; Rood, B.; Vezina, G.; MacDonald, T.; Fisher, M.J.; Cohen, B. Objective response of multiply recurrent low-grade gliomas to bevacizumab and irinotecan. Pediatr. Blood Cancer 2009, 52, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Gururangan, S.; Fangusaro, J.; Poussaint, T.Y.; McLendon, R.E.; Onar-Thomas, A.; Wu, S.; Packer, R.J.; Banerjee, A.; Gilbertson, R.J.; Fahey, F.; et al. Efficacy of bevacizumab plus irinotecan in children with recurrent low-grade gliomas--a Pediatric Brain Tumor Consortium study. Neuro Oncol. 2014, 16, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Castelli, B.; Fonte, C.; Guidi, M.; Tellini, M.; Di Nicola, M.; Iacono, A.; Buccoliero, A.M.; Greto, D.; Genitori, L.; Sardi, I. Bevacizumab-Irinotecan combination therapy in recurrent low-grade glioma, previously treated with chemo-radiotherapy: A case report. Front. Oncol. 2023, 13, 1244628. [Google Scholar] [CrossRef] [PubMed]
- Lu, V.M.; Welby, J.P.; Nesvick, C.L.; Daniels, D.J. Efficacy and safety of bevacizumab in progressive pediatric low-grade glioma: A systematic review and meta-analysis of outcome rates. Neurooncol. Pract. 2020, 7, 359–368. [Google Scholar] [CrossRef]
- Green, K.; Panagopoulou, P.; D’Arco, F.; O’Hare, P.; Bowman, R.; Walters, B.; Dahl, C.; Jorgensen, M.; Patel, P.; Slater, O.; et al. A nationwide evaluation of bevacizumab-based treatments in pediatric low-grade glioma in the UK: Safety, efficacy, visual morbidity, and outcomes. Neuro Oncol. 2023, 25, 774–785. [Google Scholar] [CrossRef]
- Levenbaum, E.; Ellika, S.; Korones, D.N. Bevacizumab in treating the cystic components of pediatric low-grade gliomas: A report of four patients. Pediatr. Blood Cancer 2019, 66, e27917. [Google Scholar] [CrossRef]
- Avery, R.A.; Hwang, E.I.; Jakacki, R.I.; Packer, R.J. Marked recovery of vision in children with optic pathway gliomas treated with bevacizumab. JAMA Ophthalmol. 2014, 132, 111–114. [Google Scholar] [CrossRef]
- Hwang, E.I.; Jakacki, R.I.; Fisher, M.J.; Kilburn, L.B.; Horn, M.; Vezina, G.; Rood, B.R.; Packer, R.J. Long-term efficacy and toxicity of bevacizumab-based therapy in children with recurrent low-grade gliomas. Pediatr. Blood Cancer 2013, 60, 776–782. [Google Scholar] [CrossRef]
- Simão-Rafael, M.C.O.; Perez-Jaume, S.; Santa-María Lopez, V.; Lavarino, C.; Salvador, H.; Muchart López, J.; Hinojosa, J.; Suñol, M.; Morales La Madrid, A. Use of bevacizumab in pediatric low-grade glioma: Ten-year experience in a single center. EJC Paediatr. Oncol. 2023, 2, 100115. [Google Scholar] [CrossRef]
- Calo, P.; Pianton, N.; Basle, A.; Vasiljevic, A.; Barritault, M.; Beuriat, P.A.; Faure-Conter, C.; Leblond, P. Bevacizumab as Single Agent in Children and Teenagers with Optic Pathway Glioma. Cancers 2023, 15, 1036. [Google Scholar] [CrossRef] [PubMed]
- Bennebroek, C.A.M.; van Zwol, J.; Porro, G.L.; Oostenbrink, R.; Dittrich, A.T.M.; Groot, A.L.W.; Pott, J.W.; Janssen, E.J.M.; Bauer, N.J.; van Genderen, M.M.; et al. Impact of Bevacizumab on Visual Function, Tumor Size, and Toxicity in Pediatric Progressive Optic Pathway Glioma: A Retrospective Nationwide Multicentre Study. Cancers 2022, 14, 6087. [Google Scholar] [CrossRef] [PubMed]
- Australian and New Zealand Children’s Haematology Oncology Group; The Hospital for Sick Children. A Phase II, Open-Labeled, Multi-Center, Randomized Controlled Trial of Vinblastine +/− Bevacizumab for the Treatment of Chemotherapy-Naïve Children With Unresectable or Progressive Low Grade Glioma (LGG); Hoffmann-La Roche: Basel, Switzerlan, 2016. [Google Scholar]
- Liu, A.P.Y.H.; Eugene, I.; Hansford, J.R.; Bouffet, E. Superiority of Bevacizumab and Vinblastine Combination Over Vinblastine Monotherapy in Unresectable or Progressive Pediatric Low-Grade Glioma: Results from an International, Phase II, Randomized-Controlled Trial. In Proceedings of the SIOP Conference, Honolulu, HI, USA, 17–20 October 2024. [Google Scholar]
- Szychot, E.; Giraud, G.; Hargrave, D.; van Vuurden, D.; Grill, J.; Biassoni, V.; Massimino, M.; von Bueren, A.O.; Kebudi, R.; Gil-da-Costa, M.J.; et al. European-standard clinical practice recommendations for paediatric high-grade gliomas. EJC Paediatr. Oncol. 2024, 5, 100210. [Google Scholar] [CrossRef]
- Wang, J.; Huang, T.Y.; Hou, Y.; Bartom, E.; Lu, X.; Shilatifard, A.; Yue, F.; Saratsis, A. Epigenomic landscape and 3D genome structure in pediatric high-grade glioma. Sci. Adv. 2021, 7, eabg4126. [Google Scholar] [CrossRef]
- Jones, C.; Perryman, L.; Hargrave, D. Paediatric and adult malignant glioma: Close relatives or distant cousins? Nat. Rev. Clin. Oncol. 2012, 9, 400–413. [Google Scholar] [CrossRef]
- Bennett, J.; Erker, C.; Lafay-Cousin, L.; Ramaswamy, V.; Hukin, J.; Vanan, M.I.; Cheng, S.; Coltin, H.; Fonseca, A.; Johnston, D.; et al. Canadian Pediatric Neuro-Oncology Standards of Practice. Front. Oncol. 2020, 10, 593192. [Google Scholar] [CrossRef]
- Gururangan, S.; Chi, S.N.; Young Poussaint, T.; Onar-Thomas, A.; Gilbertson, R.J.; Vajapeyam, S.; Friedman, H.S.; Packer, R.J.; Rood, B.N.; Boyett, J.M.; et al. Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: A Pediatric Brain Tumor Consortium study. J. Clin. Oncol. 2010, 28, 3069–3075. [Google Scholar] [CrossRef]
- Grill, J.; Massimino, M.; Bouffet, E.; Azizi, A.A.; McCowage, G.; Canete, A.; Saran, F.; Le Deley, M.C.; Varlet, P.; Morgan, P.S.; et al. Phase II, Open-Label, Randomized, Multicenter Trial (HERBY) of Bevacizumab in Pediatric Patients With Newly Diagnosed High-Grade Glioma. J. Clin. Oncol. 2018, 36, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Mackay, A.; Burford, A.; Molinari, V.; Jones, D.T.W.; Izquierdo, E.; Brouwer-Visser, J.; Giangaspero, F.; Haberler, C.; Pietsch, T.; Jacques, T.S.; et al. Molecular, Pathological, Radiological, and Immune Profiling of Non-brainstem Pediatric High-Grade Glioma from the HERBY Phase II Randomized Trial. Cancer Cell 2018, 33, 829–842 e825. [Google Scholar] [CrossRef] [PubMed]
- Lulla, R.R.; Buxton, A.; Krailo, M.D.; Lazow, M.A.; Boue, D.R.; Leach, J.L.; Lin, T.; Geller, J.I.; Kumar, S.S.; Nikiforova, M.N.; et al. Vorinostat, temozolomide or bevacizumab with irradiation and maintenance BEV/TMZ in pediatric high-grade glioma: A Children’s Oncology Group Study. Neurooncol. Adv. 2024, 6, vdae035. [Google Scholar] [CrossRef]
- Narayana, A.; Kunnakkat, S.; Chacko-Mathew, J.; Gardner, S.; Karajannis, M.; Raza, S.; Wisoff, J.; Weiner, H.; Harter, D.; Allen, J. Bevacizumab in recurrent high-grade pediatric gliomas. Neuro Oncol. 2010, 12, 985–990. [Google Scholar] [CrossRef]
- Detti, B.; Scoccianti, S.; Teriaca, M.A.; Maragna, V.; Lorenzetti, V.; Lucidi, S.; Bellini, C.; Greto, D.; Desideri, I.; Livi, L. Bevacizumab in recurrent high-grade glioma: A single institution retrospective analysis on 92 patients. Radiol. Med. 2021, 126, 1249–1254. [Google Scholar] [CrossRef]
- Fu, M.; Zhou, Z.; Huang, X.; Chen, Z.; Zhang, L.; Zhang, J.; Hua, W.; Mao, Y. Use of Bevacizumab in recurrent glioblastoma: A scoping review and evidence map. BMC Cancer 2023, 23, 544. [Google Scholar] [CrossRef] [PubMed]
- Vanan, M.I.; Eisenstat, D.D. Management of high-grade gliomas in the pediatric patient: Past, present, and future. Neurooncol. Pract. 2014, 1, 145–157. [Google Scholar] [CrossRef]
- Crotty, E.E.; Leary, S.E.S.; Geyer, J.R.; Olson, J.M.; Millard, N.E.; Sato, A.A.; Ermoian, R.P.; Cole, B.L.; Lockwood, C.M.; Paulson, V.A.; et al. Children with DIPG and high-grade glioma treated with temozolomide, irinotecan, and bevacizumab: The Seattle Children’s Hospital experience. J. Neurooncol. 2020, 148, 607–617. [Google Scholar] [CrossRef]
- Gallitto, M.; Lazarev, S.; Wasserman, I.; Stafford, J.M.; Wolden, S.L.; Terezakis, S.A.; Bindra, R.S.; Bakst, R.L. Role of Radiation Therapy in the Management of Diffuse Intrinsic Pontine Glioma: A Systematic Review. Adv. Radiat. Oncol. 2019, 4, 520–531. [Google Scholar] [CrossRef]
- El-Khouly, F.E.; Veldhuijzen van Zanten, S.E.M.; Jansen, M.H.A.; Bakker, D.P.; Sanchez Aliaga, E.; Hendrikse, N.H.; Vandertop, W.P.; van Vuurden, D.G.; Kaspers, G.J.L. A phase I/II study of bevacizumab, irinotecan and erlotinib in children with progressive diffuse intrinsic pontine glioma. J. Neurooncol. 2021, 153, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Gill, R.; Bull, K.S. Does a Bevacizumab-based regime have a role in the treatment of children with diffuse intrinsic pontine glioma? A systematic review. Neurooncol. Adv. 2022, 4, vdac100. [Google Scholar] [CrossRef]
- Shi, J.; Lu, D.; Gu, R.; Sun, H.; Yu, L.; Pan, R.; Zhang, Y. Reliability and toxicity of bevacizumab for neurofibromatosis type 2-related vestibular schwannomas: A systematic review and meta-analysis. Am. J. Otolaryngol. 2021, 42, 103148. [Google Scholar] [CrossRef]
- Chiranth, S.; Langer, S.W.; Poulsen, H.S.; Urup, T. A systematic review of targeted therapy for vestibular schwannoma in patients with NF2-related schwannomatosis. Neurooncol. Adv. 2023, 5, vdad099. [Google Scholar] [CrossRef]
- Tops, A.L.; Schopman, J.E.; Koot, R.W.; Gelderblom, H.; Putri, N.A.; Rahmi, L.N.A.; Jansen, J.C.; Hensen, E.F. Efficacy and Toxicity of Bevacizumab in Children with NF2-Related Schwannomatosis: A Systematic Review. Cancers 2025, 17, 519. [Google Scholar] [CrossRef] [PubMed]
- Renzi, S.; Michaeli, O.; Salvador, H.; Alderete, D.; Ponce, N.F.; Zapotocky, M.; Hansford, J.R.; Malalasekera, V.S.; Toledano, H.; Maguire, B.; et al. Bevacizumab for NF2-associated vestibular schwannomas of childhood and adolescence. Pediatr. Blood Cancer 2020, 67, e28228. [Google Scholar] [CrossRef]
- Gururangan, S.; Fangusaro, J.; Young Poussaint, T.; Onar-Thomas, A.; Gilbertson, R.J.; Vajapeyam, S.; Gajjar, A.; Goldman, S.; Friedman, H.S.; Packer, R.J.; et al. Lack of efficacy of bevacizumab + irinotecan in cases of pediatric recurrent ependymoma--a Pediatric Brain Tumor Consortium study. Neuro Oncol. 2012, 14, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, D.G.; Goldman, S.; Fangusaro, J. Bevacizumab and irinotecan in the treatment of children with recurrent/refractory medulloblastoma. Pediatr. Blood Cancer 2011, 56, 491–494. [Google Scholar] [CrossRef]
- Levy, A.S.; Krailo, M.; Chi, S.; Villaluna, D.; Springer, L.; Williams-Hughes, C.; Fouladi, M.; Gajjar, A. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: Report of a COG randomized Phase II screening trial. Pediatr. Blood Cancer 2021, 68, e29031. [Google Scholar] [CrossRef] [PubMed]
- Ronsley, R.; Bradford, M.C.; Crotty, E.E.; Vitanza, N.A.; Runco, D.V.; Stevens, J.; Hoeppner, C.; Holtzclaw, S.L.; Wein, A.R.; Lee, A.; et al. Children with medulloblastoma treated with modified ACNS0821 temozolomide, irinotecan, and bevacizumab: The Seattle Children’s Hospital experience. Neurooncol. Pract. 2025, 12, 489–497. [Google Scholar] [CrossRef]
- Peyrl, A.; Chocholous, M.; Sabel, M.; Lassaletta, A.; Sterba, J.; Leblond, P.; Nysom, K.; Torsvik, I.; Chi, S.N.; Perwein, T.; et al. Sustained Survival Benefit in Recurrent Medulloblastoma by a Metronomic Antiangiogenic Regimen: A Nonrandomized Controlled Trial. JAMA Oncol. 2023, 9, 1688–1695. [Google Scholar] [CrossRef]
- Baroni, L.V.; Alderete, D.; Solano-Paez, P.; Rugilo, C.; Freytes, C.; Laughlin, S.; Fonseca, A.; Bartels, U.; Tabori, U.; Bouffet, E.; et al. Bevacizumab for pediatric radiation necrosis. Neurooncol. Pract. 2020, 7, 409–414. [Google Scholar] [CrossRef]
- Vellayappan, B.; Lim-Fat, M.J.; Kotecha, R.; De Salles, A.; Fariselli, L.; Levivier, M.; Ma, L.; Paddick, I.; Pollock, B.E.; Regis, J.; et al. A Systematic Review Informing the Management of Symptomatic Brain Radiation Necrosis After Stereotactic Radiosurgery and International Stereotactic Radiosurgery Society Recommendations. Int. J. Radiat. Oncol. Biol. Phys. 2024, 118, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Barone, A.; Rubin, J.B. Opportunities and challenges for successful use of bevacizumab in pediatrics. Front. Oncol. 2013, 3, 92. [Google Scholar] [CrossRef]
- Liu, A.K.; Macy, M.E.; Foreman, N.K. Bevacizumab as therapy for radiation necrosis in four children with pontine gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Drezner, N.; Hardy, K.K.; Wells, E.; Vezina, G.; Ho, C.Y.; Packer, R.J.; Hwang, E.I. Treatment of pediatric cerebral radiation necrosis: A systematic review. J. Neurooncol. 2016, 130, 141–148. [Google Scholar] [CrossRef]
- Roth, P.; Regli, L.; Tonder, M.; Weller, M. Tumor-associated edema in brain cancer patients: Pathogenesis and management. Expert. Rev. Anticancer. Ther. 2013, 13, 1319–1325. [Google Scholar] [CrossRef]
- Wick, W.; Kuker, W. Brain edema in neurooncology: Radiological assessment and management. Onkologie 2004, 27, 261–266. [Google Scholar] [CrossRef]
- Vredenburgh, J.J.; Cloughesy, T.; Samant, M.; Prados, M.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.; Paleologos, N.; et al. Corticosteroid use in patients with glioblastoma at first or second relapse treated with bevacizumab in the BRAIN study. Oncologist 2010, 15, 1329–1334. [Google Scholar] [CrossRef]
- Gerstner, E.R.; Duda, D.G.; di Tomaso, E.; Ryg, P.A.; Loeffler, J.S.; Sorensen, A.G.; Ivy, P.; Jain, R.K.; Batchelor, T.T. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat. Rev. Clin. Oncol. 2009, 6, 229–236. [Google Scholar] [CrossRef]
- Alsahlawi, A.K.; Michaud-Couture, C.; Lachance, A.; Bergeron-Gravel, S.; Letourneau, M.; Bourget, C.; Gould, P.V.; Giannakouros, P.; Nakada, E.M.; Faury, D.; et al. Bevacizumab in the Treatment of Refractory Brain Edema in High-grade Glioma. J. Pediatr. Hematol. Oncol. 2024, 46, e87–e90. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Feng, M.; Ma, W.; Wang, S. Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning. Sci. Rep. 2025, 15, 15990. [Google Scholar] [CrossRef] [PubMed]
- Metts, J.; Harrington, B.; Salman, E.; Bradfield, S.M.; Flanary, J.; Mosha, M.; Amankwah, E.; Stapleton, S. A phase I study of irinotecan and temozolomide with bevacizumab in children with recurrent/refractory central nervous system tumors. Childs Nerv. Syst. 2022, 38, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Fangusaro, J.; Gururangan, S.; Poussaint, T.Y.; McLendon, R.E.; Onar-Thomas, A.; Warren, K.E.; Wu, S.; Packer, R.J.; Banerjee, A.; Gilbertson, R.J.; et al. Bevacizumab (BVZ)-associated toxicities in children with recurrent central nervous system tumors treated with BVZ and irinotecan (CPT-11): A Pediatric Brain Tumor Consortium Study (PBTC-022). Cancer 2013, 119, 4180–4187. [Google Scholar] [CrossRef]
- Turner, D.C.; Navid, F.; Daw, N.C.; Mao, S.; Wu, J.; Santana, V.M.; Neel, M.; Rao, B.; Willert, J.R.; Loeb, D.M.; et al. Population pharmacokinetics of bevacizumab in children with osteosarcoma: Implications for dosing. Clin. Cancer Res. 2014, 20, 2783–2792. [Google Scholar] [CrossRef]
- Ollauri-Ibanez, C.; Astigarraga, I. Use of Antiangiogenic Therapies in Pediatric Solid Tumors. Cancers 2021, 13, 253. [Google Scholar] [CrossRef]
- Imai, A.; Ichigo, S.; Matsunami, K.; Takagi, H.; Kawabata, I. Ovarian function following targeted anti-angiogenic therapy with bevacizumab. Mol. Clin. Oncol. 2017, 6, 807–810. [Google Scholar] [CrossRef]
- Winzent, S.; Sabus, A.; Hemenway, M.; Nellan, A.; Mulcahy-Levy, J. MODL-01. Safety in Concomitant Use of Mek and Braf Inhibitors with Bevacizumab. Neuro-Oncol. 2020, 22, iii411–iii412. [Google Scholar] [CrossRef]
- Ramakrishnan, D.; von Reppert, M.; Krycia, M.; Sala, M.; Mueller, S.; Aneja, S.; Nabavizadeh, A.; Galldiks, N.; Lohmann, P.; Raji, C.; et al. Evolution and implementation of radiographic response criteria in neuro-oncology. Neurooncol. Adv. 2023, 5, vdad118. [Google Scholar] [CrossRef] [PubMed]
- Chukwueke, U.N.; Wen, P.Y. Use of the Response Assessment in Neuro-Oncology (RANO) criteria in clinical trials and clinical practice. CNS Oncol. 2019, 8, CNS28. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silverman, J.; Sathyakumar, S.; Coltin, H.; Perreault, S.; Jabado, N.; Bouffet, E.; Renzi, S. Bevacizumab in Pediatric Neuro-Oncology. Curr. Oncol. 2025, 32, 573. https://doi.org/10.3390/curroncol32100573
Silverman J, Sathyakumar S, Coltin H, Perreault S, Jabado N, Bouffet E, Renzi S. Bevacizumab in Pediatric Neuro-Oncology. Current Oncology. 2025; 32(10):573. https://doi.org/10.3390/curroncol32100573
Chicago/Turabian StyleSilverman, Jacob, Sayanthen Sathyakumar, Hallie Coltin, Sebastien Perreault, Nada Jabado, Eric Bouffet, and Samuele Renzi. 2025. "Bevacizumab in Pediatric Neuro-Oncology" Current Oncology 32, no. 10: 573. https://doi.org/10.3390/curroncol32100573
APA StyleSilverman, J., Sathyakumar, S., Coltin, H., Perreault, S., Jabado, N., Bouffet, E., & Renzi, S. (2025). Bevacizumab in Pediatric Neuro-Oncology. Current Oncology, 32(10), 573. https://doi.org/10.3390/curroncol32100573