The Role of Immunotherapy in the Treatment of Rare Central Nervous System Tumors
Abstract
:1. Introduction
The Landscape of Immunotherapy Modalities
2. Rare Central Nervous System Tumors
2.1. Meningioma
2.2. Pituitary Carcinoma and Aggressive Pituitary Adenoma
2.3. Ependymoma
2.4. Medulloblastoma
2.5. Atypical Teratoid/Rhabdoid Tumors
2.6. Solitary Fibrous Tumors
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Cioffi, G.; Gittleman, H.; Patil, N.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro Oncol. 2019, 21 (Suppl. S5), v1–v100. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef]
- Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996, 271, 1734–1736. [Google Scholar] [CrossRef]
- Chemnitz, J.M.; Parry, R.V.; Nichols, K.E.; June, C.H.; Riley, J.L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 2004, 173, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Parry, R.V.; Chemnitz, J.M.; Frauwirth, K.A.; Lanfranco, A.R.; Braunstein, I.; Kobayashi, S.V.; Linsley, P.S.; Thompson, C.B.; Riley, J.L. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 2005, 25, 9543–9553. [Google Scholar] [CrossRef]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef]
- McDermott, D.F.; Drake, C.G.; Sznol, M.; Choueiri, T.K.; Powderly, J.D.; Smith, D.; Brahmer, J.R.; Carvajal, R.D.; Hammers, H.J.; Puzanov, I.; et al. Survival, Durable Response, and Long-Term Safety in Patients with Previously Treated Advanced Renal Cell Carcinoma Receiving Nivolumab. J. Clin. Oncol. 2015, 33, 2013–2020. [Google Scholar] [CrossRef]
- Topalian, S.L.; Sznol, M.; McDermott, D.F.; Kluger, H.M.; Carvajal, R.D.; Sharfman, W.H.; Brahmer, J.R.; Lawrence, D.P.; Atkins, M.B.; Powderly, J.D.; et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J. Clin. Oncol. 2014, 32, 1020–1030. [Google Scholar] [CrossRef]
- Herbst, R.S.; Soria, J.-C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Kaufman, H.L.; Russell, J.; Hamid, O.; Bhatia, S.; Terheyden, P.; D’Angelo, S.P.; Shih, K.C.; Lebbé, C.; Linette, G.P.; Milella, M.; et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: A multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016, 17, 1374–1385. [Google Scholar] [CrossRef]
- Aghi, M.; Martuza, R.L. Oncolytic viral therapies—The clinical experience. Oncogene 2005, 24, 7802–7816. [Google Scholar] [CrossRef]
- Saxena, M.; van der Burg, S.H.; Melief, C.J.M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021, 21, 360–378. [Google Scholar] [CrossRef]
- Wculek, S.K.; Cueto, F.J.; Mujal, A.M.; Melero, I.; Krummel, M.F.; Sancho, D. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2020, 20, 7–24. [Google Scholar] [CrossRef]
- Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Pérez-Gracia, J.L.; Rodriguez-Ruiz, M.E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 2019, 120, 6–15. [Google Scholar] [CrossRef]
- Rezvani, K. Adoptive cell therapy using engineered natural killer cells. Bone Marrow Transpl. 2019, 54 (Suppl. S2), 785–788. [Google Scholar] [CrossRef]
- Rohaan, M.W.; Wilgenhof, S.; Haanen, J.B.A.G. Adoptive cellular therapies: The current landscape. Virchows Arch. 2019, 474, 449–461. [Google Scholar] [CrossRef]
- Sterner, R.C.; Sterner, R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef]
- Rath, J.A.; Arber, C. Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy. Cells 2020, 9, 1485. [Google Scholar] [CrossRef]
- Wendel, P.; Reindl, L.M.; Bexte, T.; Künnemeyer, L.; Särchen, V.; Albinger, N.; Mackensen, A.; Rettinger, E.; Bopp, T.; Ullrich, E. Arming Immune Cells for Battle: A Brief Journey through the Advancements of T and NK Cell Immunotherapy. Cancers 2021, 13, 1481. [Google Scholar] [CrossRef]
- Rosenberg, S. Lymphokine-activated killer cells: A new approach to immunotherapy of cancer. J. Natl. Cancer Inst. 1985, 75, 595–603. [Google Scholar]
- Law, T.M.; Motzer, R.J.; Mazumdar, M.; Sell, K.W.; Walther, P.; O'Connell, M.; Khan, A.; Vlamis, V.; Vogelzang, N.J.; Bajorin, D.F. Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer 1995, 76, 824–832. [Google Scholar] [CrossRef]
- Margolin, K.A.; Aronson, F.R.; Sznol, M.; Atkins, M.B.; Ciobanu, N.; Fisher, R.I.; Weiss, G.R.; Doroshow, J.H.; Bar, M.H.; Hawkins, M.J.; et al. Phase II trial of high-dose interleukin-2 and lymphokine-activated killer cells in Hodgkin's disease and non-Hodgkin's lymphoma. J. Immunother. 1991, 10, 214–220. [Google Scholar] [CrossRef]
- Laskowski, T.J.; Biederstädt, A.; Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 2022, 22, 557–575. [Google Scholar] [CrossRef]
- Clark, V.E.; Erson-Omay, E.Z.; Serin, A.; Yin, J.; Cotney, J.; Ozduman, K.; Avsar, T.; Li, J.; Murray, P.B.; Henegariu, O.; et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 2013, 339, 1077–1080. [Google Scholar] [CrossRef]
- Recker, M.J.; Kuo, C.C.; Prasad, D.; Attwood, K.; Plunkett, R.J. Incidence trends and survival analysis of atypical meningiomas: A population-based study from 2004 to 2018. J. Neurooncol. 2022, 160, 13–22. [Google Scholar] [CrossRef]
- Delgado-Lopez, P.D.; Corrales-Garcia, E.M. Role of adjuvant radiotherapy in atypical (WHO grade II) and anaplastic (WHO grade III) meningiomas: A systematic review. Clin. Transl. Oncol. 2021, 23, 205–221. [Google Scholar] [CrossRef]
- Du, Z.; Abedalthagafi, M.; Aizer, A.A.; McHenry, A.R.; Sun, H.H.; Bray, M.-A.; Viramontes, O.; Machaidze, R.; Brastianos, P.K.; Reardon, D.A.; et al. Increased expression of the immune modulatory molecule PD-L1 (CD274) in anaplastic meningioma. Oncotarget 2015, 6, 4704–4716. [Google Scholar] [CrossRef]
- Han, S.J.; Reis, G.; Kohanbash, G.; Shrivastav, S.; Magill, S.T.; Molinaro, A.M.; McDermott, M.W.; Theodosopoulos, P.V.; Aghi, M.K.; Berger, M.S.; et al. Expression and prognostic impact of immune modulatory molecule PD-L1 in meningioma. J. Neurooncol. 2016, 130, 543–552. [Google Scholar] [CrossRef]
- Johnson, M.D. PD-L1 expression in meningiomas. J. Clin. Neurosci. 2018, 57, 149–151. [Google Scholar] [CrossRef]
- Li, Y.D.; Veliceasa, D.; Lamano, J.B.; Lamano, J.B.; Kaur, G.; Biyashev, D.; Horbinski, C.M.; Kruser, T.J.; Bloch, O. Systemic and local immunosuppression in patients with high-grade meningiomas. Cancer Immunol. Immunother. 2019, 68, 999–1009. [Google Scholar] [CrossRef]
- Giles, A.J.; Hao, S.; Padget, M.; Song, H.; Zhang, W.; Lynes, J.; Sanchez, V.E.; Liu, Y.; Jung, J.; Cao, X.; et al. Efficient ADCC killing of meningioma by avelumab and a high-affinity natural killer cell line, haNK. J. Clin. Investig. 2019, 4, e130688. [Google Scholar] [CrossRef]
- Yeung, J.; Yaghoobi, V.; Miyagishima, D.; Vesely, M.D.; Zhang, T.; Badri, T.; Nassar, A.; Han, X.; Sanmamed, M.F.; Youngblood, M.; et al. Targeting the CSF1/CSF1R axis is a potential treatment strategy for malignant meningiomas. Neuro Oncol. 2021, 23, 1922–1935. [Google Scholar] [CrossRef]
- Proctor, D.T.; Patel, Z.; Lama, S.; Resch, L.; van Marle, G.; Sutherland, G.R. Identification of PD-L2, B7-H3 and CTLA-4 immune checkpoint proteins in genetic subtypes of meningioma. Oncoimmunology 2019, 8, e1512943. [Google Scholar] [CrossRef]
- Baia, G.S.; Caballero, O.L.; Ho, J.S.; Zhao, Q.; Cohen, T.; Binder, Z.A.; Salmasi, V.; Gallia, G.L.; Quinones-Hinojosa, A.; Olivi, A.; et al. NY-ESO-1 expression in meningioma suggests a rationale for new immunotherapeutic approaches. Cancer Immunol. Res. 2013, 1, 296–302. [Google Scholar] [CrossRef]
- Syed, O.N.; Mandigo, C.E.; Killory, B.D.; Canoll, P.; Bruce, J.N. Cancer-testis and melanocyte-differentiation antigen expression in malignant glioma and meningioma. J. Clin. Neurosci. 2012, 19, 1016–1021. [Google Scholar] [CrossRef]
- Bi, W.L.; Nayak, L.; Meredith, D.M.; Driver, J.; Du, Z.; Hoffman, S.; Li, Y.; Lee, E.Q.; Beroukhim, R.; Rinne, M.; et al. Activity of PD-1 blockade with nivolumab among patients with recurrent atypical/anaplastic meningioma: Phase II trial results. Neuro Oncol. 2022, 24, 101–113. [Google Scholar] [CrossRef]
- Brastianos, P.K.; Kim, A.E.; Giobbie-Hurder, A.; Lee, E.Q.; Wang, N.; Eichler, A.F.; Chukwueke, U.; Forst, D.A.; Arrillaga-Romany, I.C.; Dietrich, J.; et al. Phase 2 study of pembrolizumab in patients with recurrent and residual high-grade meningiomas. Nat. Commun. 2022, 13, 1325. [Google Scholar] [CrossRef]
- Huang, J.; Gao, F.; Shimony, J.; Johanns, T.M.; Mantica, M.; Gershon, T.R.; Ney, D.E.; Tuncer, T.; Mendez, J.S.; Streicher, H.; et al. The interim result of a phase I/II study of nivolumab with or without ipilimumab in combination with multi-fraction stereotactic radiosurgery for recurrent, high-grade, radiation-relapsed meningioma. J. Clin. Oncol. 2022, 40 (Suppl. S16), 2068. [Google Scholar] [CrossRef]
- Dunn, I.F.; Du, Z.; Touat, M.; Sisti, M.B.; Wen, P.Y.; Umeton, R.; Dubuc, A.M.; Ducar, M.; Canoll, P.D.; Severson, E.; et al. Mismatch repair deficiency in high-grade meningioma: A rare but recurrent event associated with dramatic immune activation and clinical response to PD-1 blockade. JCO Precis. Oncol. 2018, 2018, PO.18.00190. [Google Scholar] [CrossRef]
- Santos-Pinheiro, F.; Penas-Prado, M.; Kamiya-Matsuoka, C.; Waguespack, S.G.; Mahajan, A.; Brown, P.D.; Shah, K.B.; Fuller, G.N.; E McCutcheon, I. Treatment and long-term outcomes in pituitary carcinoma: A cohort study. Eur. J. Endocrinol. 2019, 181, 397–407. [Google Scholar] [CrossRef]
- Raverot, G.; Ilie, M.D.; Lasolle, H.; Amodru, V.; Trouillas, J.; Castinetti, F.; Brue, T. Aggressive pituitary tumours and pituitary carcinomas. Nat. Rev. Endocrinol. 2021, 17, 671–684. [Google Scholar] [CrossRef]
- Kemeny, H.R.; Elsamadicy, A.A.; Farber, S.H.; Champion, C.D.; Lorrey, S.J.; Chongsathidkiet, P.; Woroniecka, K.I.; Cui, X.; Shen, S.H.; Rhodin, K.E.; et al. Targeting PD-L1 Initiates Effective Antitumor Immunity in a Murine Model of Cushing Disease. Clin. Cancer Res. 2020, 26, 1141–1151. [Google Scholar] [CrossRef]
- Lu, J.Q.; Adam, B.; Jack, A.S.; Lam, A.; Broad, R.W.; Chik, C.L. Immune Cell Infiltrates in Pituitary Adenomas: More Macrophages in Larger Adenomas and More T Cells in Growth Hormone Adenomas. Endocr. Pathol. 2015, 26, 263–272. [Google Scholar] [CrossRef]
- Mei, Y.; Bi, W.L.; Greenwald, N.F.; Du, Z.; Agar, N.Y.R.; Kaiser, U.B.; Woodmansee, W.W.; Reardon, D.A.; Freeman, G.J.; Fecci, P.E.; et al. Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors. Oncotarget 2016, 7, 76565–76576. [Google Scholar] [CrossRef]
- Wang, P.-F.; Wang, T.-J.; Yang, Y.-K.; Yao, K.; Li, Z.; Li, Y.M.; Yan, C.-X. The expression profile of PD-L1 and CD8(+) lymphocyte in pituitary adenomas indicating for immunotherapy. J. Neurooncol. 2018, 139, 89–95. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, X.; Gao, L.; Deng, K.; Lian, W.; Bao, X.; Feng, M.; Duan, L.; Zhu, H.; Xing, B. The Immune Profile of Pituitary Adenomas and a Novel Immune Classification for Predicting Immunotherapy Responsiveness. J. Clin. Endocrinol. Metab. 2020, 105, e3207–e3223. [Google Scholar] [CrossRef]
- Di Dalmazi, G.; Ippolito, S.; Lupi, I.; Caturegli, P. Hypophysitis induced by immune checkpoint inhibitors: A 10-year assessment. Expert Rev. Endocrinol. Metab. 2019, 14, 381–398. [Google Scholar] [CrossRef]
- Robertson, I.J.; Gregory, T.A.; Waguespack, S.G.; Penas-Prado, M.; Majd, N.K. Recent Therapeutic Advances in Pituitary Carcinoma. J. Immunother. Precis. Oncol. 2022, 6, 74–83. [Google Scholar] [CrossRef]
- Lin, A.L.; Jonsson, P.; Tabar, V.; Yang, T.J.; Cuaron, J.; Beal, K.; Cohen, M.; Postow, M.; Rosenblum, M.; Shia, J.; et al. Marked Response of a Hypermutated ACTH-Secreting Pituitary Carcinoma to Ipilimumab and Nivolumab. J. Clin. Endocrinol. Metab. 2018, 103, 3925–3930. [Google Scholar] [CrossRef]
- Lin, A.L.; Tabar, V.; Young, R.J.; Cohen, M.; Cuaron, J.; Yang, T.J.; Rosenblum, M.; Rudneva, V.A.; Geer, E.B.; Bodei, L. Synergism of Checkpoint Inhibitors and Peptide Receptor Radionuclide Therapy in the Treatment of Pituitary Carcinoma. J. Endocr. Soc. 2021, 5, bvab133. [Google Scholar] [CrossRef]
- Duhamel, C.; Ilie, M.D.; Salle, H.; Nassouri, A.S.; Gaillard, S.; Deluche, E.; Assaker, R.; Mortier, L.; Cortet, C.; Raverot, G. Immunotherapy in Corticotroph and Lactotroph Aggressive Tumors and Carcinomas: Two Case Reports and a Review of the Literature. J. Pers. Med. 2020, 10, 88. [Google Scholar] [CrossRef]
- Majd, N.; Waguespack, S.G.; Janku, F.; Fu, S.; Penas-Prado, M.; Xu, M.; Alshawa, A.; Kamiya-Matsuoka, C.; Raza, S.M.; E McCutcheon, I.; et al. Efficacy of pembrolizumab in patients with pituitary carcinoma: Report of four cases from a phase II study. J. Immunother. Cancer 2020, 8, e001532. [Google Scholar] [CrossRef]
- Lamb, L.S.; Sim, H.W.; McCormack, A.I. Case Report: A Case of Pituitary Carcinoma Treated with Sequential Dual Immunotherapy and Vascular Endothelial Growth Factor Inhibition Therapy. Front. Endocrinol. 2020, 11, 576027. [Google Scholar] [CrossRef]
- Goichot, B.; Taquet, M.; Baltzinger, P.; Baloglu, S.; Gravaud, M.; Malouf, G.G.; Noël, G.; Imperiale, A. Should pituitary carcinoma be treated using a NET-like approach? A case of complete remission of a metastatic malignant prolactinoma with multimodal therapy including immunotherapy. Clin. Endocrinol. 2021, 98, 633–637. [Google Scholar] [CrossRef]
- Sol, B.; de Filette, J.M.K.; Awada, G.; Raeymaeckers, S.; Aspeslagh, S.; Andreescu, C.E.; Neyns, B.; Velkeniers, B. Immune checkpoint inhibitor therapy for ACTH-secreting pituitary carcinoma: A new emerging treatment? Eur. J. Endocrinol. 2021, 184, K1–K5. [Google Scholar] [CrossRef]
- Caccese, M.; Barbot, M.; Ceccato, F.; Padovan, M.; Gardiman, M.P.; Fassan, M.; Denaro, L.; Emanuelli, E.; D’Avella, D.; Scaroni, C.; et al. Rapid disease progression in patient with mismatch-repair deficiency pituitary ACTH-secreting adenoma treated with checkpoint inhibitor pembrolizumab. Anticancer Drugs 2020, 31, 199–204. [Google Scholar] [CrossRef]
- Majd, N.K.; Dasgupta, P.R.; de Groot, J.F. Immunotherapy for Neuro-oncology. Adv. Exp. Med. Biol. 2021, 1342, 233–258. [Google Scholar]
- Pajtler, K.W.; Witt, H.; Sill, M.; Jones, D.T.; Hovestadt, V.; Kratochwil, F.; Wani, K.; Tatevossian, R.; Punchihewa, C.; Johann, P.; et al. Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell 2015, 27, 728–743. [Google Scholar] [CrossRef]
- Donson, A.M.; Birks, D.K.; Barton, V.N.; Wei, Q.; Kleinschmidt-DeMasters, B.K.; Handler, M.H.; Waziri, A.E.; Wang, M.; Foreman, N.K. Immune gene and cell enrichment is associated with a good prognosis in ependymoma. J. Immunol. 2009, 183, 7428–7440. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.M.; Donson, A.M.; Nakachi, I.; Griesinger, A.M.; Birks, D.K.; Amani, V.; Hemenway, M.S.; Liu, A.K.; Wang, M.; Hankinson, T.C.; et al. Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma. Acta Neuropathol. 2014, 127, 731–745. [Google Scholar] [CrossRef]
- Witt, D.A.; Donson, A.M.; Amani, V.; Moreira, D.C.; Sanford, B.; Hoffman, L.M.; Handler, M.H.; Levy, J.M.M.; Jones, K.L.; Nellan, A.; et al. Specific expression of PD-L1 in RELA-fusion supratentorial ependymoma: Implications for PD-1-targeted therapy. Pediatr. Blood Cancer 2018, 65, e26960. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.; Koh, E.J.; Choi, E.J.; Kang, T.H.; Han, J.H.; Choe, G.; Park, S.H.; Yearley, J.H.; Annamalai, L.; Blumenschein, W.; et al. PD-1/PD-L1 and immune-related gene expression pattern in pediatric malignant brain tumors: Clinical correlation with survival data in Korean population. J. Neurooncol. 2018, 139, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.J.; Kim, Y.H.; Park, J.E.; Ra, Y.S.; Khang, S.K.; Cho, Y.H.; Kim, J.H.; Sung, C.O. Tumor-infiltrating immune cell subpopulations and programmed death ligand 1 (PD-L1) expression associated with clinicopathological and prognostic parameters in ependymoma. Cancer Immunol. Immunother. 2019, 68, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Nambirajan, A.; Malgulwar, P.B.; Sharma, A.; Boorgula, M.T.; Doddamani, R.; Singh, M.; Suri, V.; Sarkar, C.; Sharma, M.C. Clinicopathological evaluation of PD-L1 expression and cytotoxic T-lymphocyte infiltrates across intracranial molecular subgroups of ependymomas: Are these tumors potential candidates for immune check-point blockade? Brain Tumor Pathol. 2019, 36, 152–161. [Google Scholar] [CrossRef]
- Miller, C.A.; Dahiya, S.; Li, T.; Fulton, R.S.; Smyth, M.D.; Dunn, G.P.; Rubin, J.B.; Mardis, E.R. Resistance-promoting effects of ependymoma treatment revealed through genomic analysis of multiple recurrences in a single patient. Cold Spring Harb. Mol. Case Stud. 2018, 4, a002444. [Google Scholar] [CrossRef]
- Donovan, L.K.; Delaidelli, A.; Joseph, S.K.; Bielamowicz, K.; Fousek, K.; Holgado, B.L.; Manno, A.; Srikanthan, D.; Gad, A.Z.; Van Ommeren, R.; et al. Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nat. Med. 2020, 26, 720–731. [Google Scholar] [CrossRef]
- Rico, G.T.; Townsend, A.; Price, T.; Patterson, K. Metastatic myxopapillary ependymoma treated with immunotherapy achieving durable response. BMJ Case Rep. 2020, 13, e236242. [Google Scholar] [CrossRef]
- Perruccio, K.; Mastronuzzi, A.; Lupattelli, M.; Arcioni, F.; Capolsini, I.; Cerri, C.; Gurdo, G.M.I.; Massei, M.S.; Mastrodicasa, E.; Caniglia, M. Targeted Therapy with Sirolimus and Nivolumab in a Child with Refractory Multifocal Anaplastic Ependymoma. Reports 2021, 4, 12. [Google Scholar] [CrossRef]
- Cacciotti, C.; Choi, J.; Alexandrescu, S.; Zimmerman, M.A.; Cooney, T.M.; Chordas, C.; Clymer, J.; Chi, S.; Yeo, K.K. Immune checkpoint inhibition for pediatric patients with recurrent/refractory CNS tumors: A single institution experience. J. Neurooncol. 2020, 149, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Kieran, M.W.; Goumnerova, L.; Manley, P.; Chi, S.N.; Marcus, K.J.; Manzanera, A.G.; Polanco, M.L.S.; Guzik, B.W.; Aguilar-Cordova, E.; Diaz-Montero, C.M.; et al. Phase I study of gene-mediated cytotoxic immunotherapy with AdV-tk as adjuvant to surgery and radiation for pediatric malignant glioma and recurrent ependymoma. Neuro Oncol. 2019, 21, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Dunkel, I.J.; Cohen, K.; Foreman, N.K.; Hargrave, D.; Lassaletta, A.; André, N.; Hansford, J.R.; Hassall, T.; Eyrich, M.; Gururangan, S.; et al. IMMU-08. Nivolumab with or without ipilimumab in pediatric patients with high-grade CNS malignancies: Efficacy, safety, biomarker, and pharmacokinetic results from Checkmate 908. Neuro Oncol. 2022, 24 (Suppl. S1), i82–i83. [Google Scholar] [CrossRef]
- Khatua, S.; Cooper, L.J.N.; Sandberg, D.I.; Ketonen, L.; Johnson, J.M.; Rytting, M.E.; Liu, D.D.; Meador, H.; Trikha, P.; Nakkula, R.J.; et al. Phase I study of intraventricular infusions of autologous ex vivo expanded NK cells in children with recurrent medulloblastoma and ependymoma. Neuro Oncol. 2020, 22, 1214–1225. [Google Scholar] [CrossRef] [PubMed]
- Olin, M.R.; Low, W.; McKenna, D.H.; Haines, S.J.; Dahlheimer, T.; Nascene, D.; Gustafson, M.P.; Dietz, A.B.; Clark, H.B.; Chen, W.; et al. Vaccination with dendritic cells loaded with allogeneic brain tumor cells for recurrent malignant brain tumors induces a CD4(+)IL17(+) response. J. Immunother. Cancer 2014, 2, 4. [Google Scholar] [CrossRef]
- Majd, N.; Penas-Prado, M. Updates on Management of Adult Medulloblastoma. Curr. Treat Options Oncol. 2019, 20, 64. [Google Scholar] [CrossRef]
- Truitt, G.; Gittleman, H.; Leece, R.; Ostrom, Q.T.; Kruchko, C.; Armstrong, T.S.; Gilbert, M.R.; Barnholtz-Sloan, J.S. Partnership for defining the impact of 12 selected rare CNS tumors: A report from the CBTRUS and the NCI-CONNECT. J. Neurooncol. 2019, 144, 53–63. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro Oncol. 2018, 20 (Suppl. S4), iv1–iv86. [Google Scholar] [CrossRef]
- Das, A.; McDonald, D.; Lowe, S.; Bredlau, A.-L.; Vanek, K.; Patel, S.J.; Cheshier, S.; Eskandari, R. Immunological low-dose radiation modulates the pediatric medulloblastoma antigens and enhances antibody-dependent cellular cytotoxicity. Childs Nerv. Syst. 2017, 33, 429–436. [Google Scholar] [CrossRef]
- Majd, N.K.; Mastall, M.; Lin, H.; Dibaj, S.S.; Hess, K.R.; Yuan, Y.; Garcia, M.M.-B.; Fuller, G.N.; Alfaro, K.D.; Gule-Monroe, M.K.; et al. Clinical characterization of adult medulloblastoma and the effect of first-line therapies on outcome; The MD Anderson Cancer Center experience. Neuro Oncol. Adv. 2021, 3, vdab079. [Google Scholar] [CrossRef]
- Kabir, T.F.; A Kunos, C.; Villano, J.L.; Chauhan, A. Immunotherapy for Medulloblastoma: Current Perspectives. ImmunoTargets Ther. 2020, 9, 57–77. [Google Scholar] [CrossRef] [PubMed]
- Thompson, E.; Landi, D.; Archer, G.; Lipp, E.; Walter, A.; Archambault, B.; Balajonda, B.; Flahiff, C.; Jaggers, D.; Herndon, J.; et al. EPCT-01. A Novel Peptide Vaccine Directed to Cmv Pp65 for Treatment of Recurrent Malignant Glioma and Medulloblastoma in Children and Young Adults: Preliminary Results of a Phase I Trial. Neuro Oncol. 2021, 23 (Suppl. S1), i46. [Google Scholar] [CrossRef]
- Nair, S.K.; Driscoll, T.; Boczkowski, D.; Schmittling, R.; Reynolds, R.; Johnson, L.A.; Grant, G.; Fuchs, H.; Bigner, D.D.; Sampson, J.H.; et al. Ex vivo generation of dendritic cells from cryopreserved, post-induction chemotherapy, mobilized leukapheresis from pediatric patients with medulloblastoma. J. Neurooncol. 2015, 125, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Thompson, E.M.; Brown, M.; Dobrikova, E.; Ramaswamy, V.; Taylor, M.D.; McLendon, R.; Sanks, J.; Chandramohan, V.; Bigner, D.; Gromeier, M. Poliovirus Receptor (CD155) Expression in Pediatric Brain Tumors Mediates Oncolysis of Medulloblastoma and Pleomorphic Xanthoastrocytoma. J. Neuropathol. Exp. Neurol. 2018, 77, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.M.; Nirschl, C.J.; Polanczyk, M.J.; Bell, W.R.; Nirschl, T.R.; Harris-Bookman, S.; Phallen, J.; Hicks, J.; Martinez, D.; Ogurtsova, A.; et al. PD-L1 expression in medulloblastoma: An evaluation by subgroup. Oncotarget 2018, 9, 19177–19191. [Google Scholar] [CrossRef]
- Vermeulen, J.F.; Van Hecke, W.; Adriaansen, E.J.M.; Jansen, M.K.; Bouma, R.G.; Hidalgo, J.V.; Fisch, P.; Broekhuizen, R.; Spliet, W.G.M.; Kool, M.; et al. Prognostic relevance of tumor-infiltrating lymphocytes and immune checkpoints in pediatric medulloblastoma. Oncoimmunology 2018, 7, e1398877. [Google Scholar] [CrossRef]
- Pham, C.D.; Flores, C.; Yang, C.; Pinheiro, E.M.; Yearley, J.H.; Sayour, E.J.; Pei, Y.; Moore, C.; McLendon, R.E.; Huang, J.; et al. Differential Immune Microenvironments and Response to Immune Checkpoint Blockade among Molecular Subtypes of Murine Medulloblastoma. Clin. Cancer Res. 2016, 22, 582–595. [Google Scholar] [CrossRef]
- Castriconi, R.; Dondero, A.; Negri, F.; Bellora, F.; Nozza, P.; Carnemolla, B.; Raso, A.; Moretta, L.; Moretta, A.; Bottino, C. Both CD133+ and CD133- medulloblastoma cell lines express ligands for triggering NK receptors and are susceptible to NK-mediated cytotoxicity. Eur. J. Immunol. 2007, 37, 3190–3196. [Google Scholar] [CrossRef]
- Fernandez, L.; Portugal, R.; Valentin, J.; Martin, R.; Maxwell, H.; Gonzalez-Vicent, M.; Diaz, M.A.; de Prada, I.; Perez-Martinez, A. In vitro Natural Killer Cell Immunotherapy for Medulloblastoma. Front. Oncol. 2013, 3, 94. [Google Scholar] [CrossRef]
- Liu, D.; Song, L.; Brawley, V.S.; Robison, N.; Wei, J.; Gao, X.; Tian, G.; Margol, A.; Ahmed, N.; Asgharzadeh, S.; et al. Medulloblastoma expresses CD1d and can be targeted for immunotherapy with NKT cells. Clin. Immunol. 2013, 149, 55–64. [Google Scholar] [CrossRef]
- George, R.E.; Loudon, W.G.; Moser, R.P.; Bruner, J.M.; Steck, P.A.; Grimm, E.A. In vitro cytolysis of primitive neuroectodermal tumors of the posterior fossa (medulloblastoma) by lymphokine-activated killer cells. J. Neurosurg. 1988, 69, 403–409. [Google Scholar] [CrossRef]
- Kang, S.G.; Ryu, C.H.; Jeun, S.S.; Park, C.K.; Shin, H.J.; Kim, J.H.; Kim, M.C.; Kang, J.K. Lymphokine activated killer cells from umbilical cord blood show higher antitumor effect against anaplastic astrocytoma cell line (U87) and medulloblastoma cell line (TE671) than lymphokine activated killer cells from peripheral blood. Childs Nerv. Syst. 2004, 20, 154–162. [Google Scholar]
- Okamoto, Y.; Shimizu, K.; Tamura, K.; Miyao, Y.; Yamada, M.; Matsui, Y.; Tsuda, N.; Takimoto, H.; Hayakawa, T.; Mogami, H. An adoptive immunotherapy of patients with medulloblastoma by lymphokine-activated killer cells (LAK). Acta Neurochir. 1988, 94, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Sankhla, S.K.; Nadkarni, J.S.; Bhagwati, S.N. Adoptive immunotherapy using lymphokine-activated killer (LAK) cells and interleukin-2 for recurrent malignant primary brain tumors. J. Neurooncol. 1996, 27, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Salmaggi, A.; Dufour, A.; Silvani, A.; Ciusani, E.; Nespolo, A.; Boiardi, A. Immunological fluctuations during intrathecal immunotherapy in three patients affected by CNS tumours disseminating via CSF. Int. J. Neurosci. 1994, 77, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Majzner, R.G.; Theruvath, J.L.; Nellan, A.; Heitzeneder, S.; Cui, Y.; Mount, C.W.; Rietberg, S.P.; Linde, M.H.; Xu, P.; Rota, C.; et al. CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. Clin. Cancer Res. 2019, 25, 2560–2574. [Google Scholar] [CrossRef]
- Nellan, A.; Rota, C.; Majzner, R.; Lester-McCully, C.M.; Griesinger, A.M.; Levy, J.M.M.; Foreman, N.K.; Warren, K.E.; Lee, D.W. Durable regression of Medulloblastoma after regional and intravenous delivery of anti-HER2 chimeric antigen receptor T cells. J. Immunother. Cancer 2018, 6, 30. [Google Scholar] [CrossRef]
- Nesvick, C.L.; Lafay-Cousin, L.; Raghunathan, A.; Bouffet, E.; Huang, A.A.; Daniels, D.J. Atypical teratoid rhabdoid tumor: Molecular insights and translation to novel therapeutics. J. Neurooncol. 2020, 150, 47–56. [Google Scholar] [CrossRef]
- Abro, B.; Kaushal, M.; Chen, L.; Wu, R.; Dehner, L.P.; Pfeifer, J.D.; He, M. Tumor mutation burden, DNA mismatch repair status and checkpoint immunotherapy markers in primary and relapsed malignant rhabdoid tumors. Pathol. Res. Pr. 2019, 215, 152395. [Google Scholar] [CrossRef]
- Leruste, A.; Tosello, J.; Ramos, R.N.; Tauziede-Espariat, A.; Brohard, S.; Han, Z.Y.; Beccaria, K.; Andrianteranagna, M.; Caudana, P.; Nikolic, J.; et al. Clonally Expanded T Cells Reveal Immunogenicity of Rhabdoid Tumors. Cancer Cell 2019, 36, 597–612.e8. [Google Scholar] [CrossRef]
- Geoerger, B.; Kang, H.J.; Yalon-Oren, M.; Marshall, L.V.; Vezina, C.; Pappo, A.; Laetsch, T.W.; Petrilli, A.S.; Ebinger, M.; Toporski, J.; et al. Pembrolizumab in paediatric patients with advanced melanoma or a PD-L1-positive, advanced, relapsed, or refractory solid tumour or lymphoma (KEYNOTE-051): Interim analysis of an open-label, single-arm, phase 1-2 trial. Lancet Oncol. 2020, 21, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.Q.; Wilson, B.A.; Yong, V.W.; Pugh, J.; Mehta, V. Immune cell infiltrates in atypical teratoid/rhabdoid tumors. Can. J. Neurol. Sci. 2012, 39, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Marcu, A.; Schlosser, A.; Keupp, A.; Trautwein, N.; Johann, P.; Wolfl, M.; Lager, J.; Monoranu, C.M.; Walz, J.S.; Henkel, L.M.; et al. Natural and cryptic peptides dominate the immunopeptidome of atypical teratoid rhabdoid tumors. J. Immunother. Cancer 2021, 9, e003404. [Google Scholar] [CrossRef] [PubMed]
- Slansky, J.E.; Spellman, P.T. Alternative Splicing in Tumors—A Path to Immunogenicity? N. Engl. J. Med. 2019, 380, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Zraly, C.B.; Dingwall, A.K. The chromatin remodeling and mRNA splicing functions of the Brahma (SWI/SNF) complex are mediated by the SNR1/SNF5 regulatory subunit. Nucleic Acids Res. 2012, 40, 5975–5987. [Google Scholar] [CrossRef]
- Theruvath, J.; Sotillo, E.; Mount, C.W.; Graef, C.M.; Delaidelli, A.; Heitzeneder, S.; Labanieh, L.; Dhingra, S.; Leruste, A.; Majzner, R.G.; et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nat. Med. 2020, 26, 712–719. [Google Scholar] [CrossRef]
- Geoerger, B.; Zwaan, C.M.; Marshall, L.V.; Michon, J.; Bourdeaut, F.; Casanova, M.; Corradini, N.; Rossato, G.; Farid-Kapadia, M.; Shemesh, C.S.; et al. Atezolizumab for children and young adults with previously treated solid tumours, non-Hodgkin lymphoma, and Hodgkin lymphoma (iMATRIX): A multicentre phase 1-2 study. Lancet Oncol. 2020, 21, 134–144. [Google Scholar] [CrossRef]
- Klemperer, P.; Coleman, B.R. Primary neoplasms of the pleura. A report of five cases. Am. J. Ind. Med. 1992, 22, 1–31. [Google Scholar] [CrossRef]
- Kinslow, C.J.; Bruce, S.S.; Rae, A.I.; Sheth, S.A.; McKhann, G.M.; Sisti, M.B.; Bruce, J.N.; Sonabend, A.M.; Wang, T.J.C. Solitary-fibrous tumor/hemangiopericytoma of the central nervous system: A population-based study. J. Neurooncol. 2018, 138, 173–182. [Google Scholar] [CrossRef]
- Demicco, E.G.; Harms, P.W.; Patel, R.M.; Smith, S.C.; Ingram, D.; Torres, K.; Carskadon, S.L.; Camelo-Piragua, S.; McHugh, J.B.; Siddiqui, J.; et al. Extensive survey of STAT6 expression in a large series of mesenchymal tumors. Am. J. Clin. Pathol. 2015, 143, 672–682. [Google Scholar] [CrossRef]
- Doyle, L.A.; Vivero, M.; Fletcher, C.D.; Mertens, F.; Hornick, J.L. Nuclear expression of STAT6 distinguishes solitary fibrous tumor from histologic mimics. Mod. Pathol. 2014, 27, 390–395. [Google Scholar] [CrossRef]
- Robinson, D.R.; Wu, Y.M.; Kalyana-Sundaram, S.; Cao, X.; Lonigro, R.J.; Sung, Y.S.; Chen, C.L.; Zhang, L.; Wang, R.; Su, F.; et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat. Genet. 2013, 45, 180–185. [Google Scholar] [CrossRef]
- Kamamoto, D.; Ohara, K.; Kitamura, Y.; Yoshida, K.; Kawakami, Y.; Sasaki, H. Association between programmed cell death ligand-1 expression and extracranial metastasis in intracranial solitary fibrous tumor/hemangiopericytoma. J. Neurooncol. 2018, 139, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Dancsok, A.R.; Setsu, N.; Gao, D.; Blay, J.Y.; Thomas, D.; Maki, R.G.; Nielsen, T.O.; Demicco, E.G. Expression of lymphocyte immunoregulatory biomarkers in bone and soft-tissue sarcomas. Mod. Pathol. 2019, 32, 1772–1785. [Google Scholar] [CrossRef]
- Berghoff, A.S.; Kresl, P.; Rajky, O.; Widhalm, G.; Ricken, G.; Hainfellner, J.A.; Marosi, C.; Birner, P.; Preusser, M. Analysis of the inflammatory tumor microenvironment in meningeal neoplasms. Clin. Neuropathol. 2020, 39, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Toulmonde, M.; Penel, N.; Adam, J.; Chevreau, C.; Blay, J.Y.; Le Cesne, A.; Bompas, E.; Piperno-Neumann, S.; Cousin, S.; Grellety, T.; et al. Use of PD-1 Targeting, Macrophage Infiltration, and IDO Pathway Activation in Sarcomas: A Phase 2 Clinical Trial. JAMA Oncol. 2018, 4, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.L.; Gokgoz, N.; Samman, B.; Andrulis, I.L.; Wunder, J.S.; Demicco, E.G. RNA expression profiling reveals PRAME, a potential immunotherapy target, is frequently expressed in solitary fibrous tumors. Mod. Pathol. 2021, 34, 951–960. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | Trial Number | Sponsor | Trial Name | Recruitment Status (as of 4/18/23) | Locations |
---|---|---|---|---|---|
Meningioma | NCT03604978 | National Cancer Institute (NCI) | Nivolumab and Multi-fraction Stereotactic Radiosurgery with or without Ipilimumab in Treating Patients with Recurrent Grade II-III Meningioma | Recruiting | US |
NCT04659811 | University of California, San Francisco | Stereotactic Radiosurgery and Immunotherapy (Pembrolizumab) for the Treatment of Recurrent Meningioma | Recruiting | US | |
NCT02648997 | Dana-Farber Cancer Institute | An Open-Label Phase II Study of Nivolumab in Adult Participants with Recurrent High-Grade Meningioma | Recruiting | US | |
NCT04728568 | Beijing Tiantan Hospital | Exploratory Study of PD-1 Neoadjuvant Treatment of Recurrent Meningioma | Recruiting | China | |
JPRN-UMIN000036642 | Keio University School of Medicine | Accompanying Study in a Physician-Initiated Phase II Clinical Trial of Anti-PD-1 Antibody Therapy for Relapsed/Progressive Meningioma | Recruiting | Japan | |
NCT03279692 | Massachusetts General Hospital | Phase II Trial of Pembrolizumab in Recurrent or Residual High-Grade Meningioma | Active, not recruiting | US | |
NCT03267836 | Washington University School of Medicine | Neoadjuvant Avelumab and Hypofractionated Proton Radiation Therapy Followed by Surgery for Recurrent Radiation-Refractory Meningioma | Active, not recruiting | US | |
NCT01967823 | National Cancer Institute (NCI) | T Cell Receptor Immunotherapy Targeting NY-ESO-1 for Patients with NY-ESO-1 Expressing Cancer | Completed, results pending | US | |
Pituitary Carcinoma | NCT04042753 | Memorial Sloan Kettering Cancer Center | Nivolumab and Ipilimumab in People with Aggressive Pituitary Tumors | Recruiting | US |
Ependymoma | NCT01795313 | Ian F. Pollack, M.D., University of Pittsburgh | Immunotherapy for Recurrent Ependymomas in Children Using Tumor Antigen Peptides with Imiquimod | Recruiting | US |
NCT04903080 | Pediatric Brain Tumor Consortium | HER2-Specific Chimeric Antigen Receptor (CAR) T Cells for Children with Ependymoma | Active, not recruiting | US | |
NCT04408092 | University of Colorado, Denver | Study of the Effect of GM-CSF on Macrophages in Ependymoma | Active, not recruiting | US | |
Medulloblastoma | NCT02962167 | Sabine Mueller, M.D., PhD, University of California, San Francisco | Modified Measles Virus (MV-NIS) for Children and Young Adults with Recurrent Medulloblastoma or Recurrent ATRT | Recruiting | US |
NCT03299309 | Eric Thompson, M.D., Duke University | PEP-CMV in Recurrent Medulloblastoma/Malignant Glioma (PRiME) | Active, not recruiting | US | |
NCT01326104 | University of Florida | Vaccine Immunotherapy for Recurrent Medulloblastoma and Primitive Neuroectodermal Tumor (Re-MATCH) | Active, not recruiting | US | |
NCT04167618 | Y-mAbs Therapeutics Inc. (New York, NY, USA) | 177Lu-DTPA-Omburtamab Radioimmunotherapy for Recurrent or Refractory Medulloblastoma | Terminated (business priorities) | Denmark, Netherlands, Spain, United Kingdom, US | |
NCT02332889 | University of Louisville | Phase I/II: Decitabine/Vaccine Therapy in Relapsed/Refractory Pediatric High-Grade Gliomas/Medulloblastomas/CNS PNETs | Terminated (transition to a different immunotherapy strategy in the future at our institution) | US | |
Atypical Teratoid/Rhabdoid Tumors | NCT04416568 | Dana-Farber Cancer Institute | Study of Nivolumab and Ipilimumab in Children and Young Adults with INI1-Negative Cancers | Recruiting | US |
NCT02962167 | Sabine Mueller, M.D., PhD, University of California, San Francisco | Modified Measles Virus (MV-NIS) for Children and Young Adults with Recurrent Medulloblastoma or Recurrent ATRT | Recruiting | US | |
NCT05286801 | National Cancer Institute (NCI) | Tiragolumab and Atezolizumab for the Treatment of Relapsed or Refractory SMARCB1 or SMARCA4 Deficient Tumors | Recruiting | US | |
Glioma | NCT05106296 | Theodore S. Johnson, Augusta University | Chemo-Immunotherapy Using Ibrutinib Plus Indoximod for Patients with Pediatric Brain Cancer | Recruiting | US |
NCT04978727 | Pediatric Brain Tumor Consortium | A Pilot Study of SurVaxM in Children Progressive or Relapsed Medulloblastoma, High Grade Glioma, Ependymoma, and Newly Diagnosed Diffuse Intrinsic Pontine Glioma | Recruiting | US | |
NCT04661384 | City of Hope Medical Center | Brain Tumor-Specific Immune Cells (IL13Ralpha2-CAR T Cells) for the Treatment of Leptomeningeal Glioblastoma, Ependymoma, or Medulloblastoma | Recruiting | US | |
NCT04185038 | Seattle Children’s Hospital | Study of B7-H3-Specific CAR T Cell Locoregional Immunotherapy for Diffuse Intrinsic Pontine Glioma/Diffuse Midline Glioma and Recurrent or Refractory Pediatric Central Nervous System Tumors | Recruiting | US | |
NCT04049669 | Theodore S. Johnson, Augusta University | Pediatric Trial of Indoximod with Chemotherapy and Radiation for Relapsed Brain Tumors or Newly Diagnosed DIPG | Recruiting | US | |
NCT03911388 | University of Alabama at Birmingham | HSV G207 in Children with Recurrent or Refractory Cerebellar Brain Tumors | Recruiting | US | |
NCT03500991 | Seattle Children’s Hospital | HER2-Specific CAR T Cell Locoregional Immunotherapy for HER2-Positive Recurrent/Refractory Pediatric CNS Tumors | Recruiting | US | |
NCT03173950 | National Cancer Institute (NCI) | Immune Checkpoint Inhibitor Nivolumab in People with Recurrent Select Rare CNS Cancers | Recruiting | US | |
NCT03152318 | Dana-Farber Cancer Institute | A Study of the Treatment of Recurrent Malignant Glioma with rQNestin34.5v.2 (rQNestin) | Recruiting | US | |
NCT02359565 | National Cancer Institute (NCI) | Pembrolizumab in Treating Younger Patients with Recurrent, Progressive, or Refractory High-Grade Gliomas, Diffuse Intrinsic Pontine Gliomas, Hypermutated Brain Tumors, Ependymoma, or Medulloblastoma | Recruiting | Canada, US | |
JPRN-UMIN000029005 | Keio University School of Medicine | VEGFR1/2 Peptide Vaccine in Patients with Recurrent, Progressive, and Refractory Brain Tumors | Recruiting | Japan | |
EUCTR2020-004838-37-ES | Fundación de Investigación Biomédica Hospital Niño Jesús | Phase IB Clinical Trial to Assess the Safety, Tolerability, and Preliminary Efficacy of AloCELYVIR in Children, Adolescents, and Young Adults with Diffuse Intrinsic Pointine Glioma (DIPG) or Medulloblastoma | Recruiting | Spain | |
NCT03615404 | Gary Archer Ph.D., Duke University | Cytomegalovirus (CMV) RNA-Pulsed Dendritic Cells for Pediatric Patients and Young Adults with WHO Grade IV Glioma, Recurrent Malignant Glioma, or Recurrent Medulloblastoma (ATTAC-P) | Completed | US | |
NCT02834013 | National Cancer Institute (NCI) | Nivolumab and Ipilimumab in Treating Patients with Rare Tumors | Active, not recruiting | US | |
NCT03389802 | Pediatric Brain Tumor Consortium | Phase I Study of APX005M in Pediatric CNS Tumors | Active, not recruiting | US | |
NCT03043391 | Istari Oncology, Inc. (Durham, NC, US) | Phase 1b Study PVSRIPO for Recurrent Malignant Glioma in Children | Active, not recruiting | US | |
NCT02457845 | University of Alabama at Birmingham | HSV G207 Alone or with a Single Radiation Dose in Children with Progressive or Recurrent Supratentorial Brain Tumors | Active, not recruiting | US | |
NCT02444546 | Mayo Clinic | Wild-Type Reovirus in Combination with Sargramostim in Treating Younger Patients with High-Grade Relapsed or Refractory Brain Tumors | Active, not recruiting | US | |
NCT02100891 | Monica Thakar, Medical College of Wisconsin | Phase 2 STIR Trial: Haploidentical Transplant and Donor Natural Killer Cells for Solid Tumors (STIR) | Active, not recruiting | US | |
NCT03638167 | Seattle Children’s Hospital | EGFR806-specific CAR T Cell Locoregional Immunotherapy for EGFR-Positive Recurrent or Refractory Pediatric CNS Tumors | Active, not recruiting | US | |
NCT00634231 | Candel Therapeutics, Inc. (Needham, MA, US) | A Phase I Study of AdV-tk + Prodrug Therapy in Combination with Radiation Therapy for Pediatric Brain Tumors | Completed, no results posted | US | |
NCT01082926 | City of Hope Medical Center | Phase I Study of Cellular Immunotherapy for Recurrent/Refractory Malignant Glioma Using Intratumoral Infusions of GRm13Z40-2, an Allogeneic CD8+ Cytolitic T-Cell Line Genetically Modified to Express the IL 13-Zetakine and HyTK and to be Resistant to Glucocorticoids, in Combination with Interleukin-2 | Completed, no results posted | US | |
NCT02502708 | NewLink Genetics Corporation (Ames, IA, US) | Study of the IDO Pathway Inhibitor, Indoximod, and Temozolomide for Pediatric Patients with Progressive Primary Malignant Brain Tumors | Completed, no results posted | US | |
NCT00730613 | City of Hope Medical Center | Cellular Adoptive Immunotherapy Using Genetically Modified T-Lymphocytes in Treating Patients with Recurrent or Refractory High-Grade Malignant Glioma | Completed, no results posted | US | |
NCT01171469 | Masonic Cancer Center, University of Minnesota | Vaccination with Dendritic Cells Loaded with Brain Tumor Stem Cells for Progressive Malignant Brain Tumor | Completed, no results posted | US | |
NCT00014573 | Barbara Ann Karmanos Cancer Institute | Chemotherapy and Vaccine Therapy Followed by Bone Marrow or Peripheral Stem Cell Transplantation and Interleukin-2 in Treating Patients with Recurrent or Refractory Brain Cancer | Completed, no results posted | US | |
NCT04730349 | Bristol-Myers Squibb (New York, NY, US) | A Study of Bempegaldesleukin (BEMPEG: NKTR-214) in Combination with Nivolumab in Children, Adolescents, and Young Adults with Recurrent or Treatment-resistant Cancer (PIVOT IO 020) | Terminated (business objectives have changed) | Australia, France, Germany, Italy, Spain, US |
Initial Tumor Diagnosis | Time (Months) from PA to PC Diagnosis | PDL-1 Expression | Number of Prior Surgeries | Number of Prior Radiation Treatment Courses | Number of Prior Chemotherapy Regimens | Immunotherapy Regimen | Radiographic Response | Biochemical Response | PFS (Months) after ICI Initiation | Clinical Outcome | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Corticotroph pituitary adenoma | 68 | <1% | 4 | 2 | 2 | Ipilimumab/nivolumab (5 cycles), maintenance nivolumab | Yes | Yes | 8 | Alive 30 months at end of study period after PC diagnosis. | Lin et al. 2018 [51] |
Corticotroph pituitary adenoma | 68 | <1% | 4 | 2 | 3 | Ipilimumab/nivolumab (5 cycles), maintenance nivolumab (ongoing) | Yes | Yes | 8 | Alive 30 months at end of study period after PC diagnosis. | Lin et al. 2021 [52] |
Corticotroph (silent) pituitary adenoma | 216 | <1% | 2 | 1 | 1 | Pembrolizumab (4 cycles) | Yes | No | 4 | Transitioned to fotemustine and alive 6 months at end of study. | Caccese et al. 2020 [58] |
Corticotroph pituitary adenoma | 205 | <1% | 3 | 2 | 2 | Ipilimumab/nivolumab (5 cycles), maintenance nivolumab (12 cycles) | Yes | Yes | 5 | Worsening progression 12 months after ICI initiation followed by death at 14 months from unknown cause. | Duhamel et al. 2020 [53] |
Lactotroph pituitary adenoma | 88 | Unknown | 3 | 1 | 1 | Ipilimumab/nivolumab (2 cycles) | No | No | 0 | Rapid progression after 2 cycles and transitioned to bevacizumab with prolactin level stability. | Duhamel et al. 2020 [53] |
Lactotroph (silent) pituitary adenoma | 45 | <1% | 4 | 2 | 1 | Ipilimumab/nivolumab (2 cycles), maintenance nivolumab (17 cycles), ipilimumab/nivolumab re-challenge (4 cycles) | Yes | N/A | 8 | After progression, re-challenge with ipilimumab/nivolumab (4 cycles) had no response. Experienced auto-immune nephritis with both courses of ipilimumab/nivolumab and treated with corticosteroids. | Lamb et al. 2020 [55] |
Corticotroph pituitary adenoma | 54 | <1% | 3 | 8 | 6 | Pembrolizumab (29 cycles) | Yes | Yes | 69 | No progression at end of study. | Majd et al. 2020 [54] |
Corticotroph pituitary adenoma | 45 | <1% | 2 | 1 | 2 | Pembrolizumab (34 cycles) | Yes | Yes | 32 | No progression at end of study. | Majd et al. 2020 [54] |
Corticotroph (silent) pituitary adenoma | 131 | <1% | 3 | 4 | 4 | Pembrolizumab (6 cycles) | Yes (stable) | N/A | 4 | Alive 138 months after PC diagnosis. | Majd et al. 2020 [54] |
Lactotroph pituitary adenoma | 81 | <1% | 1 | 2 | 4 | Pembrolizumab (6 cycles) | No | No | 0 | Deceased 46 months after PC diagnosis. | Majd et al. 2020 [54] |
Lactotroph pituitary adenoma | 81 | 95% | 2 | 3 | 1 | Ipilimumab/nivolumab (4 cycles), maintenance nivolumab | Yes | Yes | 24 | No progression at end of study. | Goichot et al. 2021 [56] |
Corticotroph pituitary adenoma | 76 | Unknown | 2 | 2 | 1 | Ipilimumab/nivolumab (4 cycles) followed by maintenance nivolumab | Yes (stable) | Yes | 12 | No progression at end of study. | Sol et al. 2021 [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, A.; Kamiya-Matsuoka, C.; Majd, N.K. The Role of Immunotherapy in the Treatment of Rare Central Nervous System Tumors. Curr. Oncol. 2023, 30, 5279-5298. https://doi.org/10.3390/curroncol30060401
Rodriguez A, Kamiya-Matsuoka C, Majd NK. The Role of Immunotherapy in the Treatment of Rare Central Nervous System Tumors. Current Oncology. 2023; 30(6):5279-5298. https://doi.org/10.3390/curroncol30060401
Chicago/Turabian StyleRodriguez, Andrew, Carlos Kamiya-Matsuoka, and Nazanin K. Majd. 2023. "The Role of Immunotherapy in the Treatment of Rare Central Nervous System Tumors" Current Oncology 30, no. 6: 5279-5298. https://doi.org/10.3390/curroncol30060401
APA StyleRodriguez, A., Kamiya-Matsuoka, C., & Majd, N. K. (2023). The Role of Immunotherapy in the Treatment of Rare Central Nervous System Tumors. Current Oncology, 30(6), 5279-5298. https://doi.org/10.3390/curroncol30060401