Multifocality and Multicentrality in Breast Cancer: Comparison of the Efficiency of Mammography, Contrast-Enhanced Spectral Mammography, and Magnetic Resonance Imaging in a Group of Patients with Primarily Operable Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diagnostics
2.2. Imaging Procedures
2.3. Contrast-Enhanced Spectral Mammography (CESM) Protocol
2.4. Magnetic Resonance Imaging (MRI) Protocol
2.5. Histopathological Examination
2.6. Data Analysis and Statistical Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fahad Ullah, M. Breast cancer: Current perspectives on the disease status. Advances in experimental medicine and biology. In Breast Cancer Metastasis and Drug Resistance; Ahmad, A., Ed.; Springer International Publishing: Cham, Switzerland, 2019; Volume 1152, pp. 51–64. ISBN 978-3-030-20300-9. [Google Scholar]
- Fancellu, A.; Sanna, V.; Cottu, P.; Feo, C.F.; Scanu, A.M.; Farina, G.; Bulla, A.; Spanu, A.; Paliogiannis, P.; Porcu, A. Mastectomy patterns, but not rates, are changing in the treatment of early breast cancer. Experience of a single european institution on 2315 consecutive patients. Breast 2018, 39, 1–7. [Google Scholar] [CrossRef]
- Nash, R.; Goodman, M.; Lin, C.C.; Freedman, R.A.; Dominici, L.S.; Ward, K.; Jemal, A. State variation in the receipt of a contralateral prophylactic mastectomy among women who Received a diagnosis of invasive unilateral early stage breast cancer in the united states, 2004–2012. JAMA Surg. 2017, 152, 648. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, U.; Cascinelli, N.; Mariani, L.; Greco, M.; Saccozzi, R.; Luini, A.; Aguilar, M.; Marubini, E. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N. Engl. J. Med. 2002, 347, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Hartmann-Johnsen, O.J.; Kåresen, R.; Schlichting, E.; Nygård, J.F. Better survival after breast-conserving therapy compared to mastectomy when axillary node status is positive in early stage breast cancer: A registry-based follow-up study of 6387 Norwegian women participating in screening, primarily operated between 1998 and 2009. World J. Surg.Onc. 2017, 15, 118. [Google Scholar] [CrossRef]
- Salgado, R.; Aftimos, P.; Sotiriou, C.; Desmedt, C. Evolving paradigms in multifocal breast cancer. Semin. Cancer Biol. 2015, 31, 111–118. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging: The eighth edition AJCC cancer staging manual. CA Cancer J. Clinic. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Farshid, G. Routine reporting of mammographic density from screening mammograms. ANZ J. Surg. 2017, 87, 965–967. [Google Scholar] [CrossRef]
- Yadav, P.; Chauhan, S. Effectivity of combined diffusion-weighted Imaging and contrast-enhanced MRI in malignant and benign breast lesions. Pol. J. Radiol. 2018, 83, 82–93. [Google Scholar] [CrossRef]
- Horvat, J.V.; Durando, M.; Milans, S.; Patil, S.; Massler, J.; Gibbons, G.; Giri, D.; Pinker, K.; Morris, E.A.; Thakur, S.B. Apparent diffusion coefficient mapping using diffusion-weighted MRI: Impact of background parenchymal enhancement, Amount of fibroglandular tissue and menopausal status on breast cancer diagnosis. Eur. Radiol. 2018, 28, 2516–2524. [Google Scholar] [CrossRef]
- Yılmaz, E.; Sarı, O.; Yılmaz, A.; Ucar, N.; Aslan, A.; Inan, I.; Parlakkılıc, U.T. Diffusion-weighted imaging for the discrimination of benign and malignant breast masses; utility of ADC and relative ADC. J. Belg. Soc. Radiol. 2018, 102, 24. [Google Scholar] [CrossRef] [Green Version]
- Kuhl, C.K. Abbreviated Magnetic Resonance Imaging (MRI) for breast cancer screening: Rationale, concept, and transfer to clinical practice. Annu. Rev. Med. 2019, 70, 501–519. [Google Scholar] [CrossRef]
- Iacconi, C.; Galman, L.; Zheng, J.; Sacchini, V.; Sutton, E.J.; Dershaw, D.; Morris, E.A. Multicentric cancer detected at breast MR imaging and not at mammography: Important or not? Radiology 2016, 279, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Baltzer, P.A.T.; Benndorf, M.; Dietzel, M.; Gajda, M.; Runnebaum, I.B.; Kaiser, W.A. False-positive findings at contrast-enhanced breast MRI: A BI-RADS descriptor study. Am. J. Roentgenol. 2010, 194, 1658–1663. [Google Scholar] [CrossRef]
- Catanzariti, F.; Avendano, D.; Cicero, G.; Garza-Montemayor, M.; Sofia, C.; VenanziRullo, E.; Ascenti, G.; Pinker-Domenig, K.; Marino, M.A. High-risk lesions of the breast: Concurrent diagnostic tools and management recommendations. Insights Imaging 2021, 12, 63. [Google Scholar] [CrossRef]
- Kuhl, C.K.; Keulers, A.; Strobel, K.; Schneider, H.; Gaisa, N.; Schrading, S. Not all false positive diagnoses are equal: On the prognostic implications of false-positive diagnoses made in breast MRI versus in mammography/digital tomosynthesis screening. Breast Cancer Res. 2018, 20, 13. [Google Scholar] [CrossRef]
- Strahle, D.A.; Pathak, D.R.; Sierra, A.; Saha, S.; Strahle, C.; Devisetty, K. Systematic development of an abbreviated protocol for screening breast magnetic resonance imaging. Breast Cancer Res. Treat. 2017, 162, 283–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldrini, G.; Fedida, B.; Poujol, J.; Felblinger, J.; Trop, I.; Henrot, P.; Darai, E.; Thomassin-Naggara, I. Abbreviated breast magnetic resonance protocol: Value of high-resolution temporal dynamic sequence to improve lesion characterization. Eur. J. Radiol. 2017, 95, 177–185. [Google Scholar] [CrossRef]
- Jochelson, M.S.; Lobbes, M.B.I. Contrast-enhanced mammography: State of the art. Radiology 2021, 299, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Bhimani, C.; Matta, D.; Roth, R.G.; Liao, L.; Tinney, E.; Brill, K.; Germaine, P. Contrast-enhanced spectral mammography. Acad. Radiol. 2017, 24, 84–88. [Google Scholar] [CrossRef]
- Steinhof-Radwańska, K.; Grażyńska, A.; Barczyk-Gutkowska, A.; Kajor, M.; Powązka, P.; Lorek, A.; Szlachta-Świątkowska, E.; Morawska, I.; Okas, K.; Lelek, Z.; et al. The new method, the old problem—Role of contrast-enhanced spectral mammography in the diagnosis of breast cancer among Polish women. Pol. J. Radiol. 2020, 85, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Bozzini, A.; Nicosia, L.; Pruneri, G.; Maisonneuve, P.; Meneghetti, L.; Renne, G.; Vingiani, A.; Cassano, E.; Mastropasqua, M.G. Clinical performance of contrast-enhanced spectral mammography in pre-surgical evaluation of breast malignant lesions in dense breasts: A single center study. Breast Cancer Res. Treat. 2020, 184, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Liu, Y.; Zhang, X.; Zhao, S.; Zhong, H.; Huang, J.; Yu, J. Contrast-enhanced spectral mammography: A potential exclusion diagnosis modality in dense breast patients. Cancer Med. 2020, 9, 2653–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee-Felker, S.A.; Tekchandani, L.; Thomas, M.; Gupta, E.; Andrews-Tang, D.; Roth, A.; Sayre, J.; Rahbar, G. Newly diagnosed breast Cancer: Comparison of contrast-enhanced spectral mammography and Breast MR imaging in the evaluation of extent of disease. Radiology 2017, 285, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Xing, D.; Lv, Y.; Sun, B.; Xie, H.; Dong, J.; Hao, C.; Chen, Q.; Chi, X. Diagnostic value of contrast-enhanced spectral mammography in comparison to magnetic resonance imaging in breast lesions. J. Comput. Assist. Tomogr. 2019, 43, 245–251. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, J.; Zhang, K.; Xia, L.; Feng, L.; Yang, P.; Zhang, M.; Xiao, W.; Lin, H.; Yu, Y. Diagnostic value of contrast-enhanced spectral mammography for screening breast cancer: Systematic review and meta-analysis. Clin. Breast Cancer 2018, 18, e985–e995. [Google Scholar] [CrossRef]
- Dueñas, V.P.; de Gopegui Andreu, M.R.; Hodge, S.M.; Manrique, A.S. Breast magnetic resonance imaging of multicentric, multifocal and bilateral cancer—A case-based review. Eur. Oncol. Haematol. 2011, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Corso, G.; Magnoni, F.; Provenzano, E.; Girardi, A.; Iorfida, M.; De Scalzi, A.M.; Invento, A.; Colleoni, M.; Cassano, E.; Trentin, C.; et al. Multicentric breast cancer with heterogeneous histopathology: A multidisciplinary review. Future Oncol. 2020, 16, 395–412. [Google Scholar] [CrossRef]
- Biganzoli, L.; Battisti, N.M.L.; Wildiers, H.; McCartney, A.; Colloca, G.; Kunkler, I.H.; Cardoso, M.-J.; Cheung, K.-L.; de Glas, N.A.; Trimboli, R.M.; et al. Updated recommendations regarding the management of older patients with breast cancer: A joint paper from the European Society of Breast Cancer Specialists (EUSOMA) and the International Society of Geriatric Oncology (SIOG). Lancet Oncol. 2021, 22, e327–e340. [Google Scholar] [CrossRef]
- Cardoso, F.; Loibl, S.; Pagani, O.; Graziottin, A.; Panizza, P.; Martincich, L.; Gentilini, O.; Peccatori, F.; Fourquet, A.; Delaloge, S.; et al. The European Society of Breast Cancer Specialists recommendations for the management of young women with breast cancer. Eur. J. Cancer 2012, 48, 3355–3377. [Google Scholar] [CrossRef]
- Magny, S.J.; Shikhman, R.; Keppke, A.L. Breast Imaging Reporting and Data System; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Neri, A.; Marrelli, D.; Megha, T.; Bettarini, F.; Tacchini, D.; De Franco, L.; Roviello, F. Clinical significance of multifocal and multicentric breast cancers and choice of surgical treatment: A Retrospective study on a series of 1158 cases. BMC Surg. 2015, 15, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadioğlu, H.; Özbaş, S.; Akcan, A.; Soyder, A.; Soylu, L.; Koçak, S.; Cantürk, N.; Tükenmez, M.; Müslümanoğlu, M. Comparison of the histopathology and prognosis of bilateral versus unilateral multifocal multicentric breast cancers. World J. Surg.Onc. 2014, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Rezo, A.; Shadbolt, B.; Dahlstrom, J.E. Synchronous multiple ipsilateral breast cancers: Implications for patient management. Pathology 2009, 41, 57–67. [Google Scholar] [CrossRef]
- Rezo, A.; Dahlstrom, J.; Shadbolt, B.; Rodins, K.; Zhang, Y.; Davis, A.J. Tumor size and survival in multicentric and multifocal breast cancer. Breast 2011, 20, 259–263. [Google Scholar] [CrossRef]
- Tot, T.; Gere, M.; Hofmeyer, S.; Bauer, A.; Pellas, U. The subgross morphology of breast carcinomas: A single-institution series of 2033 consecutive cases documented in large-format histology slides. Virchows Arch. 2020, 476, 373–381. [Google Scholar] [CrossRef]
- Lorek, A.; Steinhof-Radwańska, K.; Barczyk-Gutkowska, A.; Zarębski, W.; Paleń, P.; Szyluk, K.; Lorek, J.; Grażyńska, A.; Niemiec, P.; Gisterek, I. The usefulness of spectral mammography in surgical planning of breast cancer treatment—Analysis of 999 patients with primary operable breast cancer. Curr. Oncol. 2021, 28, 232. [Google Scholar] [CrossRef]
- Lee, S.H.; Jang, M.J.; Kim, S.M.; Yun, B.L.; Rim, J.; Chang, J.M.; Kim, B.; Choi, H.Y. Factors affecting breast cancer detectability on digital breast tomosynthesis and two-dimensional digital mammography in patients with dense breasts. Korean J. Radiol. 2019, 20, 58. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.-M.; Lee, E.H.; Ko, K.; Kang, B.J.; Cha, J.H.; Yi, A.; Jung, H.K.; Jun, J.K.; on behalf of the Alliance for Breast Cancer Screening in Korea (ABCS-K). Prevalence of women with dense breasts in Korea: Results from a Nationwide Cross-Sectional Study. Cancer Res. Treat. 2019, 51, 1295–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, M.; Whelan, T.J. Accelerated Partial Breast Irradiation (APBI): Where are we now? Curr. Breast Cancer Rep. 2020, 12, 275–284. [Google Scholar] [CrossRef]
- Kidder, G.W.; Montgomery, C.W. Oxygenation of frog gastric mucosa in vitro. Am. J. Physiol. 1975, 229, 1510–1513. [Google Scholar] [CrossRef]
- Vicini, F.A.; Cecchini, R.S.; White, J.R.; Arthur, D.W.; Julian, T.B.; Rabinovitch, R.A.; Kuske, R.R.; Ganz, P.A.; Parda, D.S.; Scheier, M.F.; et al. Long-term primary results of accelerated partial breast irradiation after breast-conserving surgery for early stage breast cancer: A randomised, phase 3, equivalence trial. Lancet 2019, 394, 2155–2164. [Google Scholar] [CrossRef]
- Petrillo, A.; Fusco, R.; Vallone, P.; Filice, S.; Granata, V.; Petrosino, T.; Rosaria Rubulotta, M.; Setola, S.V.; MattaceRaso, M.; Maio, F.; et al. Digital breast tomosynthesis and contrast-enhanced dual-energy digital mammography alone and in combination compared to 2D digital synthetized mammography and MR imaging in breast cancer detection and classification. Breast J. 2020, 26, 860–872. [Google Scholar] [CrossRef]
- Houssami, N.; Turner, R.M.; Morrow, M. Meta-analysis of pre-operative Magnetic Resonance Imaging (MRI) and surgical treatment for breast cancer. Breast Cancer Res. Treat. 2017, 165, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Saadatmand, S.; Geuzinge, H.A.; Rutgers, E.J.T.; Mann, R.M.; de Roy van Zuidewijn, D.B.W.; Zonderland, H.M.; Tollenaar, R.A.E.M.; Lobbes, M.B.I.; Ausems, M.G.E.M.; van ′t Riet, M.; et al. MRI versus mammography for breast cancer screening in women with Familial Risk (FaMRIsc): A multicentre, randomised, controlled trial. Lancet Oncol. 2019, 20, 1136–1147. [Google Scholar] [CrossRef] [Green Version]
- França, L.K.L.; Bitencourt, A.G.V.; Makdissi, F.B.A.; Curi, C.; de Souza, J.A.; Marques, E.F. Impact of breast magnetic resonance imaging on the locoregional staging and management of breast cancer. Radiol. Bras. 2019, 52, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvi, V.; Nori, J.; Meattini, I.; Francolini, G.; Morelli, N.; Di Benedetto, D.; Bicchierai, G.; Di Naro, F.; Gill, M.K.; Orzalesi, L.; et al. Role of magnetic resonance imaging in the preoperative staging and work-up of patients affected by invasive lobular carcinoma or invasive ductolobular carcinoma. BioMed Res. Int. 2018, 2018, 1569060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbull, L.; Brown, S.; Harvey, I.; Olivier, C.; Drew, P.; Napp, V.; Hanby, A.; Brown, J. Comparative effectiveness of MRI in breast cancer (COMICE) trial: A randomised controlled trial. Lancet 2010, 375, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Peters, N.H.G.M.; van Esser, S.; van den Bosch, M.A.A.J.; Storm, R.K.; Plaisier, P.W.; van Dalen, T.; Diepstraten, S.C.E.; Weits, T.; Westenend, P.J.; Stapper, G.; et al. Preoperative MRI and surgical management in patients with nonpalpable breast cancer: The MONET—Randomised controlled trial. Eur. J. Cancer 2011, 47, 879–886. [Google Scholar] [CrossRef]
- Sogani, J.; Morris, E.A.; Kaplan, J.B.; D′Alessio, D.; Goldman, D.; Moskowitz, C.S.; Jochelson, M.S. Comparison of background parenchymal enhancement at contrast-enhanced spectral mammography and breast MR imaging. Radiology 2017, 282, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Lorek, A.; Steinhof-Radwańska, K.; Barczyk-Gutkowska, A.; Zarębski, W.; Boratyn-Nowicka, A.; Bobola, A.; Lorek, J.; Stojčev, Z.; Gisterek, I. Retrospective comparison of contrast-enhanced spectral mammography with digital mammography in assessing tumor size in 668 cases of breast cancer. Med. Sci. Monit. 2020, 26, e925593-1–e925593-8. [Google Scholar] [CrossRef]
Assessment | HP Multifocal | HP Unifocal | ||
---|---|---|---|---|
MG | multifocal | 17 | 1 | PPV 94.44% (95% CI: 72.71–99.86) |
unifocal | 17 | 23 | NPV 57.50% (95% CI: 40.89–72.96) | |
Sensitivity 50.00% (95% CI: 32.43–67.57) | Specificity 95.83% (95% CI: 78.88–99.89) | |||
CESM | multifocal | 29 | 1 | PPV 96.67% (95% CI: 82.78–99.92) |
unifocal | 5 | 25 | NPV 83.33% (95% CI: 65.28–94.36) | |
Sensitivity 85.29% (95% CI: 68.94–95.05) | Specificity 96.15% (95% CI: 80.36–99.90) | |||
MRI | multifocal | 31 | 2 | PPV 93,94% (95% CI: 79.77–99.26) |
unifocal | 3 | 24 | NPV 88.89% (95% CI:70.84–97.65) | |
Sensitivity 91.18% (95% CI: 76.32–98.14) | Specificity 92.31% (95% CI: 74.87–99.05) |
CNB | All Occurrences | Neoplastic Lesions of MFMCC Nature | MG | CESM | MR | HP |
---|---|---|---|---|---|---|
Infiltrating duct carcinoma | 2 (3.33%) | 1/2 (50.00%) | 1 (1.67%) | 1 (1.67%) | 1 (1.67%) | 1 (1.67%) |
Invasive lobular carcinoma | 45 (75.00%) | 24/45 (53.33%) | 13 (21.67%) | 22 (36.67%) | 23 (38.33%) | 24 (40.00%) |
Special subtype | 2 (3.33%) | 2/2 (100.00%) | 1 (1.67%) | 2 (3.33%) | 2 (3.33%) | 2 (3.33%) |
DCIS HG | 4 (6.67%) | 4/4 (100.00%) | 1 (1.67%) | 3 (5.00%) | 4 (6.67%) | 4 (6.67%) |
Tubulolobular carcinoma | 7 (11.67%) | 3/7 (42.86%) | 2 (3.33%) | 2 (3.33%) | 3 (5.00%) | 3 (5.00%) |
Total | 60 (100.00%) | 34/60 (56.67%) | 18 (30.00%) | 30 (50.00%) | 33 (55.00%) | 34 (56.67%) |
Types of Surgeries | Planned Surgeries Based on MG | Surgeries following MFMCC Visualization in CESM and MRI | Numberof Changes in Surgery Extent into Different Mastectomies | Local Radicalization in the Group of Patients on Conserving Treatment with MFMCC |
---|---|---|---|---|
Different mastectomies | 16 | 26 | 0 | 0 |
WLE + ALND | 10 | 6 | 4 | 0 |
WLE | 3 | 2 | 1 | 0 |
WLE + SLNB | 31 | 26 | 7 | 1 |
In total | 60 | 60 | 12 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinhof-Radwańska, K.; Lorek, A.; Holecki, M.; Barczyk-Gutkowska, A.; Grażyńska, A.; Szczudło-Chraścina, J.; Bożek, O.; Habas, J.; Szyluk, K.; Niemiec, P.; et al. Multifocality and Multicentrality in Breast Cancer: Comparison of the Efficiency of Mammography, Contrast-Enhanced Spectral Mammography, and Magnetic Resonance Imaging in a Group of Patients with Primarily Operable Breast Cancer. Curr. Oncol. 2021, 28, 4016-4030. https://doi.org/10.3390/curroncol28050341
Steinhof-Radwańska K, Lorek A, Holecki M, Barczyk-Gutkowska A, Grażyńska A, Szczudło-Chraścina J, Bożek O, Habas J, Szyluk K, Niemiec P, et al. Multifocality and Multicentrality in Breast Cancer: Comparison of the Efficiency of Mammography, Contrast-Enhanced Spectral Mammography, and Magnetic Resonance Imaging in a Group of Patients with Primarily Operable Breast Cancer. Current Oncology. 2021; 28(5):4016-4030. https://doi.org/10.3390/curroncol28050341
Chicago/Turabian StyleSteinhof-Radwańska, Katarzyna, Andrzej Lorek, Michał Holecki, Anna Barczyk-Gutkowska, Anna Grażyńska, Joanna Szczudło-Chraścina, Oskar Bożek, Justyna Habas, Karol Szyluk, Paweł Niemiec, and et al. 2021. "Multifocality and Multicentrality in Breast Cancer: Comparison of the Efficiency of Mammography, Contrast-Enhanced Spectral Mammography, and Magnetic Resonance Imaging in a Group of Patients with Primarily Operable Breast Cancer" Current Oncology 28, no. 5: 4016-4030. https://doi.org/10.3390/curroncol28050341
APA StyleSteinhof-Radwańska, K., Lorek, A., Holecki, M., Barczyk-Gutkowska, A., Grażyńska, A., Szczudło-Chraścina, J., Bożek, O., Habas, J., Szyluk, K., Niemiec, P., & Gisterek, I. (2021). Multifocality and Multicentrality in Breast Cancer: Comparison of the Efficiency of Mammography, Contrast-Enhanced Spectral Mammography, and Magnetic Resonance Imaging in a Group of Patients with Primarily Operable Breast Cancer. Current Oncology, 28(5), 4016-4030. https://doi.org/10.3390/curroncol28050341