Environmental Stressors, Anemia, and Depressive Symptoms in Pregnancy: Unpacking the Combined Risks
Abstract
1. Introduction
2. Methods
2.1. Study Design and Data Sources
2.2. Measures
2.3. Environmental Exposure Data
2.4. Covariates
2.5. Statistical Analyses
2.6. Exploratory Factor Analysis (EFA) of Environmental Variables
2.7. Regression Analyses
3. Results
3.1. Environmental Factor Analysis
- Factor 1 (Crime Factor): Included indicators such as robbery, violent crime, assault, and drug abuse (α = 0.98).
- Factor 2 (Poverty Factor): Captured economic hardship indicators like unemployment, rent burden, and food stamps usage (α = 0.77).
- Factor 3 (Pollution Factor): Comprised crowded housing, air pollution, and limited green space (α = 0.95).
3.2. Predictors of Depressive Symptoms
3.3. Subgroup Analyses
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sulley, S.; Adzrago, D.; Mamudu, L.; Odame, E.A.; Atandoh, P.H.; Tagoe, I.; Ruggieri, D.; Kahle, L.; Williams, F. Assessment of prenatal depression among U.S. pregnant women without access to paid sick leave and regular place of care: National Health Interview Survey of U.S.-born and non-U.S.-born. Prev. Med. Rep. 2023, 35, 102322. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.M.; Khalifeh, H. Perinatal mental health: A review of progress and challenges. World Psychiatry 2020, 19, 313–327. [Google Scholar] [CrossRef]
- Faisal-Cury, A.; Rodrigues, D.M.O.; Matijasevich, A. Are pregnant women at higher risk of depression underdiagnosis? J. Affect. Disord. 2021, 283, 192–197. [Google Scholar] [CrossRef]
- Grote, N.K.; Bridge, J.A.; Gavin, A.R.; Melville, J.L.; Iyengar, S.; Katon, W.J. A meta-analysis of depression during pregnancy and the risk of preterm birth, low birth weight, and intrauterine growth restriction. Arch. Gen. Psychiatry 2010, 67, 1012–1024. [Google Scholar] [CrossRef]
- Jarde, A.; Morais, M.; Kingston, D.; Giallo, R.; MacQueen, G.M.; Giglia, L.; Beyene, J.; Wang, Y.; McDonald, S.D. Neonatal Outcomes in Women With Untreated Antenatal Depression Compared With Women Without Depression: A Systematic Review and Meta-analysis. JAMA Psychiatry 2016, 73, 826–837. [Google Scholar] [CrossRef]
- Dennis, C.L.; Falah-Hassani, K.; Shiri, R. Prevalence of antenatal and postnatal anxiety: Systematic review and meta-analysis. Br. J. Psychiatry 2017, 210, 315–323. [Google Scholar] [CrossRef]
- Field, T.; Diego, M.; Hernandez-Reif, M. Prenatal depression effects and interventions: A review. Infant. Behav. Dev. 2010, 33, 409–418. [Google Scholar] [CrossRef]
- O’Hara, M.W.; McCabe, J.E. Postpartum depression: Current status and future directions. Annu. Rev. Clin. Psychol. 2013, 9, 379–407. [Google Scholar] [CrossRef]
- Sridhar, H.; Kishore, M.T.; Chandra, P.S. Child developmental outcomes associated with postpartum depression and anxiety in low and middle-income countries: A systematic review. Arch. Women’s Ment. Health 2025, 28, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Beard, J. Recent evidence from human and animal studies regarding iron status and infant development. J. Nutr. 2007, 137, 524S–530S. [Google Scholar] [CrossRef] [PubMed]
- Beard, J.; Erikson, K.M.; Jones, B.C. Neonatal Iron Deficiency Results in Irreversible Changes in Dopamine Function in Rats. J. Nutr. 2003, 133, 1174–1179. [Google Scholar] [CrossRef]
- Beard, J.L.; Connor, J.R. Iron status and neural functioning. Annu. Rev. Nutr. 2003, 23, 41–58. [Google Scholar] [CrossRef]
- Mrozek, W.; Socha, J.; Sidorowicz, K.; Skrok, A.; Syrytczyk, A.; Piątkowska-Chmiel, I.; Herbet, M. Pathogenesis and treatment of depression: Role of diet in prevention and therapy. Nutrition 2023, 115, 112143. [Google Scholar] [CrossRef]
- Wu, Q.; Ren, Q.; Meng, J.; Gao, W.J.; Chang, Y.Z. Brain Iron Homeostasis and Mental Disorders. Antioxidants 2023, 12, 1997. [Google Scholar] [CrossRef]
- Kang, S.Y.; Kim, H.B.; Sunwoo, S. Association between anemia and maternal depression: A systematic review and meta-analysis. J. Psychiatr. Res. 2020, 122, 88–96. [Google Scholar] [CrossRef]
- Lopes, S.O.; Abrantes, L.C.S.; Azevedo, F.M.; Morais, N.S.; Morais, D.C.; Gonçalves, V.S.S.; Fontes, E.A.F.; Franceschini, S.; Priore, S.E. Food Insecurity and Micronutrient Deficiency in Adults: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 1074. [Google Scholar] [CrossRef]
- Ganz, T. Systemic iron homeostasis. Physiol. Rev. 2013, 93, 1721–1741. [Google Scholar] [CrossRef]
- Zimmermann, P.; Antonelli, M.C.; Sharma, R.; Müller, A.; Zelgert, C.; Fabre, B.; Wenzel, N.; Wu, H.-T.; Frasch, M.G.; Lobmaier, S.M. Prenatal stress perturbs fetal iron homeostasis in a sex specific manner. Sci. Rep. 2022, 12, 9341. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Wu, D.; Ge, F.; Cui, D.; Jumabieke, A.; Wang, X.; Wang, R.; Wang, N.; Sun, J.; Liao, W.; et al. Hemoglobin as a mediator between air pollution and growth outcomes in children under 60 months: The moderating role of nutritional supplementation. BMC Public Health 2025, 25, 1187. [Google Scholar] [CrossRef] [PubMed]
- Onyewuenyi, T.L.; Peterman, K.; Zaritsky, E.; Ritterman Weintraub, M.L.; Pettway, B.L.; Quesenberry, C.P.; Nance, N.; Surmava, A.M.; Avalos, L.A. Neighborhood Disadvantage, Race and Ethnicity, and Postpartum Depression. JAMA Netw. Open 2023, 6, e2342398. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Kanu, F.A.; Hamner, H.C.; Scanlon, K.S.; Sharma, A.J. Anemia Among Pregnant Women Participating in the Special Supplemental Nutrition Program for Women, Infants, and Children—United States, 2008–2018. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 813–819. [Google Scholar] [CrossRef]
- Chicago Health Atlas. Available online: https://chicagohealthatlas.org (accessed on 25 April 2024).
- Suhr, D. Exploratory or Confirmatory Factor Analysis. In Proceedings of the 31st Annual SAS Users Group International Conference, San Francisco, CA, USA, 26–29 March 2006. [Google Scholar]
- Karimian, Z.; Chahartangi, F. Development and validation of a questionnaire to measure educational agility: A psychometric assessment using exploratory factor analysis. BMC Med. Educ. 2024, 24, 1284. [Google Scholar] [CrossRef] [PubMed]
- Horn, J.L. A Rationale and Test for the Number of Factors in Factor Analysis. Psychometrika 1965, 30, 179–185. [Google Scholar] [CrossRef]
- Alleyne, M.; Horne, M.K.; Miller, J.L. Individualized treatment for iron-deficiency anemia in adults. Am. J. Med. 2008, 121, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Velicer, W.F. Determining the Number of Components from the Matrix of Partial Correlations. Psychometrika 1976, 41, 321–327. [Google Scholar] [CrossRef]
- Pendergast, L.L.; Vandiver, B.J.; Schaefer, B.A.; Cole, P.M.; Murray-Kolb, L.M.; Christian, P. Factor Structure of Scores from the Conners’ Rating Scales-Revised Among Nepali Children. Int. J. Sch. Educ. Psychol. 2014, 24, 261–270. [Google Scholar] [CrossRef]
- Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Cubbin, C.; Heck, K.; Powell, T.; Marchi, K.; Braveman, P. Racial/Ethnic Disparities in Depressive Symptoms Among Pregnant Women Vary by Income and Neighborhood Poverty. AIMS Public Health 2015, 2, 411–425. [Google Scholar] [CrossRef]
- Zahid, N.; Blebu, B.; Felder, J.; McCulloch, C.E.; Chambers, B.D.; Curry, V.C.; Carraway, K.; León-Martínez, D.; Coleman-Phox, K.; Kuppermann, M.; et al. Economic Insecurities and Mental Health Among Low-Income Pregnant People in the Central Valley Region of California. Women’s Health Issues 2025, 35, 105–115. [Google Scholar] [CrossRef]
- Sacks, R.M.; Greene, J.; Burke, R.; Owen, E.C. Mental health care among low-income pregnant women with depressive symptoms: Facilitators and barriers to care access and the effectiveness of financial incentives for increasing care. Adm. Policy Ment. Health 2015, 42, 484–492. [Google Scholar] [CrossRef]
- Katz, J.; Crean, H.F.; Cerulli, C.; Poleshuck, E.L. Material Hardship and Mental Health Symptoms Among a Predominantly Low Income Sample of Pregnant Women Seeking Prenatal Care. Matern. Child. Health J. 2018, 22, 1360–1367. [Google Scholar] [CrossRef]
- Bedaso, A.; Adams, J.; Peng, W.; Sibbritt, D. The relationship between social support and mental health problems during pregnancy: A systematic review and meta-analysis. Reprod. Health 2021, 18, 162. [Google Scholar] [CrossRef]
- Bedaso, A.; Adams, J.; Peng, W.; Xu, F.; Sibbritt, D. An examination of the association between marital status and prenatal mental disorders using linked health administrative data. BMC Pregnancy Childbirth 2022, 22, 735. [Google Scholar] [CrossRef]
- Robles, T.F.; Slatcher, R.B.; Trombello, J.M.; McGinn, M.M. Marital quality and health: A meta-analytic review. Psychol. Bull. 2014, 140, 140–187. [Google Scholar] [CrossRef]
- Huang, Y.; Alvernaz, S.; Kim, S.J.; Maki, P.; Dai, Y.; Peñalver Bernabé, B. Predicting Prenatal Depression and Assessing Model Bias Using Machine Learning Models. Biol. Psychiatry Glob. Open Sci. 2024, 4, 100376. [Google Scholar] [CrossRef]
- Koleva, H.; Stuart, S.; O’Hara, M.W.; Bowman-Reif, J. Risk factors for depressive symptoms during pregnancy. Arch. Women’s Ment. Health 2011, 14, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Policy Center for Maternal Mental Health. The Role of Medicaid in Advancing Obstetric Provider Maternal Mental Health Screening and Treatment [Report]; Policy Center for Maternal Mental Health: Los Angeles, CA, USA, 2025. [Google Scholar] [CrossRef]
- Sanmartin, M.; Ali, M.; Chen, J.; Dwyer, D. Mental Health Treatment and Unmet Mental Health Care Need Among Pregnant Women With Major Depressive Episode in the United States. Psychiatr. Serv. 2019, 70, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.R.; Mohammed, S.A. Racism and Health I: Pathways and Scientific Evidence. Am. Behav. Sci. 2013, 57, 1152–1173. [Google Scholar] [CrossRef]
- Shannon, M.M.; Clougherty, J.E.; McCarthy, C.; Elovitz, M.A.; Nguemeni Tiako, M.J.; Melly, S.J.; Burris, H.H. Neighborhood Violent Crime and Perceived Stress in Pregnancy. Int. J. Environ. Res. Public Health 2020, 17, 5585. [Google Scholar] [CrossRef] [PubMed]
- Kemppinen, L.; Mattila, M.; Ekholm, E.; Huolila, L.; Pelto, J.; Karlsson, H.; Mäkikallio, K.; Karlsson, L. Gestational anemia and maternal antenatal and postpartum psychological distress in a prospective FinnBrain Birth Cohort Study. BMC Pregnancy Childbirth 2022, 22, 704. [Google Scholar] [CrossRef]
- Pivina, L.; Semenova, Y.; Doşa, M.D.; Dauletyarova, M.; Bjørklund, G. Iron Deficiency, Cognitive Functions, and Neurobehavioral Disorders in Children. J. Mol. Neurosci. 2019, 68, 1–10. [Google Scholar] [CrossRef]
- Corwin, E.J.; Murray-Kolb, L.E.; Beard, J.L. Low Hemoglobin Level Is a Risk Factor for Postpartum Depression. J. Nutr. 2003, 133, 4139–4142. [Google Scholar] [CrossRef]
- Yilmaz, E.; Yılmaz, Z.; Cakmak, B.; Gultekin, I.; Çekmez, Y.; Mahmutoğlu, S.; Küçüközkan, T. Relationship between anemia and depressive mood in the last trimester of pregnancy. J. Matern. Fetal Neonatal Med. 2016, 30, 977–982. [Google Scholar] [CrossRef]
- Azami, M.; Badfar, G.; Khalighi, Z.; Qasemi, P.; Shohani, M.; Soleymani, A.; Abbasalizadeh, S. The association between anemia and postpartum depression: A systematic review and meta-analysis. Caspian J. Intern. Med. 2019, 10, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Pobee, R.A.; Setorglo, J.; Klevor, M.; Murray-Kolb, L.E. Associations between iron status and psychosocial wellbeing among pregnant women in Cape Coast, Ghana: A longitudinal study. In Print. Public Health Nutr. 2024, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Pobee, R.A.; Setorglo, J.; Kwashie Klevor, M.; Murray-Kolb, L.E. High levels of depressive symptoms and low quality of life are reported during pregnancy in Cape Coast, Ghana; a longitudinal study. BMC Public Health 2022, 22, 894. [Google Scholar] [CrossRef] [PubMed]
| Demographic Variables | Depressive Symptoms n (%) | |||
|---|---|---|---|---|
| Total Sample | Low Depressive Symptoms, <10 | Depressive Symptoms, ≥10 | p-Value | |
| 1964 (100%) | 1656 (84%) | 308 (16%) | ||
| Trimester 1st 2nd | 1365 (69.5) 599 (30.5) | 1147 (69.3) 509 (30.7) | 218 (70.8) 90 (29.2) | 0.60 |
| Age, years- mean (SD) | 31.1 (6.2) | 31.2 (6.1) | 30.4 (6.5) | 0.03 |
| Gestational age, days-median (IQR) | 73 (57–98) | 73.0 (57–99) | 72.5 (57–97) | 0.89 |
| Race and Ethnicity Hispanic Non-Hispanic White Non-Hispanic Black Non-Hispanic Asian Other race and ethnicity | 537 (27.5) 172 (8.8) 1089 (55.8) 69 (3.5) 85 (4.4) | 467 (28.4) 155 (9.4) 889 (54.1) 60 (3.7) 73 (4.4) | 70 (22.8) 17 (5.5) 200 (64.9) 9 (2.9) 12 (3.9) | 0.01 |
| Marital Status Single * Not Single | 1536 (78.2) 428(21.8) | 1264 (76.3) 392 (23.7) | 272 (88.3) 36 (11.7) | <0.001 |
| Employment Employed Part-time Student Not Employed | 422 (21.5) 101 (5.1) 113 (5.8) 1328 (67.6) | 374 (22.6) 84 (5.1) 96 (5.8) 1102 (66.6) | 48 (15.6) 17 (5.5) 17 (5.5) 226 (73.4) | 0.05 |
| Insurance Private ** Non-private | 550 (27.9) 1425 (72.2) | 485 (29.3) 1171 (70.7) | 63 (20.4) 245 (79.6) | 0.002 |
| BMI, kg/m2 Obese ≥ 30 Non-Obese, <30 | 822 (42.6) 1109 (57.4) | 700 (43.0) 927 (57.0) | 122 (40.1) 182 (59.7) | 0.35 |
| Hemoglobin, g/dL median (IQR) | 12.3 (11.5–13.0) | 12.3 (11.3, 13.0) | 12.2 (11.6, 13.0) | 0.48 |
| Environmental Characteristics | Crime | Poverty | Pollution | Communality (h2) |
|---|---|---|---|---|
| Robbery | 1.00652 | −0.08319 | −0.00306 | 0.98951 |
| Criminal sexual assault | 0.99725 | −0.12764 | −0.03311 | 0.97017 |
| Traffic crashes | 0.96975 | −0.34025 | 0.17484 | 0.93450 |
| Violent crime | 0.95631 | 0.12783 | −0.07376 | 0.99178 |
| Smoking during pregnancy | 0.93628 | 0.14549 | −0.01250 | 0.95003 |
| Arson | 0.90107 | 0.21589 | 0.10202 | 0.92823 |
| Aggravated assault/battery | 0.89513 | 0.25061 | −0.11367 | 0.97378 |
| Homicide | 0.87273 | 0.31101 | −0.05482 | 0.96807 |
| Property crime | 0.84843 | −0.55520 | −0.10114 | 0.88100 |
| Drug abuse | 0.64144 | 0.30198 | 0.11565 | 0.57860 |
| Hardship index | −0.02238 | 0.92950 | 0.21575 | 0.91755 |
| Social vulnerability index | 0.11771 | 0.89966 | 0.18543 | 0.90467 |
| Unemployment rate | 0.02562 | 0.84990 | −0.35071 | 0.83538 |
| Food stamps | 0.18494 | 0.83981 | −0.29928 | 0.87815 |
| Rent burdened | 0.25119 | 0.76969 | −0.00766 | 0.72702 |
| Traffic intensity | 0.09761 | −0.55192 | −0.10328 | 0.31027 |
| Easy access to fruits and vegetables | −0.15134 | −0.67762 | −0.00843 | 0.52028 |
| Neighborhood safety | 0.56903 | −0.80165 | 0.10729 | 0.79394 |
| College graduation rate | 0.02062 | −0.90707 | −0.27418 | 0.90906 |
| Per capita income | −0.00222 | −0.95948 | 0.01737 | 0.92059 |
| Crowded housing | −0.00682 | 0.12751 | 0.74377 | 0.57634 |
| Particulate matter (PM 2.5) concentration | 0.17625 | 0.33825 | 0.67022 | 0.61377 |
| Tree canopy | 0.09822 | 0.18021 | −0.78366 | 0.66517 |
| Fit Indices | ||||
| Eigenvalue % Variance Cronbach’s Alpha | 10.14 8.39 0.98 | 6.54 7.50 −0.77 | 2.06 2.08 −0.95 |
| Environmental Factors and Patient Demographic Characteristics | Total Sample, n = 1963 | Anemic Individuals, n = 258 | Non-Anemic n = 1705 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Unadjusted | Adjusted | Unadjusted | Adjusted | Unadjusted | Adjusted | |||||||
| Estimate (SE) | p-Value | Estimate (SE) | p-Value | Estimate (SE) | p-Value | Estimate (SE) | p-Value | Estimate (SE) | p-Value | Estimate (SE) | p-Value | |
| Crime factor | 0.17 (0.09) | 0.07 | 0.01 (0.11) | 0.97 | 0.58 (0.26) | 0.02 | 0.65 (0.30) | 0.03 | 0.10 (0.10) | 0.31 | −0.09 (0.11) | 0.46 |
| Poverty factor | 0.24 (0.09) | 0.01 | 0.04 (0.11) | 0.72 | −0.07 (0.28) | 0.82 | −0.14 (0.31) | 0.64 | 0.28 (0.10) | 0.01 | 0.08 (0.12) | 0.50 |
| Pollution factor | −0.17 (0.11) | 0.08 | −0.03 (0.11) | 0.78 | −0.07 (0.29) | 0.82 | 0.05 (0.36) | 0.89 | −0.18 (0.10) | 0.08 | −0.06 (0.12) | 0.64 |
| Hemoglobin, g/dL | −0.04 (0.08) | 0.61 | 0.12 (0.09) | 0.19 | 0.17 (0.29) | 0.55 | 0.21 (0.31) | 0.51 | −0.08 (0.12) | 0.50 | 0.14 (0.13) | 0.27 |
| Gestational age days | 0.01 (0.01) | 0.80 | −0.01 (0.01) | 0.72 | 0.01 (0.01) | 0.98 | 0.01 (0.01) | 0.93 | 0.01 (0.01) | 0.85 | −0.01 (0.01) | 0.81 |
| BMI | −0.01 (0.01) | 0.94 | −0.01 (0.01) | 0.41 | −0.01 (0.01) | 0.66 | −0.02 (0.03) | 0.51 | 0.01 (0.01) | 0.93 | −0.01 (0.01) | 0.44 |
| Race | ||||||||||||
| White | Ref | Ref | Ref | Ref | Ref | Ref | ||||||
| Hispanic | 0.38 (0.36) | 0.30 | 0.03 (0.39) | 0.95 | −0.87 (1.83) | 0.63 | −0.80 (1.99) | 0.69 | 0.45 (0.37) | 0.23 | 0.09 (0.40) | 0.83 |
| Non-Hispanic Black | 1.17 (0.34) | 0.01 | 0.69 (0.40) | 0.09 | 0.28 (1.74) | 0.87 | 0.05 (1.85) | 0.98 | 1.22 (0.35) | 0.01 | 0.72 (0.42) | 0.08 |
| Non-Hispanic Asian and other | 0.24 (0.46) | 0.59 | 0.24 (0.47) | 0.60 | −1.04 (2.07) | 0.62 | −0.75 (2.13) | 0.73 | 0.32 (0.48) | 0.50 | 0.35 (0.48) | 0.46 |
| Marital status | ||||||||||||
| Not single | Ref | Ref | Ref | Ref | Ref | Ref | ||||||
| Single | 1.28 (0.23) | 0.01 | 0.82 (0.26) | 0.01 | 1.16 (0.79) | 0.14 | 0.66 (0.91) | 0.45 | 1.30 (0.24) | 0.01 | 0.83 (0.28) | 0.01 |
| Insurance | ||||||||||||
| Not Private | Ref | Ref | Ref | Ref | Ref | Ref | ||||||
| Private | −0.97 (0.21) | 0.01 | −0.51 (0.25) | 0.04 | −0.43 (0.68) | 0.53 | −0.09 (0.77) | 0.91 | −0.03 (0.22) | 0.01 | −0.58 (0.26) | 0.03 |
| Employment | ||||||||||||
| Employed | Ref | Ref | Ref | Ref | Ref | Ref | ||||||
| Part time | 0.57 (0.46) | 0.22 | 0.70 (0.47) | 0.14 | −0.77 (1.42) | 0.59 | −0.56 (1.55) | 0.72 | 0.74 (0.49) | 0.13 | 0.83 (0.50) | 0.10 |
| Student | 0.36 (0.44) | 0.42 | 0.01 (0.46) | 0.99 | 1.14 (1.14) | 0.32 | 1.44 (1.22) | 0.24 | 0.24 (0.48) | 0.62 | −0.17 (0.50) | 0.73 |
| Not Employed | 0.80 (0.23) | 0.01 | 0.52 (0.25) | 0.04 | 1.40 (0.73) | 0.06 | 1.49 (0.79) | 0.06 | 0.73 (0.25) | 0.01 | 0.39 (0.26) | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pobee, R.A.; Campbell, R.K.; Balakumar, P.; Huang, Y.; Bernabé, B.P.; Koenig, M.D. Environmental Stressors, Anemia, and Depressive Symptoms in Pregnancy: Unpacking the Combined Risks. Int. J. Environ. Res. Public Health 2025, 22, 1727. https://doi.org/10.3390/ijerph22111727
Pobee RA, Campbell RK, Balakumar P, Huang Y, Bernabé BP, Koenig MD. Environmental Stressors, Anemia, and Depressive Symptoms in Pregnancy: Unpacking the Combined Risks. International Journal of Environmental Research and Public Health. 2025; 22(11):1727. https://doi.org/10.3390/ijerph22111727
Chicago/Turabian StylePobee, Ruth A., Rebecca K. Campbell, Prathiba Balakumar, Yongchao Huang, Beatriz Peñalver Bernabé, and Mary Dawn Koenig. 2025. "Environmental Stressors, Anemia, and Depressive Symptoms in Pregnancy: Unpacking the Combined Risks" International Journal of Environmental Research and Public Health 22, no. 11: 1727. https://doi.org/10.3390/ijerph22111727
APA StylePobee, R. A., Campbell, R. K., Balakumar, P., Huang, Y., Bernabé, B. P., & Koenig, M. D. (2025). Environmental Stressors, Anemia, and Depressive Symptoms in Pregnancy: Unpacking the Combined Risks. International Journal of Environmental Research and Public Health, 22(11), 1727. https://doi.org/10.3390/ijerph22111727

