Offspring Education and Parents’ Health Inequality in China: Evidence from Spillovers of Education Reform
Abstract
:1. Introduction
2. Theoretical Background
2.1. Offspring Education and Parents’ Health Inequality
2.2. The Spillover Difference
2.3. Current Study
2.4. Hypothesis
3. University Enrollment Expansion in China
4. Data and Variables
4.1. Data
4.2. Dependent Variables
4.3. Independent Variables
4.4. Control Variables
5. Empirical Strategy
5.1. OLS Estimates
5.2. IV Estimates
5.3. IVQR Estimates
6. Results
6.1. Descriptive Statistics
6.2. OLS Estimation Result
6.3. IV Estimation Result
6.4. IVQR Estimation Result
7. Robustness Checks
7.1. Measure of Parents’ Health and Offspring Education
7.2. Placebo Test
7.3. Specification and Bandwidths
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | OLS | 2SLS | OLS | 2SLS | OLS | 2SLS |
---|---|---|---|---|---|---|
Panel A | Self-rated health | Functional limitations | IADLs | |||
Children’s education | −0.004 ** | −0.032 *** | −0.047 *** | −0.381 *** | −0.013 *** | −0.131 *** |
(0.001) | (0.010) | (0.005) | (0.039) | (0.004) | (0.024) | |
Observations | 7118 | 7118 | 7118 | 7118 | 7118 | 7118 |
p-value of Kleibergen–Paap rk LM statistic | 0.000 | 0.000 | 0.000 | |||
Kleibergen–Paap rk Wald F statistic of weak identification test | 206.052 | 206.052 | 206.052 | |||
p-value of Anderson–Rubin Wald test | 0.001 | 0.000 | 0.000 | |||
p-value of Hansen J statistic | 0.000 | 0.000 | 0.000 | |||
p-value of Endogeneity test | 0.013 | 0.000 | 0.000 | |||
Panel B | Cognitive limitations | CESD 10 | Happiness index | |||
Children’s education | −0.079 *** | −0.106 *** | −0.040 *** | 0.112 ** | −0.002 | 0.004 |
(0.005) | (0.029) | (0.007) | (0.048) | (0.003) | (0.011) | |
Observations | 7118 | 7118 | 7118 | 7118 | 7118 | 7118 |
p-value of Kleibergen–Paap rk LM statistic | 0.000 | 0.000 | 0.000 | |||
Kleibergen–Paap rk Wald F statistic of weak identification test | 206.052 | 206.052 | 206.052 | |||
p-value of Anderson–Rubin Wald test | 0.002 | 0.036 | 0.510 | |||
p-value of Hansen J statistic | 0.000 | 0.000 | 0.000 | |||
p-value of Endogeneity test | 0.632 | 0.006 | 0.464 |
References
- Guo, C.; Zheng, X. Health challenges and opportunities for an aging China. Am. J. Public Health 2018, 108, 890–892. [Google Scholar] [CrossRef] [PubMed]
- Fang, E.; Xie, C.; Schenkel, J.A.; Wu, C.; Long, Q.; Cui, H.; Aman, Y.; Frank, J.; Liao, J.; Zou, H.; et al. A research agenda for ageing in China in the 21st century: Focusing on basic and translational research, long-term care, policy and social networks. Ageing Res. Rev. 2020, 64, 101174. [Google Scholar] [CrossRef] [PubMed]
- Van Kippersluis, H.; O’Donnell, O.; Van Doorslaer, E. Long run returns to education: Does schooling lead to an extended old age? J. Hum. Resour. 2009, 4, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.P.; Leon, J.; Smith Greenaway, E.G.; Collins, J.; Movit, M. The education effect on population health: A reassessment. Popul. Dev. Rev. 2011, 37, 307–332. [Google Scholar] [CrossRef] [PubMed]
- Behrman, J.R.; Xiong, Y.; Zhang, J. Cross-sectional schooling-health associations misrepresented causal schooling effects on adult health and health-related behaviors: Evidence from the Chinese Adults Twins Survey. Soc. Sci. Med. 2015, 127, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Cutler, D.M.; Lleras-Muney, A. Education and health: Evaluating theories and evidence. In Making Americans Healthier: Social and Economic Policy as Health Policy; House, J., Schoeni, R., Kaplan, G., Pollack, H., Eds.; Russell Sage Foundation: New York, NY, USA, 2008; pp. 80–117. [Google Scholar]
- Elder, G.H.; Johnson, M.K.; Crosnoe, R. The emergence and development of life course theory. In Handbook of the Life Course; Springer: Boston, MA, USA, 2003; pp. 3–19. [Google Scholar]
- Currie, J.; Moretti, E. Mother’s education and the intergenerational transmission of human capital: Evidence from college openings. Q. J. Econ. 2003, 118, 1495–1532. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H. Mother’s education and child health: Is there a nurturing effect? J. Health Econ. 2009, 28, 413–426. [Google Scholar] [CrossRef]
- Jacobson, L. The family as producer of health—An extended Grossman model. J. Health Econ. 2000, 19, 611–637. [Google Scholar] [CrossRef]
- Zimmer, Z.; Hermalin, A.I.; Lin, H. Whose education counts? The added impact of adult-child education on physical functioning of older Taiwanese. J. Gerontol. B Psychol. Sci. Soc. Sci. 2002, 57, S23–S32. [Google Scholar] [CrossRef] [Green Version]
- Yahirun, J.J.; Sheehan, C.M.; Mossakowski, K.N. Depression in later life: The role of adult children’s college education for older parents’ mental health in the United States. J. Gerontol. B Psychol. Sci. Soc. Sci. 2020, 75, 389–402. [Google Scholar] [CrossRef] [Green Version]
- Friedman, E.M.; Mare, R.D. The schooling of offspring and the survival of parents. Demography 2014, 51, 1271–1293. [Google Scholar] [CrossRef]
- Torssander, J. Adult children’s socioeconomic positions and their parents’ mortality: A comparison of education, occupational class, and income. Soc. Sci. Med. 2014, 122, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y. Adult children’s educational attainment and the cognitive trajectories of older parents in South Korea. Soc. Sci. Med. 2018, 209, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N. Adult children’s education and later-life health of parents in China: The intergenerational effects of human capital investment. Soc. Indic. Res. 2019, 145, 257–278. [Google Scholar] [CrossRef]
- Ma, M. Does children’s education matter for parents’ health and cognition? Evidence from China. J. Health Econ. 2019, 66, 222–240. [Google Scholar] [CrossRef]
- Lundborg, P.; Majlesi, K. Intergenerational transmission of human capital: Is it a one-way street? J. Health Econ. 2018, 57, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q. Intergeneration social support affects the subjective well-being of the elderly: Mediator roles of self-esteem and loneliness. J. Health Psychol. 2016, 21, 1137–1144. [Google Scholar] [CrossRef]
- Grossman, M. On the concept of health capital and the demand for health. J. Polit. Econ. 1972, 80, 223–255. [Google Scholar] [CrossRef] [Green Version]
- Lynch, S.M. Cohort and life-course patterns in the relationship between education and health: A hierarchical approach. Demography 2003, 40, 309–331. [Google Scholar] [CrossRef]
- Grossman, M. The demand for health, 30 years later: A very personal retrospective and prospective reflection. J. Health Econ. 2004, 23, 629–636. [Google Scholar] [CrossRef]
- Lee, C.; Glei, D.A.; Goldman, N.; Weinstein, M. Children’s education and parents’ trajectories of depressive symptoms. J. Health Soc. Behav. 2017, 58, 86–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yahirun, J.J.; Sheehan, C.M.; Hayward, M.D. Adult children’s education and changes to parents’ physical health in Mexico. Soc. Sci. Med. 2017, 181, 93–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Neve, J.W.; Kawachi, I. Spillovers between siblings and from offspring to parents are understudied: A review and future directions for research. Soc. Sci. Med. 2017, 183, 56–61. [Google Scholar] [CrossRef]
- De Neve, J.W.; Fink, G. Children’s education and parental old age survival—Quasi-experimental evidence on the intergenerational effects of human capital investment. J. Health Econ. 2018, 58, 76–89. [Google Scholar] [CrossRef] [PubMed]
- De Neve, J.W.; Harling, G. Offspring schooling associated with increased parental survival in rural KwaZulu-Natal, South Africa. Soc. Sci. Med. 2017, 176, 149–157. [Google Scholar] [CrossRef]
- Smith-Greenaway, E.; Brauner-Otto, S.; Axinn, W. Offspring education and parental mortality: Evidence from South Asia. Soc. Sci. Res. 2018, 76, 157–168. [Google Scholar] [CrossRef]
- Ma, M.; Yahirun, J.J.; Saenz, J.; Sheehan, C. Offspring educational attainment and older parents’ cognition in Mexico. Demography 2021, 58, 75–109. [Google Scholar] [CrossRef]
- Yang, L.; Martikainen, P.; Silventoinen, K. Effects of individual, spousal, and offspring socioeconomic status on mortality among elderly people in China. J. Epidemiol. 2016, 26, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Logan, J.R.; Bian, F.; Bian, Y. Tradition and change in the urban Chinese family: The case of living arrangements. Soc. Forces 1998, 76, 851–882. [Google Scholar] [CrossRef]
- Thoma, B.; Sudharsanan, N.; Karlsson, O.; Joe, W.; Subramanian, S.V.; De Neve, J.W. Children’s education and parental old-age health: Evidence from a population-based, nationally representative study in India. Popul. Stud. J. Demogr. 2021, 75, 51–66. [Google Scholar] [CrossRef]
- Fingerman, K.L.; Cheng, Y.P.; Birditt, K.; Zarit, S. Only as happy as the least happy child: Multiple grown children’s problems and successes and middle-aged parents’ well-being. J. Gerontol. B Psychol. Sci. Soc. Sci. 2012, 67, 184–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berniell, L.; De la Mata, D.; Valdés, N. Spillovers of health education at school on parents’ physical activity. Health Econ. 2013, 22, 1004–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuziemko, I. Human capital spillovers in families: Do parents learn from or lean on their children? J. Labor. Econ. 2014, 32, 755–786. [Google Scholar] [CrossRef] [Green Version]
- Lee, C. Adult children’s education and physiological dysregulation among older parents. J. Gerontol. B Psychol. Sci. Soc. Sci. 2018, 73, 1143–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirowsky, J.; Ross, C.E. Education, Social Status, and Health, 1st ed.; Taylor and Francis: New York, NY, USA, 2003. [Google Scholar]
- Abadie, A.; Angrist, J.; Imbens, G. Instrumental variables estimates of the effect of subsidized training on the quantiles of trainee earnings. Econometrica 2002, 70, 91–117. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Park, A.; Strauss, J. Challenges of Population Aging in China: Evidence from the National Baseline Survey of the China Health and Retirement Longitudinal Study (CHARLS) 2013; National Baseline Survey Report; National School of Development, Peking University: Beijing, China, 2013. [Google Scholar]
- Zimmer, Z.; Martin, L.G.; Ofstedal, M.B.; Chuang, Y.L. Education of adult children and mortality of their elderly parents in Taiwan. Demography 2007, 44, 289–305. [Google Scholar] [CrossRef]
- Rockwood, K.; Mogilner, A.; Mitnitski, A. Changes with age in the distribution of a frailty index. Mech. Ageing Dev. 2004, 125, 517–519. [Google Scholar] [CrossRef]
- Bortz, W.M. A conceptual framework of frailty: A review. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M283–M288. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Sun, X.; Strauss, J.; Zhang, P.; Zhao, Y. Depressive symptoms and SES among the mid-aged and elderly in China: Evidence from the China Health and Retirement Longitudinal Study national baseline. Soc. Sci. Med. 2014, 120, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Kuo, M.Y.; Shiu, J.L. A dynamic quantitative evaluation of higher education return: Evidence from Taiwan education expansion. J. Asia Pac. Econ. 2016, 21, 276–300. [Google Scholar] [CrossRef]
- Chu, T.; Wen, Q. Does college education promote entrepreneurship in China? J. Labor. Res. 2019, 40, 463–486. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G., Jr. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Chernozhukov, V.; Hansen, C. Instrumental variable quantile regression: A robust inference approach. J. Econom. 2008, 142, 379–398. [Google Scholar] [CrossRef] [Green Version]
- Chernozhukov, V.; Fernández-Val, I.; Melly, B. Inference on Counterfactual Distributions. Econometrica 2013, 81, 2205–2268. [Google Scholar] [CrossRef] [Green Version]
- Mourifié, I.; Wan, Y. Testing local average treatment effect assumptions. Rev. Econ. Stat. 2017, 99, 305–313. [Google Scholar] [CrossRef]
- Staiger, D.; Stock, J. Instrumental Variables Regression with Weak Instruments. Econometrica 1997, 65, 557–586. [Google Scholar] [CrossRef]
- Silverstein, M.; Cong, Z.; Li, S. Intergenerational transfers and living arrangements of older people in rural China: Consequences for psychological well-being. J. Gerontol. B Psychol. Sci. Soc. Sci. 2006, 61, S256–S266. [Google Scholar] [CrossRef] [Green Version]
- Maurer-Fazio, M.; Connelly, R.; Chen, L.; Tang, L. Childcare, eldercare, and labor force participation of married women in urban China, 1982–2000. J. Hum. Resour. 2011, 46, 261–294. [Google Scholar]
- Lumsdaine, R.L.; Vermeer, S.J. Retirement timing of women and the role of care responsibilities for grandchildren. Demography 2015, 52, 433–454. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Zhang, Z.; Zeng, Y. Access to healthcare services makes a difference in healthy longevity among older Chinese adults. Soc. Sci. Med. 2009, 68, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Hu, Y.; McArdle, J.J.; Smith, J.P.; Zhao, Y. Gender differences in cognition among older adults in China. J. Hum. Resour. 2012, 47, 951–971. [Google Scholar] [PubMed]
- Post, T.; Hanewald, K. Longevity risk, subjective survival expectations, and individual saving behavior. J. Econ. Behav. Organ. 2013, 86, 200–220. [Google Scholar] [CrossRef]
- Hurd, M.D.; McGarry, K. The predictive validity of subjective probabilities of survival. Econ. J. 2002, 112, 966–985. [Google Scholar] [CrossRef]
- Mathers, C.D.; Sadana, R.; Salomon, J.A.; Murray, C.J.; Lopez, A.D. Healthy life expectancy in 191 countries, 1999. Lancet 2001, 357, 1685–1691. [Google Scholar] [CrossRef]
- Gao, W.; Smyth, R. Education expansion and returns to schooling in urban China, 2001–2010: Evidence from three waves of the China Urban Labor Survey. J. Asia Pac. Econ. 2015, 20, 178–201. [Google Scholar] [CrossRef]
- Yahirun, J.J.; Sheehan, C.M.; Hayward, M.D. Adult children’s education and parents’ functional limitations in Mexico. Res. Aging 2016, 38, 322–345. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.H. The one-child policy and gender equality in education in China: Evidence from household data. J. Fam. Econ. Issue 2012, 33, 41–52. [Google Scholar] [CrossRef]
- Wan, Y. Expansion of Chinese higher education since 1998: Its causes and outcomes. Asia Pac. Educ. Rev. 2006, 7, 19–32. [Google Scholar] [CrossRef]
- Wu, L.; Yan, K.; Zhang, Y. Higher education expansion and inequality in educational opportunities in China. High. Educ. 2020, 80, 549–570. [Google Scholar] [CrossRef]
- Li, L.W.; Zhang, J.; Liang, J. Health among the oldest-old in China: Which living arrangements make a difference? Soc. Sci. Med. 2009, 68, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Samanta, T.; Chen, F.; Vanneman, R. Living arrangements and health of older adults in India. J. Gerontol. B Psychol. Sci. Soc. Sci. 2015, 70, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Mao, F.; Ma, J.; Hao, S.; Qian, Z.M.; Elder, K.; Turner, J.S.; Fang, Y. A longitudinal analysis of the association between living arrangements and health among older adults in China. Res. Aging 2018, 40, 72–97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, S.; Lu, N. Community-Based Cognitive Social Capital and Self-Rated Health among Older Chinese Adults: The Moderating Effects of Education. Int. J. Environ. Res. Public Health 2019, 16, 2741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Observations | Mean | Standard Deviation |
---|---|---|---|
FI | 7118 | 0.365 | 0.187 |
Self-rated health | 7118 | 0.762 | 0.426 |
Functional limitations | 7118 | 2.093 | 1.892 |
IADLs | 7118 | 0.453 | 1.004 |
Cognitive limitations | 7118 | 3.008 | 1.627 |
CESD 10 | 7118 | 4.622 | 2.922 |
Happiness index | 7118 | 0.387 | 0.632 |
Children’s education | 7118 | 10.935 | 3.707 |
Gender | 7118 | 0.524 | 0.499 |
Age | 7118 | 64.069 | 8.006 |
Marriage | 7118 | 0.980 | 0.139 |
Urban | 7118 | 0.387 | 0.487 |
Srh15 | 7118 | 0.716 | 0.451 |
Own education | 7118 | 5.469 | 4.079 |
Medicare | 7118 | 0.971 | 0.167 |
Lnincome | 7118 | 9.210 | 1.991 |
Lnasset | 7118 | 8.775 | 1.573 |
Environment | 7118 | 0.577 | 0.213 |
Drink | 7118 | 0.365 | 0.481 |
Children’s gender | 7118 | 0.428 | 0.495 |
Children’s number | 7118 | 2.953 | 1.541 |
Living | 7118 | 0.278 | 0.448 |
Variables | Whole Sample | Cohabitation | Separation |
---|---|---|---|
Children’s education | −0.006 *** | −0.006 *** | −0.006 *** |
(0.000) | (0.001) | (0.001) | |
Gender | 0.089 *** | 0.077 *** | 0.095 *** |
(0.006) | (0.008) | (0.007) | |
Age | 0.001 *** | 0.002 *** | 0.001 ** |
(0.000) | (0.000) | (0.000) | |
Marriage | −0.012 | 0.016 | −0.023 |
(0.015) | (0.031) | (0.018) | |
Urban | −0.020 *** | −0.035 *** | −0.015 ** |
(0.006) | (0.012) | (0.006) | |
Srh15 | −0.032 *** | −0.023 *** | −0.035 *** |
(0.003) | (0.007) | (0.004) | |
Own education | −0.025 *** | −0.031 ** | −0.023 * |
(0.008) | (0.014) | (0.013) | |
Medicare | −0.024 * | −0.049 * | −0.011 |
(0.013) | (0.028) | (0.014) | |
Lnincome | −0.007 *** | −0.003 | −0.009 *** |
(0.001) | (0.002) | (0.001) | |
Lnasset | −0.016 *** | −0.016 *** | −0.016 *** |
(0.001) | (0.003) | (0.001) | |
Environment | −0.102 *** | −0.075 *** | −0.111 *** |
(0.011) | (0.018) | (0.014) | |
Drink | 0.002 | −0.006 | 0.006 |
(0.006) | (0.009) | (0.008) | |
Children’s gender | −0.013 *** | −0.005 | −0.015 ** |
(0.004) | (0.009) | (0.006) | |
Children’s number | 0.013 *** | 0.015 *** | 0.013 *** |
(0.002) | (0.004) | (0.002) | |
Living | -0.007 * | ||
(0.004) | |||
Constant | 0.687 *** | 0.627 *** | 0.700 *** |
(0.023) | (0.049) | (0.025) | |
Province FE | Yes | Yes | Yes |
Observations | 7118 | 1978 | 5140 |
Adj-R2 | 0.259 | 0.270 | 0.255 |
Variables | Whole Sample | Cohabitation | Separation |
---|---|---|---|
Ref | 1.342 *** | 0.870 *** | 1.509 *** |
(0.099) | (0.154) | (0.115) | |
Control variables | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes |
Observations | 7118 | 1978 | 5140 |
F statistics of weak identification | 206.882 | 31.795 | 199.148 |
Variables | Whole Sample | Cohabitation | Separation |
---|---|---|---|
Children’s education | −0.017 *** | −0.032 *** | −0.014 *** |
(0.003) | (0.010) | (0.003) | |
Gender | 0.089 *** | 0.081 *** | 0.094 *** |
(0.006) | (0.010) | (0.007) | |
Age | 0.001 *** | 0.001 *** | 0.000 ** |
(0.000) | (0.000) | (0.000) | |
Marriage | −0.004 | 0.048 | −0.019 |
(0.015) | (0.033) | (0.018) | |
Urban | −0.009 | −0.007 | −0.006 |
(0.005) | (0.012) | (0.006) | |
Srh15 | −0.030 *** | −0.026 *** | −0.033 *** |
(0.003) | (0.010) | (0.003) | |
Own education | −0.008 | 0.006 | −0.011 |
(0.009) | (0.022) | (0.013) | |
Medicare | −0.009 | −0.009 | −0.001 |
(0.012) | (0.032) | (0.014) | |
Lnincome | −0.006 *** | 0.001 | −0.008 *** |
(0.001) | (0.003) | (0.001) | |
Lnasset | −0.013 *** | −0.008** | −0.014 *** |
(0.001) | (0.004) | (0.002) | |
Environment | −0.060 *** | 0.032 | −0.081 *** |
(0.015) | (0.049) | (0.018) | |
Drink | 0.002 | −0.000 | 0.006 |
(0.007) | (0.011) | (0.008) | |
Children’s gender | −0.015 *** | 0.005 | −0.018 *** |
(0.004) | (0.010) | (0.006) | |
Children’s number | 0.011 *** | 0.010 ** | 0.011 *** |
(0.002) | (0.004) | (0.002) | |
Living | −0.021 *** | ||
(0.005) | |||
Constant | 0.718 *** | 0.645 *** | 0.727 *** |
(0.023) | (0.049) | (0.027) | |
Province FE | Yes | Yes | Yes |
Observations | 7118 | 1978 | 5140 |
Adj-R2 | 0.220 | 0.093 | 0.233 |
p-value of Kleibergen–Paap rk LM statistic | 0.000 | 0.001 | 0.000 |
Kleibergen–Paap rk Wald F statistic of weak identification test | 206.882 | 31.795 | 199.148 |
p-value of Anderson–Rubin Wald test | 0.000 | 0.000 | 0.000 |
p-value of Hansen J statistic | 0.000 | 0.000 | 0.000 |
p-value of Endogeneity test | 0.003 | 0.018 | 0.033 |
Variables | Mothers | Fathers | ||||
---|---|---|---|---|---|---|
Whole Sample | Cohabitation | Separation | Whole Sample | Cohabitation | Separation | |
Children’s education | −0.022 *** | −0.039 *** | −0.019 *** | −0.011 *** | −0.024 ** | −0.008 * |
(0.004) | (0.014) | (0.005) | (0.004) | (0.012) | (0.004) | |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 3727 | 1076 | 2651 | 3391 | 902 | 2489 |
p-value of Kleibergen–Paap rk LM statistic | 0.000 | 0.009 | 0.000 | 0.000 | 0.002 | 0.000 |
Kleibergen–Paap rk Wald F statistic of weak identification test | 97.517 | 11.562 | 105.150 | 124.073 | 17.821 | 98.103 |
p-value of Anderson–Rubin Wald test | 0.000 | 0.021 | 0.000 | 0.012 | 0.003 | 0.120 |
p-value of Hansen J statistic | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
p-value of Endogeneity test | 0.004 | 0.061 | 0.023 | 0.269 | 0.075 | 0.845 |
Variables | OLS | 2SLS | OLS | 2SLS | OLS | 2SLS |
---|---|---|---|---|---|---|
Subjective Life Expectancy | Least-Educated Children | Average Educational Attainment of All Offspring | ||||
Panel A | All | |||||
Children’s education | 0.012 *** | 0.091 *** | −0.008 *** | −0.014 *** | −0.008 *** | −0.015 *** |
(0.002) | (0.012) | (0.001) | (0.002) | (0.001) | (0.003) | |
Observations | 6098 | 6098 | 7118 | 7118 | 7118 | 7118 |
p-value of Kleibergen–Paap rk LM statistic | 0.000 | 0.000 | 0.000 | |||
Kleibergen–Paap rk Wald F statistic of weak identification test | 178.187 | 161.110 | 232.759 | |||
p-value of Anderson–Rubin Wald test | 0.000 | 0.000 | 0.000 | |||
p-value of Hansen J statistic | 0.000 | 0.000 | 0.000 | |||
p-value of Endogeneity test | 0.000 | 0.009 | 0.005 | |||
Panel B | Mothers | |||||
Children’s education | 0.011 *** | 0.069 *** | −0.010 *** | −0.021 *** | −0.010 *** | −0.018 *** |
(0.003) | (0.013) | (0.001) | (0.004) | (0.001) | (0.004) | |
Observations | 3111 | 3111 | 3727 | 3727 | 3727 | 3727 |
p-value of Kleibergen–Paap rk LM statistic | 0.000 | 0.000 | 0.000 | |||
Kleibergen–Paap rk Wald F statistic of weak identification test | 85.211 | 91.193 | 95.588 | |||
p-value of Anderson–Rubin Wald test | 0.000 | 0.000 | 0.000 | |||
p-value of Hansen J statistic | 0.000 | 0.000 | 0.000 | |||
p-value of Endogeneity test | 0.000 | 0.007 | 0.012 | |||
Panel C | Fathers | |||||
Children’s education | 0.014 *** | 0.118 *** | −0.005 *** | −0.006 ** | −0.006 *** | −0.009 *** |
(0.004) | (0.017) | (0.001) | (0.003) | (0.001) | (0.004) | |
Observations | 2987 | 2987 | 3391 | 3391 | 3391 | 3391 |
p-value of Kleibergen–Paap rk LM statistic | 0.000 | 0.000 | 0.000 | |||
Kleibergen–Paap rk Wald F statistic of weak identification test | 120.181 | 68.245 | 105.575 | |||
p-value of Anderson–Rubin Wald test | 0.000 | 0.107 | 0.012 | |||
p-value of Hansen J statistic | 0.000 | 0.000 | 0.000 | |||
p-value of Endogeneity test | 0.000 | 0.774 | 0.272 |
Variables | Sample of 14–17 Years Old | Sample of 18–21 Years Old |
---|---|---|
The first stage estimation of 2SLS | 0.353 (0.249) | 0.013 (0.231) |
p-value of Kleibergen–Paap rk LM statistic | 0.124 | 0.974 |
Kleibergen–Paap rk Wald F statistic of weak identification test | 2.164 | 0.001 |
p-value of Anderson–Rubin Wald test | 0.455 | 0.551 |
p-value of Hansen J statistic | 0.000 | 0.000 |
p-value of Endogeneity test | 0.351 | 0.557 |
The second stage estimation of 2SLS | 0.023 (0.033) | −0.258 (4.631) |
Variables | OLS | 2SLS | OLS | 2SLS | OLS | 2SLS |
---|---|---|---|---|---|---|
[−15, 15] | [−10, 10] | [50, 70] | ||||
Panel A | All | |||||
Children’s education | −0.006 *** | −0.016 *** | −0.006 *** | −0.019 *** | −0.005 *** | −0.012 *** |
(0.001) | (0.003) | (0.001) | (0.004) | (0.001) | (0.003) | |
Observations | 6727 | 6727 | 5568 | 5568 | 5307 | 5307 |
p-value of Kleibergen–Paap rk LM statistic | 0.000 | 0.000 | 0.000 | |||
Kleibergen–Paap rk Wald<break/>F statistic of weak identification test | 185.793 | 105.112 | 113.890 | |||
p-value of Anderson–Rubin Wald test | 0.000 | 0.000 | 0.000 | |||
p-value of Hansen J statistic | 0.000 | 0.000 | 0.000 | |||
p-value of Endogeneity test | 0.006 | 0.006 | 0.069 | |||
Panel B | Mothers | |||||
Children’s education | −0.006 *** | −0.021 *** | −0.006 *** | −0.026 *** | −0.005 *** | −0.017 *** |
(0.001) | (0.005) | (0.001) | (0.006) | (0.001) | (0.005) | |
Observations | 3469 | 3469 | 2875 | 2875 | 2861 | 2861 |
p-value of Kleibergen–Paap rk LM statistic | 0.000 | 0.000 | 0.000 | |||
Kleibergen–Paap rk Wald<break/>F statistic of weak identification test | 91.212 | 52.497 | 67.902 | |||
p-value of Anderson–Rubin Wald test | 0.000 | 0.000 | 0.001 | |||
p-value of Hansen J statistic | 0.000 | 0.000 | 0.000 | |||
p-value of Endogeneity test | 0.010 | 0.011 | 0.047 | |||
Panel C | Fathers | |||||
Children’s education | −0.006 *** | −0.010 *** | −0.006 *** | −0.012 ** | −0.005 *** | −0.007 * |
(0.001) | (0.004) | (0.001) | (0.005) | (0.001) | (0.004) | |
Observations | 3258 | 3258 | 2693 | 2693 | 2446 | 2446 |
p-value of Kleibergen–Paap rk LM statistic | 0.000 | 0.000 | 0.000 | |||
Kleibergen–Paap rk Wald<break/>F statistic of weak identification test | 125.194 | 114.196 | 84.437 | |||
p-value of Anderson–Rubin Wald test | 0.018 | 0.022 | 0.197 | |||
p-value of Hansen J statistic | 0.000 | 0.000 | 0.000 | |||
p-value of Endogeneity test | 0.372 | 0.279 | 0.902 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, L.; Li, F.; Deng, L.; Cai, J.; Yu, L. Offspring Education and Parents’ Health Inequality in China: Evidence from Spillovers of Education Reform. Int. J. Environ. Res. Public Health 2022, 19, 2006. https://doi.org/10.3390/ijerph19042006
Zhang Y, Zhang L, Li F, Deng L, Cai J, Yu L. Offspring Education and Parents’ Health Inequality in China: Evidence from Spillovers of Education Reform. International Journal of Environmental Research and Public Health. 2022; 19(4):2006. https://doi.org/10.3390/ijerph19042006
Chicago/Turabian StyleZhang, Youlu, Li Zhang, Fulian Li, Liqian Deng, Jiaoli Cai, and Linyue Yu. 2022. "Offspring Education and Parents’ Health Inequality in China: Evidence from Spillovers of Education Reform" International Journal of Environmental Research and Public Health 19, no. 4: 2006. https://doi.org/10.3390/ijerph19042006
APA StyleZhang, Y., Zhang, L., Li, F., Deng, L., Cai, J., & Yu, L. (2022). Offspring Education and Parents’ Health Inequality in China: Evidence from Spillovers of Education Reform. International Journal of Environmental Research and Public Health, 19(4), 2006. https://doi.org/10.3390/ijerph19042006