Bayesian Modeling of COVID-19 to Classify the Infection and Death Rates in a Specific Duration: The Case of Algerian Provinces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Period
2.2. Data Acquisition
2.3. Statistical Analysis
2.3.1. Bayes’ Formula and Posterior Distribution
- the density function of knowing the value of the random variable ;
- : the a priori density function on ;
- : the marginal distribution of .
2.3.2. The Estimation Model
3. Results
3.1. Modeling Mortality Rates
3.2. Modeling of Infection Rates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus Disease 2019-COVID-19. Clin. Microbiol. Rev. 2020, 33, e00028-20. [Google Scholar] [CrossRef]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 30 July 2022).
- Gallè, F.; Sabella, E.A.; Roma, P.; Ferracuti, S.; Da Molin, G.; Diella, G.; Montagna, M.T.; Orsi, G.B.; Liguori, G.; Napoli, C. Knowledge and Lifestyle Behaviors Related to COVID-19 Pandemic in People over 65 Years Old from Southern Italy. Int. J. Environ. Res. Public Health 2021, 18, 10872. [Google Scholar] [CrossRef] [PubMed]
- Giraldi, G.; Montesano, M.; Napoli, C.; Frati, P.; La Russa, R.; Santurro, A.; Scopetti, M.; Orsi, G.B. Healthcare-Associated Infections Due to Multidrug-Resistant Organisms: A Surveillance Study on Extra Hospital Stay and Direct Costs. Curr. Pharm. Biotechnol. 2019, 20, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Gratz, K.L.; Tull, M.T.; Richmond, J.R.; Edmonds, K.A.; Scamaldo, K.M.; Rose, J.P. Thwarted Belongingness and Perceived Burdensomeness Explain the Associations of COVID-19 Social and Economic Consequences to Suicide Risk. Suicide Life Threat. Behav. 2020, 50, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, A. The Economic Consequences of COVID in Spain and How to Deal with Them. Appl. Econ. Analysis 2021, 29, 90–104. [Google Scholar] [CrossRef]
- Elkhashen, E.M.; Sarhan, A.; Ejiogu, A. Egyptian Budgetary Responses to COVID-19 and Their Social and Economic Consequences. J. Public Budg. Account. Financ. Manag. 2020, 33, 78–86. [Google Scholar] [CrossRef]
- Aouissi, H.A. Algeria’s Preparedness for Omicron Variant and for the Fourth Wave of COVID-19. Glob. Health Med. 2021, 3, 413–414. [Google Scholar] [CrossRef]
- Aouissi, H.A.; Belhaouchet, I. What about Rheumatic Diseases and COVID-19? New Microbes. New Infect. 2021, 41, 100846. [Google Scholar] [CrossRef]
- Aouissi, H.A.; Kechebar, M.S.A.; Ababsa, M.; Roufayel, R.; Neji, B.; Petrisor, A.-I.; Hamimes, A.; Epelboin, L.; Ohmagari, N. The Importance of Behavioral and Native Factors on COVID-19 Infection and Severity: Insights from a Preliminary Cross-Sectional Study. Healthcare 2022, 10, 1341. [Google Scholar] [CrossRef]
- Napoli, C.; Iatta, R.; Fasano, F.; Marsico, T.; Montagna, M.T. Variable bacterial load of Legionella spp. in a hospital water system. Sci. Total Environ. 2009, 408, 242–244. [Google Scholar] [CrossRef]
- Bae, E.Y.; Sanders, J.M.; Johns, M.L.; Lin, K.; Ortwine, J.K.; Wei, W.; Mang, N.S.; Cutrell, J.B. Therapeutic Options for Coronavirus Disease 2019 (COVID-19): Where Are We Now? Curr. Infect. Dis. Rep. 2021, 23, 28. [Google Scholar] [CrossRef]
- Lounis, M.; Rais, M.A.; Bencherit, D.; Aouissi, H.A.; Oudjedi, A.; Klugarová, J.; Pokorná, A.; Klugar, M.; Riad, A. Side Effects of COVID-19 Inactivated Virus vs. Adenoviral Vector Vaccines: Experience of Algerian Healthcare Workers. Front. Public Health 2022, 10, 896343. [Google Scholar] [CrossRef] [PubMed]
- Aouissi, H.A.; Ababsa, M.; Gaagai, A. Review of a Controversial Treatment Method in the Fight against COVID-19 with the Example of Algeria. Bull. Natl. Res. Cent. 2021, 45, 94. [Google Scholar] [CrossRef] [PubMed]
- Capalbo, C.; Aceti, A.; Simmaco, M.; Bonfini, R.; Rocco, M.; Ricci, A.; Napoli, C.; Rocco, M.; Alfonsi, V.; Teggi, A.; et al. The Exponential Phase of the COVID-19 Pandemic in Central Italy: An Integrated Care Pathway. Int. J. Environ. Res. Public Health 2020, 17, 3792. [Google Scholar] [CrossRef] [PubMed]
- Madan, A.; Bindal, S.; Gupta, A.K. Social Distancing as Risk Reduction Strategy during COVID-19 Pandemic: A Study of Delhi-NCT, India. Int. J. Disaster Risk Reduct. 2021, 63, 102468. [Google Scholar] [CrossRef]
- Overton, C.E.; Stage, H.B.; Ahmad, S.; Curran-Sebastian, J.; Dark, P.; Das, R.; Fearon, E.; Felton, T.; Fyles, M.; Gent, N.; et al. Using Statistics and Mathematical Modelling to Understand Infectious Disease Outbreaks: COVID-19 as an Example. Infect. Dis. Model. 2020, 5, 409–441. [Google Scholar] [CrossRef] [PubMed]
- Ababsa, M.; Aouissi, H.A. Current State of the Coronavirus (COVID-19) in Algeria. J. Community Med. Health Care 2020, 5, 1036. [Google Scholar] [CrossRef]
- Fatih, C.; Hamimes, A.; Mishra, P. COVID-19 Statistics, Strange Trend and Forecasting of Total Cases in the Most Infected African Countries: An ARIMA and Fuzzy Time Series Approaches. Afr. J. Appl. Stat. 2020, 7, 967–982. [Google Scholar] [CrossRef]
- Kadi, N.; Khelfaoui, M. Population Density, a Factor in the Spread of COVID-19 in Algeria: Statistic Study. Bull. Natl. Res. Cent. 2020, 44, 138. [Google Scholar] [CrossRef]
- Boudrioua, M.S.; Boudrioua, A. Predicting the COVID-19 Epidemic in Algeria Using the SIR Model. Medrxiv 2021. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.-W.; et al. Artificial Intelligence: A Powerful Paradigm for Scientific Research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef] [PubMed]
- Aktekin, T.; Ekin, T. Stochastic Call Center Staffing with Uncertain Arrival, Service and Abandonment Rates: A Bayesian Perspective. Nav. Res. Logist. 2016, 63, 460–478. [Google Scholar] [CrossRef]
- Tang, B.; Wang, X.; Li, Q.; Bragazzi, N.L.; Tang, S.; Xiao, Y.; Wu, J. Estimation of the Transmission Risk of the 2019-NCoV and Its Implication for Public Health Interventions. J. Clin. Med. 2020, 9, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Fatini, M.; El Khalifi, M.; Gerlach, R.; Pettersson, R. Bayesian Forecast of the Basic Reproduction Number during the COVID-19 Epidemic in Morocco and Italy. Math. Popul. Stud. 2021, 28, 228–242. [Google Scholar] [CrossRef]
- Abdeljaoued-Tej, I.; Dhenain, M. Estimation of Tunisia COVID-19 Infected Cases Based on Mortality Rate. Epidemiology 2020. [Google Scholar] [CrossRef]
- Sabry, I.; ElWakil, M.; Idrisi, A.; Mourad, A. Forecasting COVID-19 Cases in Egypt Using ARIMA-Based Time-Series Analysis. EJMO. Eurasian. J. Med. Oncol. 2021, 5, 123–131. [Google Scholar] [CrossRef]
- Soikkeli, F.; Hashim, M.; Ouwens, M.; Postma, M.; Heeg, B. Extrapolating Survival Data Using Historical Trial–Based a Priori Distributions. Value Health 2019, 22, 1012–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, H. A Method to Adjust a Prior Distribution in Bayesian Second-Level FMRI Analysis. PeerJ 2021, 9, e10861. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2003; ISBN 978-1-58488-388-3. [Google Scholar]
- Gianola, D.; Sorensen, D. Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Klenke, A. (Ed.) Probability Theory. A Comprehensive Course, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Tamburini, F. The COVID-19 Outbreak in North Africa: A Legal Analysis. J. Asian Afr. Stud. 2021, 56, 1738–1754. [Google Scholar] [CrossRef]
- Heredity Indexes for Estimating Heritability Using Known and Unknown Family Data Based on the Model of Polygenic Inheritance-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32300373/ (accessed on 2 July 2022).
- Betancourt, M. A Short Review of Ergodicity and Convergence of Markov Chain Monte Carlo Estimators 2021. arXiv 2021, arXiv:2110.07032. [Google Scholar]
- Ross, S. (Ed.) Chapter 12-Markov Chain Monte Carlo Methods. In Simulation, 5th ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 271–302. ISBN 978-0-12-415825-2. [Google Scholar]
- Encyclopedia of Social Measurement ScienceDirect. Available online: https://www.sciencedirect.com/referencework/9780123693983/encyclopedia-of-social-measurement (accessed on 3 July 2022).
- Okubo, K.-I.; Umeno, K. Infinite Ergodicity That Preserves the Lebesgue Measure. Chaos 2021, 31, 033135. [Google Scholar] [CrossRef] [PubMed]
- Devianto, D.; Afifah, A.N.; Febrianti, I.K. The Bayesian Model of COVID-19 Case Fatality Rate Proportion on Provinces in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 708, 012057. [Google Scholar] [CrossRef]
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and Forecasting the Potential Domestic and International Spread of the 2019-NCoV Outbreak Originating in Wuhan, China: A Modelling Study. Lancet 2020, 395, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zeng, Z.; Wang, K.; Wong, S.-S.; Liang, W.; Zanin, M.; Liu, P.; Cao, X.; Gao, Z.; Mai, Z.; et al. Modified SEIR and AI Prediction of the Epidemics Trend of COVID-19 in China under Public Health Interventions. J. Thorac. Dis. 2020, 12, 165–174. [Google Scholar] [CrossRef]
- Xie, Y. Values and Limitations of Statistical Models. Res. Soc. Stratif. Mobil. 2011, 29, 343–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirkaya, E.; Feng, Y.; Basu, P.; Lv, J. Large-Scale Model Selection in Misspecified Generalized Linear Models. Biometrika 2022, 109, 123–136. [Google Scholar] [CrossRef]
- Khan, F.; Lounis, M. Short-Term Forecasting of Daily Infections, Fatalities and Recoveries about COVID-19 in Algeria Using Statistical Models. Beni. Suef. Univ. J. Basic Appl. Sci. 2021, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Tripp, L.; Sawchuk, L.A.; Saliba, M. Deconstructing the 1918–1919 Influenza Pandemic in the Maltese Islands: A Biosocial Perspective. Curr. Anthropol. 2018, 59, 229–239. [Google Scholar] [CrossRef]
- Sawchuk, L.A.; Tripp, L. Managing an Epidemic in Imperfect Times: Encampment and Immunity Passes in 19th Century Gibraltar. BMJ Glob. Health 2021, 6, e006713. [Google Scholar] [CrossRef]
- Lounis, M.; Bagal, D.K. Estimation of SIR Model’s Parameters of COVID-19 in Algeria. Bull. Natl. Res. Centre 2020, 44, 180. [Google Scholar] [CrossRef]
- Leveau, C.M.; Aouissi, H.A.; Kebaili, F.K. Spatial Diffusion of COVID-19 in Algeria during the Third Wave. GeoJournal 2022, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.H.; Schwartz, G.G. Spatial Disparities in Coronavirus Incidence and Mortality in the United States: An Ecological Analysis as of May 2020. J. Rural. Health 2020, 36, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.; Arif, A.A.; Adeyemi, O.; Ghosh, S.; Han, D. Progression of COVID-19 From Urban to Rural Areas in the United States: A Spatiotemporal Analysis of Prevalence Rates. J. Rural. Health 2020, 36, 591–601. [Google Scholar] [CrossRef]
- Blair, A.; Pan, S.Y.; Subedi, R.; Yang, F.-J.; Aitken, N.; Steensma, C. Social Inequalities in COVID-19 Mortality by Area and Individual-Level Characteristics in Canada, January to July/August 2020: Results from Two National Data Integrations. Can. Commun. Dis. Rep. 2022, 48, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Kalla, M.I.; Lahmar, B.; Geullouh, S.; Kalla, M. Health Geo-Governance to Assess the Vulnerability of Batna, Algeria to COVID-19: The Role of GIS in the Fight against a Pandemic. GeoJournal 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Al-Raeei, M. The COVID-19 Basic Reproductive Ratio Using SEIR Model for the Middle East Countries and Some Other Countries for Two Stages of the Disease. Bull. Natl. Res. Cent. 2021, 45, 112. [Google Scholar] [CrossRef] [PubMed]
- Napoli, C.; Dente, M.G.; Kärki, T.; Riccardo, F.; Rossi, P.; Declich, S. Network for the Control of Cross-Border Health Threats in the Mediterranean Basin and Black Sea Screening for Infectious Diseases among Newly Arrived Migrants: Experiences and Practices in Non-EU Countries of the Mediterranean Basin and Black Sea. Int. J. Environ. Res. Public Health 2015, 12, 15550–15558. [Google Scholar] [CrossRef] [Green Version]
- Klouche-Djedid, S.N.; Shah, J.; Khodor, M.; Kacimi, S.E.O.; Islam, S.M.S.; Aiash, H. Algeria’s Response to COVID-19: An Ongoing Journey. Lancet Respir. Med. 2021, 9, 449. [Google Scholar] [CrossRef]
- Hamidouche, M. COVID-19 Epidemic in Algeria: Assessment of the Implemented Preventive Strategy. J. Contemp. Stud. Epidemiol. Public Health 2021, 2, ep21005. [Google Scholar] [CrossRef]
- Van Ravenzwaaij, D.; Cassey, P.; Brown, S.D. A Simple Introduction to Markov Chain Monte–Carlo Sampling. Psychon. Bull. Rev. 2018, 25, 143–154. [Google Scholar] [CrossRef] [Green Version]
Provinces | Mean | Provinces | Mean | Provinces | Mean | Provinces | Mean |
---|---|---|---|---|---|---|---|
Adrar | 0.002 | Tlemcen | 0.016 | Constantine | 0.045 | Tindouf | 0.002 |
Chelef | 0.008 | Tiaret | 0.007 | Médéa | 0.006 | Tissemsilt | 0.001 |
Laghouat 0 | 0.013 | Tizi Ouzou | 0.056 | Mostaganem | 0.013 | El Oued 39 | 0.005 |
Oum El Bouaghi | 0.012 | Alger | 0.474 | M’sila | 0.008 | Khenchela | 0.006 |
Batna | 0.03 | Djelfa | 0.002 | Mascara 9 | 0.004 | Souk Ahras | 0.005 |
Béjaia | 0.022 | Jijel | 0.019 | Ouargla | 0.009 | Tipaza | 0.025 |
Biskra | 0.011 | Sétif | 0.038 | Oran | 0.046 | Mila | 0.004 |
Béchar | 0.003 | Saida | 0.006 | El Bayadh | 0.004 | Ain Defla | 0.001 |
Blida | 0.012 | Skikda | 0.007 | Illizi | 0.001 | Naâma | 0.005 |
Bouira | 0.015 | Sidi Bel Abbès | 0.012 | Bordj Bou Arreridj | 0.004 | Ain Timouchant | 0.01 |
Tamanrasset | 0.002 | Annaba | 0.03 | Boumerdes | 0.024 | Ghardaia | 0.001 |
Tébessa 2 | 0.024 | Guelma | 0.005 | El Taref | 0.001 | Relizane | 0.01 |
Provinces | Mean | Provinces | Mean | Provinces | Mean | Provinces | Mean |
---|---|---|---|---|---|---|---|
Adrar | 0.0010 | Tlemcen | 0.0170 | Constantine | 0.0694 | Tindouf | 0.0024 |
Chelef | 0.0066 | Tiaret | 0.0078 | Médéa | 0.0076 | Tissemsilt | 0.0048 |
Laghouat | 0.0148 | Tizi Ouzou | 0.0694 | Mostaganem | 0.0204 | El Oued | 0.0086 |
Oum El Bouaghi | 0.0168 | Alger | 0.1999 | M’sila | 0.0143 | Khenchela | 0.0112 |
Batna | 0.0425 | Djelfa | 0.0018 | Mascara | 0.0053 | Souk Ahras | 0.0107 |
Béjaia | 0.0238 | Jijel | 0.0196 | Ouargla | 0.0152 | Tipaza | 0.0524 |
Biskra | 0.0119 | Sétif | 0.0557 | Oran | 0.0861 | Mila | 0.0064 |
Béchar | 0.0048 | Saida | 0.0071 | El Bayadh | 0.0053 | Ain Defla | 0.0024 |
Blida | 0.0155 | Skikda | 0.0082 | Illizi | 0.0011 | Naâma | 0.0084 |
Bouira | 0.0186 | Sidi Bel Abbès | 0.0171 | Bordj Bou Arreridj | 0.0041 | Ain Timouchant | 0.0129 |
Tamanrasset | 0.0019 | Annaba | 0.0483 | Boumerdes | 0.0520 | Ghardaia | 0.0041 |
Tébessa | 0.0264 | Guelma | 0.0113 | El Taref | 0.0030 | Relizane | 0.0141 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aouissi, H.A.; Hamimes, A.; Ababsa, M.; Bianco, L.; Napoli, C.; Kebaili, F.K.; Krauklis, A.E.; Bouzekri, H.; Dhama, K. Bayesian Modeling of COVID-19 to Classify the Infection and Death Rates in a Specific Duration: The Case of Algerian Provinces. Int. J. Environ. Res. Public Health 2022, 19, 9586. https://doi.org/10.3390/ijerph19159586
Aouissi HA, Hamimes A, Ababsa M, Bianco L, Napoli C, Kebaili FK, Krauklis AE, Bouzekri H, Dhama K. Bayesian Modeling of COVID-19 to Classify the Infection and Death Rates in a Specific Duration: The Case of Algerian Provinces. International Journal of Environmental Research and Public Health. 2022; 19(15):9586. https://doi.org/10.3390/ijerph19159586
Chicago/Turabian StyleAouissi, Hani Amir, Ahmed Hamimes, Mostefa Ababsa, Lavinia Bianco, Christian Napoli, Feriel Kheira Kebaili, Andrey E. Krauklis, Hafid Bouzekri, and Kuldeep Dhama. 2022. "Bayesian Modeling of COVID-19 to Classify the Infection and Death Rates in a Specific Duration: The Case of Algerian Provinces" International Journal of Environmental Research and Public Health 19, no. 15: 9586. https://doi.org/10.3390/ijerph19159586
APA StyleAouissi, H. A., Hamimes, A., Ababsa, M., Bianco, L., Napoli, C., Kebaili, F. K., Krauklis, A. E., Bouzekri, H., & Dhama, K. (2022). Bayesian Modeling of COVID-19 to Classify the Infection and Death Rates in a Specific Duration: The Case of Algerian Provinces. International Journal of Environmental Research and Public Health, 19(15), 9586. https://doi.org/10.3390/ijerph19159586