Occurrence and Transport of Isothiazolinone-Type Biocides from Commercial Products to Aquatic Environment and Environmental Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Regents
2.2. Sample Collection
2.2.1. Commercial Products
2.2.2. Environmental Sample Collection
2.3. Sample Extraction
2.3.1. Commercial Products Extraction
2.3.2. Wastewater and Surface Water Extraction
2.3.3. Sewage Sludge Extraction
2.4. Analytical Method
2.5. Data Analysis
2.5.1. Removal of Biocide in WWTPs
2.5.2. Pollution Load and Emission Method
2.5.3. Risk Assessment Method
- RQ < 0.01, no risk;
- 0.01< RQ < 0.1, low risk;
- 0.1< RQ < 1, medium risk;
- RQ > 1, high risk.
2.6. Quality Assurance and Quality Control (QA/QC)
3. Results and Discussion
3.1. Occurrence of Biocide Compounds in Commercial Products
3.2. Occurrence of Biocide Compounds in WWTPs
3.2.1. Concentration of Biocide in Wastewater Samples
3.2.2. Removal of Biocide in WWTPs
3.2.3. Mass Loading and Mass Emission
3.2.4. Concentration of Biocide in Sewage Sludge
3.3. Occurrence of Biocide Compounds in Surface Water
3.3.1. Concentration of Biocide in Riverine Environments
3.3.2. Environmental Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Directive 98/8/EC of the European Parliament and of the Council Concerning the Placing of Biocidal Products on the Market. 1998. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1998L0008:20080926:EN:PDF/ (accessed on 14 January 2022).
- European Comission. Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products; European Comission: Bruxelles, Belgium, 2012. [Google Scholar]
- Friis, U.F.; Menné, T.; Flyvholm, M.A.; Bonde, J.P.; Lepoittevin, J.P.; Le Coz, C.J.; Johansen, J.D. Isothiazolinones in commercial products at Danish workplaces. Contact Dermat. 2014, 71, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.A.; Giménez-Arnau, A.; Aberer, W.; Bindslev-Jensen, C.; Zuberbier, T. MI (2-methyl-4-isothiazolin-3-one) contained in detergents is not detectable in machine washed textiles. Clin. Transl. Allergy 2018, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Rivera, G.; Dagnac, T.; Lores, M.; Garcia-Jares, C.; Sanchez-Prado, L.; Lamas, J.P.; Llompart, M. Determination of isothiazolinone preservatives in cosmetics and household products by matrix solid-phase dispersion followed by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2012, 1270, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Kahrilas, G.A.; Blotevogel, J.; Stewart, P.S.; Borch, T. Biocides in hydraulic fracturing fluids: A critical review of their usage, mobility, degradation, and toxicity. Environ. Sci. Technol. 2015, 49, 16–32. [Google Scholar] [CrossRef]
- Garcia-Hidalgo, E. Aggregate Consumer Exposure to Isothiazolinones. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2017. [Google Scholar]
- Drury, B.; Scott, J.; Rosi-Marshall, E.J.; Kelly, J.J. Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environ. Sci. Technol. 2013, 47, 8923–8930. [Google Scholar] [CrossRef] [Green Version]
- Schultz, M.M.; Bartell, S.E.; Schoenfuss, H.L. Effects of triclosan and triclocarban, two ubiquitous environmental contaminants, on anatomy, physiology, and behavior of the Fathead Minnow (Pimephales promelas). Arch. Environ. Contam. Toxicol. 2012, 63, 114–124. [Google Scholar] [CrossRef]
- Liu, W.-R.; Zhao, J.-L.; Liu, Y.-S.; Chen, Z.-F.; Yang, Y.-Y.; Zhang, Q.-Q.; Ying, G.-G. Biocides in the Yangtze River of China: Spatiotemporal distribution, mass load and risk assessment. Environ. Pollut. 2015, 200, 53–63. [Google Scholar] [CrossRef]
- European Union. Cosmetics Directive 76/768/EEC, Council Directive on the Approximation of the Laws of the Member States Relating to Cosmetic Products; European Union: Brussels, Belgium, 27 July 1976. [Google Scholar]
- Schnuch, A.; Uter, W.; Geier, J.; Brasch, J.; Frosch, P.J. Contact allergy monitoring: IVDK’s “guard function”. Allergo J. 2005, 14, 618–629. [Google Scholar]
- Madsen, T.; Buchardt Boyd, H.; Nyl’en, D.; Rathmann Pedersen, G.I.; Simonsen, F. Environmental Project No. 615; Danish Environmental Protection Agency: Copenhagen, Denmark, 2001. [Google Scholar]
- Le Hoa, T.H.; Hung, V.T.N.; Trang, D.T.; Thu, T.N.H.; Le, D.C. Development and Validation of an HPLC Method for Simultaneous Assay of MCI and MI in Shampoos Containing Plant Extracts. Int. J. Anal. Chem. 2019, 2019, 1851796. [Google Scholar]
- 1,2-Benzisothiazolinone Preservatives: Environment tier II Assessment. Available online: https://www.industrialchemicals.gov.au/sites/default/files/1%2C2-Benzisothiazolinone%20preservatives_%20Environment%20tier%20II%20assessment.pdf (accessed on 17 January 2022).
- Methylisothiazolinone Preservatives and Industrial Biocides: Environment Tier II Assessment. Available online: https://www.industrialchemicals.gov.au/sites/default/files/Methylisothiazolinone%20preservatives%20and%20industrial%20biocides_%20Environment%20tier%20II%20assessment.pdf (accessed on 17 January 2022).
- Octylisothiazolinone Preservatives and Industrial Biocides: Environment Tier II Assessment. Available online: https://www.industrialchemicals.gov.au/sites/default/files/Octylisothiazolinone%20preservatives%20and%20industrial%20biocides_%20Environment%20tier%20II%20assessment.pdf (accessed on 17 January 2022).
- Shi, Y.; Gao, L.; Li, W.; Wang, Y.; Liu, J.; Cai, Y. Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing, China. Environ. Pollut. 2016, 209, 1–10. [Google Scholar] [CrossRef]
- European Commission. Technical Guidance Document on Risk Assessment; Part II. European Commission: Brussels, Belgium, 2003. [Google Scholar]
- Juksu, K.; Zhao, J.-L.; Liu, Y.-S.; Yao, L.; Sarin, C.; Sreesai, S.; Klomjek, P.; Jiang, Y.-X.; Ying, G.-G. Occurrence, fate and risk assessment of biocides in wastewater treatment plants and aquatic environments in Thailand. Sci. Total Environ. 2019, 690, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Hernando, M.D.; Mezcua, M.; Fernandez-Alba, A.R.; Barcelo, D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hidalgo, E.; Sottas, V.; von Goetz, N.; Hauri, U.; Bogdal, C.; Hungerbühler, K. Occurrence and concentrations of isothiazolinones in detergents and cosmetics in Switzerland. Contact Dermat. 2016, 76, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Aerts, O.; Meert, H.; Goossens, A.; Janssens, S.; Lambert, J.; Apers, S. Methylisothiazolinone in selected consumer products in Belgium: Adding fuel to the fire? Contact Dermat. 2015, 73, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Speksnijder, P.; van Ravestijn, J.; de Voogt, P. Trace analysis of isothiazolinones in water samples by large-volume direct injection liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 5184–5189. [Google Scholar] [CrossRef]
- Schwensen, J.F.; Lundov, M.D.; Bossi, R.; Banerjee, P.; Gimenez-Arnau, E.; Lepoittevin, J.-P.; Lidén, C.; Uter, W.; Yazar, K.; White, I.R.; et al. Methylisothiazolinone and benzisothiazolinone are widely used in paint: A multicentre study of paints from five European countries. Contact Dermat. 2015, 72, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Rafoth, A.; Gabriel, S.; Sacher, F.; Brauch, H.-J. Analysis of isothiazolinones in environmental waters by gas chromatography–mass spectrometry. J. Chromatogr. A 2007, 1164, 74–81. [Google Scholar] [CrossRef]
- Liu, W.-R.; Yang, Y.-Y.; Liu, Y.-S.; Zhang, L.-J.; Zhao, J.-L.; Zhang, Q.-Q.; Zhang, M.; Zhang, J.-N.; Jiang, Y.-X.; Ying, G.-G. Biocides in wastewater treatment plants: Mass balance analysis and pollution load estimation. J. Hazard Mater. 2017, 329, 310–320. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.O.; Sim, S.; Choi, J.; Park, C.; Uhm, Y.; Lim, E.; Kim, A.Y.; Yoo, S.J.; Lee, Y. Changes in handwashing and hygiene product usage patterns in Korea before and after the outbreak of COVID-19. Environ. Sci. Eur. 2021, 33, 79. [Google Scholar] [CrossRef]
- Guo, J.; Liao, M.; He, B.; Liu, J.; Hu, X.; Yan, D.; Wang, J. Impact of the COVID-19 pandemic on household disinfectant consumption behaviors and related environmental concerns: A questionnaire-based survey in China. J. Environ. Chem. Eng. 2021, 9, 106168. [Google Scholar] [CrossRef] [PubMed]
- Williams, T. The Mechanism of Action of Isothiazolone Biocides. Powerpl. Chem. 2007, 9, 14–22. [Google Scholar]
- Arning, J.; Dringen, R.; Schmidt, M.; Thiessen, A.; Stolte, S.; Matzke, M.; Bottin-Weber, U.; Caesar-Geertz, B.; Jastorff, B.; Ranke, J. Structure-activity relationships for the impact of selected isothiazol-3-one biocides on glutathione metabolism and glutathione reductase of the human liver cell line Hep G2. Toxicology 2008, 246, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Arning, J.; Matzke, M.; Stolte, S.; Nehen, F.; Bottin-Weber, U.; Böschen, A.; Abdulkarim, S.; Jastorff, B.; Ranke, J. Analyzing cytotoxic effects of selected isothiazol-3-one biocides using the toxic ratio concept and structure-activity relationship considerations. Chem. Res. Toxicol. 2009, 22, 1954–1961. [Google Scholar] [CrossRef] [PubMed]
- European Technical Guides for Risk Assessment. Available online: https://echa.europa.eu/documents/10162/987906/tgdpart2_2ed_en.pdf/138b7b71-a069-428e-9036-62f4300b752f (accessed on 23 January 2022).
- de Campos, B.G.; Figueiredo, J.; Perina, F.; de Souza Abessa, D.M.; Loureiro, S.; Martins, R. Occurrence, effects and environmental risk of antifouling biocides (EU PT21): Are marine ecosystems threatened? Crit. Rev. Environ. Sci. Technol. 2021, 1–32. [Google Scholar] [CrossRef]
- Readman, J.W. Development, Occurrence and Regulation of Antifouling Paint Biocides: Historical Review and Future Trends. In Antifouling Paint Biocides; The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2006; Volume 5, pp. 1–15. [Google Scholar]
- Kim, N.S.; Shim, W.J.; Yim, U.H.; Hong, S.H.; Ha, S.Y.; Han, G.M.; Shin, K.-H. Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. Mar. Pollut. Bull. 2014, 78, 201–208. [Google Scholar] [CrossRef]
- Mochida, K.; Hano, T.; Onduka, T.; Ichihashi, H.; Amano, H.; Ito, M.; Ito, K.; Tanaka, H.; Fujii, K. Spatial analysis of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (Sea-Nine 211) concentrations and probabilistic risk to marine organisms in Hiroshima Bay, Japan. Environ. Pollut. 2015, 204, 233–240. [Google Scholar] [CrossRef]
- Sakkas, V.A.; Konstantinou, I.K.; Lambropoulou, D.A.; Albanis, T.A. Survey for the Occurrence of Antifouling Paint Booster Biocides in the Aquatic Environment of Greece. Environ. Sci. Pollut. Res. 2002, 9, 327–332. [Google Scholar] [CrossRef]
- Steen, R.J.C.A.; Ariese, F.; van Hattum, B.; Jacobsen, J.; Jacobson, A. Monitoring and evaluation of the environmental dissipation of the marine antifoulant 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in a Danish Harbor. Chemosphere 2004, 57, 513–521. [Google Scholar] [CrossRef]
- Martínez, K.; Ferrer, I.; Hernando, M.D.; Fernández-Alba, A.R.; Marcé, R.M.; Borrull, F.; Barcelo, D. Occurrence of Antifouling Biocides in the Spanish Mediterranean Marine Environment. Environ. Technol. 2001, 22, 543–552. [Google Scholar] [CrossRef]
- Liu, W.-R.; Yang, Y.-Y.; Liu, Y.-S.; Zhao, J.-L.; Zhang, Q.-Q.; Yao, L.; Zhang, M.; Jiang, Y.-X.; Wei, X.-D.; Ying, G.-G. Biocides in the river system of a highly urbanized region: A systematic investigation involving runoff input. Sci. Total Environ. 2018, 624, 1023–1030. [Google Scholar] [CrossRef]
WWTPs | DML | DME | ||||
---|---|---|---|---|---|---|
µg/day/1000 People | ||||||
BIT | OIT | CMI | BIT | OIT | CMI | |
TG | 15.7 | - | 19.1 | 4.13 | - | 7.48 |
GL | 16.4 | - | 6.86 | 3.39 | - | 2.54 |
B | 12.9 | - | 15.1 | 3.31 | - | 8.37 |
IS | - | - | 34.1 | - | - | 12.7 |
VL | 14.5 | 2.23 | 67.0 | 5.26 | - | 15.1 |
DW VL | DW IS | DW B | DW GL | DW TG | |
---|---|---|---|---|---|
UP VL | 0.9906 (p = 0.044) | ||||
EF VL | 0.9940 (p = 0.070) | ||||
UP IS | 0.9920 (p = 0.023) | ||||
EF IS | 0.9327 (p = 0.077) | ||||
UP B | 0.9895 (p = 0.046) | ||||
EF B | 0.9447 (p = 0.213) | ||||
UP GL | 0.9739 (p = 0.048) | ||||
EF GL | 0.9204 (p = 0.155) | ||||
UP TG | −0.0697 (p = 0.956) | ||||
EF TG | 0.9995 (p = 0.021) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paun, I.; Pirvu, F.; Iancu, V.I.; Chiriac, F.L. Occurrence and Transport of Isothiazolinone-Type Biocides from Commercial Products to Aquatic Environment and Environmental Risk Assessment. Int. J. Environ. Res. Public Health 2022, 19, 7777. https://doi.org/10.3390/ijerph19137777
Paun I, Pirvu F, Iancu VI, Chiriac FL. Occurrence and Transport of Isothiazolinone-Type Biocides from Commercial Products to Aquatic Environment and Environmental Risk Assessment. International Journal of Environmental Research and Public Health. 2022; 19(13):7777. https://doi.org/10.3390/ijerph19137777
Chicago/Turabian StylePaun, Iuliana, Florinela Pirvu, Vasile Ion Iancu, and Florentina Laura Chiriac. 2022. "Occurrence and Transport of Isothiazolinone-Type Biocides from Commercial Products to Aquatic Environment and Environmental Risk Assessment" International Journal of Environmental Research and Public Health 19, no. 13: 7777. https://doi.org/10.3390/ijerph19137777
APA StylePaun, I., Pirvu, F., Iancu, V. I., & Chiriac, F. L. (2022). Occurrence and Transport of Isothiazolinone-Type Biocides from Commercial Products to Aquatic Environment and Environmental Risk Assessment. International Journal of Environmental Research and Public Health, 19(13), 7777. https://doi.org/10.3390/ijerph19137777