Willing or Hesitant? A Socioeconomic Study on the Potential Acceptance of COVID-19 Vaccine in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Variable Definitions
2.3. Descriptive Statistics
2.4. Methodology
3. Empirical Results
3.1. Full Sample Analysis
3.2. Subsample Analysis by Age
3.3. Subsample Analysis by Gender
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). WHO Coronavirus (COVID-19) Dashboard. WHO Coronavirus Disease (COVID-19). Available online: https://covid19.who.int/table (accessed on 18 March 2021).
- Hamadneh, N.N.; Tahir, M.; Khan, W.A. Using artificial neural network with prey predator algorithm for prediction of the COVID-19: The case of Brazil and Mexico. Mathematics 2021, 9, 180. [Google Scholar] [CrossRef]
- Tartaglione, E.; Barbano, C.A.; Berzovini, C.; Calandri, M.; Grangetto, M. Unveiling COVID-19 from CHEST X-ray with deep learning: A hurdles race with small data. Int. J. Environ. Res. Public Health 2020, 17, 6933. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, B.N.; Hardie, R.C.; Krishnaraja, V.; Karam, C.; Davuluru, V.S.P. Transfer-to-transfer learning approach for computer aided detection of COVID-19 in chest radiographs. AI 2020, 1, 32. [Google Scholar] [CrossRef]
- Alam, N.-A.; Ahsan, M.; Based, M.A.; Haider, J.; Kowalski, M. COVID-19 detection from chest X-ray images using feature fusion and deep learning. Sensors 2021, 21, 1480. [Google Scholar] [CrossRef]
- Evans, M.L.; Lindauer, M.; Farrell, M.E. A pandemic within a pandemic—Intimate partner violence during Covid-19. N. Engl. J. Med. 2020, 383, 2302–2304. [Google Scholar] [CrossRef]
- Perri, M.; Dosani, N.; Hwang, S.W. COVID-19 and people experiencing homelessness: Challenges and mitigation strategies. Can. Med. Assoc. J. 2020, 192, E716–E719. [Google Scholar] [CrossRef]
- Popkin, B.M.; Du, S.; Green, W.D.; Beck, M.A.; Algaith, T.; Herbst, C.H.; Alsukait, R.F.; Alluhidan, M.; Alazemi, N.; Shekar, M. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes. Rev. 2020, 21, 13128. [Google Scholar] [CrossRef]
- Cohen, S. The Fastest Vaccine in History. UCLA Health. Available online: https://connect.uclahealth.org/2020/12/10/the-fastest-vaccine-in-history/ (accessed on 27 March 2021).
- Gallagher, J. Oxford Vaccine: How Did They Make It So Quickly? BBC News. Available online: https://www.bbc.co.uk/news/health-55041371 (accessed on 28 March 2021).
- Guidry, J.P.; Laestadius, L.I.; Vraga, E.K.; Miller, C.A.; Perrin, P.B.; Burton, C.W.; Ryan, M.; Fuemmeler, B.F.; Carlyle, K.E. Willingness to get the COVID-19 vaccine with and without emergency use authorization. Am. J. Infect. Control 2021, 49, 137–142. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Ratzan, S.C.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 2021, 27, 225–228. [Google Scholar] [CrossRef]
- Paul, E.; Steptoe, A.; Fancourt, D. Attitudes towards vaccines and intention to vaccinate against COVID-19: Implications for public health communications. Lancet Reg. Health Eur. 2021, 1, 100012. [Google Scholar] [CrossRef]
- Funk, C.; Tyson, A. Intent to Get a COVID-19 Vaccine Rises to 60% as Confidence in Research and Development Process Increases. Pew Research Center Science & Society. Available online: https://www.pewresearch.org/science/2020/12/03/intent-to-get-a-covid-19-vaccine-rises-to-60-as-confidence-in-research-and-development-process-increases/ (accessed on 28 March 2021).
- Funk, C.; Tyson, A. Growing Share of Americans Say They Plan to Get a COVID-19 Vaccine-or Already Have. Pew Research Center Science & Society. Available online: https://www.pewresearch.org/science/2021/03/05/growing-share-of-americans-say-they-plan-to-get-a-covid-19-vaccine-or-already-have/ (accessed on 2 April 2021).
- Sallam, M. COVID-19 vaccine hesitancy worldwide: A concise systematic review of vaccine acceptance rates. Vaccines 2021, 9, 160. [Google Scholar] [CrossRef]
- Al-Qerem, W.A.; Jarab, A.S. COVID-19 vaccination acceptance and its associated factors among a middle eastern population. Front. Public Health 2021, 9, 632914. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, T.; Moghtaderi, A.; Lueck, J.A.; Hotez, P.; Strych, U.; Dor, A.; Fowler, E.F.; Motta, M. Correlates and disparities of intention to vaccinate against COVID-19. Soc. Sci. Med. 2021, 272, 113638. [Google Scholar] [CrossRef] [PubMed]
- Dror, A.A.; Eisenbach, N.; Taiber, S.; Morozov, N.G.; Mizrachi, M.; Zigron, A.; Srouji, S.; Sela, E. Vaccine hesitancy: The next challenge in the fight against COVID-19. Eur. J. Epidemiol. 2020, 35, 775–779. [Google Scholar] [CrossRef]
- Fisher, K.A.; Bloomstone, S.J.; Walder, J.; Crawford, S.; Fouayzi, H.; Mazor, K.M. Attitudes toward a potential SARS-CoV-2 vaccine: A survey of US adults. Ann. Intern. Med. 2020, 173, 964–973. [Google Scholar] [CrossRef]
- Freeman, D.; Loe, B.S.; Chadwick, A.; Vaccari, C.; Waite, F.; Rosebrock, L.; Jenner, L.; Petit, A.; Lewandowsky, S.; Vanderslott, S.; et al. COVID-19 vaccine hesitancy in the UK: The Oxford coronavirus explanations, attitudes, and narratives survey (Oceans) II. Psychol. Med. 2020, 1–15. [Google Scholar] [CrossRef]
- Motta, M. Can a COVID-19 vaccine live up to Americans’ expectations? A conjoint analysis of how vaccine characteristics influence vaccination intentions. Soc. Sci. Med. 2021, 272, 113642. [Google Scholar] [CrossRef]
- Yoda, T.; Katsuyama, H. Willingness to receive COVID-19 vaccination in Japan. Vaccines 2021, 9, 48. [Google Scholar] [CrossRef]
- Wang, K.; Wong, E.L.Y.; Ho, K.-F.; Cheung, A.W.L.; Yau, P.S.Y.; Dong, D.; Wong, S.Y.S.; Yeoh, E.-K. Change of willingness to accept COVID-19 vaccine and reasons of vaccine hesitancy of working people at different waves of local epidemic in Hong Kong, China: Repeated cross-sectional surveys. Vaccines 2021, 9, 62. [Google Scholar] [CrossRef]
- Sallam, M.; Dababseh, D.; Eid, H.; Al-Mahzoum, K.; Al-Haidar, A.; Taim, D.; Yaseen, A.; Ababneh, N.A.; Bakri, F.G.; Mahafzah, A. High rates of COVID-19 vaccine hesitancy and its association with conspiracy beliefs: A study in Jordan and Kuwait among other arab countries. Vaccines 2021, 9, 42. [Google Scholar] [CrossRef]
- BBC News. Covid in Europe: Vaccine Suspension Hits Rollout as Cases Rise. Available online: https://www.bbc.com/news/world-europe-56415249 (accessed on 29 March 2021).
- DW. AstraZeneca Vaccine Controversies: What You Need to Know as Germany, Italy and France Suspend Use; Deutsche Welle: Bonn, Germany; Available online: https://www.dw.com/en/astrazeneca-vaccine-controversies-what-you-need-to-know-as-germany-italy-and-france-suspend-use/a-56875854 (accessed on 28 March 2021).
- France 24. Covid-19: Why Countries Are Suspending AstraZeneca Vaccinations. Available online: https://www.france24.com/en/europe/20210315-why-countries-are-suspending-the-astrazeneca-covid-19-vaccine-now (accessed on 27 March 2021).
- Lybrand, H. Fact-Checking Detroit Mayor’s Misleading Statements on Johnson & Johnson Vaccine-CNNPolitics; CNN: Atlanta, GA, USA. Available online: https://edition.cnn.com/2021/03/05/politics/detroit-mayor-johnson--johnson-vaccine-fact-check/index.html (accessed on 26 March 2021).
- Triggle, N.; Schraer, R. Covid-19 Vaccine: Allergy Warning Over New Jab. BBC News. Available online: https://www.bbc.com/news/health-55244122 (accessed on 27 March 2021).
- Wise, J. Covid-19: European countries suspend use of Oxford-AstraZeneca vaccine after reports of blood clots. BMJ 2021, 372, n699. [Google Scholar] [CrossRef]
- BBC News. Covid-19 Vaccine: First Person Receives Pfizer Jab in UK. Available online: https://www.bbc.co.uk/news/uk-55227325 (accessed on 2 April 2021).
- Machida, M.; Nakamura, I.; Kojima, T.; Saito, R.; Nakaya, T.; Hanibuchi, T.; Takamiya, T.; Odagiri, Y.; Fukushima, N.; Kikuchi, H.; et al. Acceptance of a COVID-19 vaccine in Japan during the COVID-19 pandemic. Vaccines 2021, 9, 210. [Google Scholar] [CrossRef]
- NHK. Is the Coronavirus Vaccine Safe? NHK WORLD. Available online: https://www3.nhk.or.jp/nhkworld/en/news/backstories/1483/ (accessed on 3 April 2021).
- Reuters. U.K. Issues Anaphylaxis Warning on Pfizer Vaccine after Adverse Reactions. The Japan Times. Available online: https://www.japantimes.co.jp/news/2020/12/10/world/science-health-world/coronavirus-vaccine-allergy-warning/ (accessed on 28 March 2021).
- NHK. Japan Reports 12 More Anaphylaxis Cases. NHK WORLD. Available online: https://www3.nhk.or.jp/nhkworld/en/news/20210312_16/ (accessed on 2 April 2021).
- Kyodo. Case of Hives Reported in One Patient Following COVID-19 Vaccination in Japan. The Japan Times. Available online: https://www.japantimes.co.jp/news/2021/02/20/national/case-hives-reported-one-patient-following-covid-19-vaccination-japan/ (accessed on 29 March 2021).
- Jiji. Japan Reports First Anaphylactic Reaction from Coronavirus Vaccine. The Japan Times. Available online: https://www.japantimes.co.jp/news/2021/03/06/national/coronavirus-vaccine-allergic-reaction/ (accessed on 25 March 2021).
- De Figueiredo, A.; Simas, C.; Karafillakis, E.; Paterson, P.; Larson, H.J. Mapping global trends in vaccine confidence and investigating barriers to vaccine uptake: A large-scale retrospective temporal modelling study. Lancet 2020, 396, 898–908. [Google Scholar] [CrossRef]
- Dodd, R.H.; Cvejic, E.; Bonner, C.; Pickles, K.; McCaffery, K.J.; Ayre, J.; Batcup, C.; Copp, T.; Cornell, S.; Dakin, T.; et al. Willingness to vaccinate against COVID-19 in Australia. Lancet Infect. Dis. 2021, 21, 318–319. [Google Scholar] [CrossRef]
- Kelly, B.; Bann, C.; Squiers, L.; Lynch, M.; Southwell, B.; McCormack, L. Predicting Willingness to Vaccinate for COVID-19 in the US. JHC Impact. Available online: https://jhcimpact.com/posts/f/predicting-willingness-to-vaccinate-for-covid-19-in-the-us (accessed on 2 April 2021).
- Kwok, K.O.; Li, K.-K.; Wei, W.I.; Tang, A.; Wong, S.Y.S.; Lee, S.S. Influenza vaccine uptake, COVID-19 vaccination intention and vaccine hesitancy among nurses: A survey. Int. J. Nurs. Stud. 2021, 114, 103854. [Google Scholar] [CrossRef] [PubMed]
- Head, K.J.; Kasting, M.L.; Sturm, L.A.; Hartsock, J.A.; Zimet, G.D. A national survey assessing SARS-CoV-2 vaccination intentions: Implications for future public health communication efforts. Sci. Commun. 2020, 42, 698–723. [Google Scholar] [CrossRef]
- Sun, S.; Lin, D.; Operario, D. Interest in COVID-19 vaccine trials participation among young adults in China: Willingness, reasons for hesitancy, and demographic and psychosocial determinants. Prev. Med. Rep. 2021, 22, 101350. [Google Scholar] [CrossRef]
- Erman, M. Pfizer Ends COVID-19 Trial with 95% Efficacy, to Seek Emergency-Use Authorization. Reuters. Available online: https://www.reuters.com/article/health-coronavirus-vaccines-pfizer/pfizer-ends-covid-19-trial-with-95-efficacy-to-seek-emergency-use-authorization-idUSL4N2HZ3VS (accessed on 30 March 2021).
- NHK. Largest Batch of Vaccines Arrives in Japan. NHK WORLD. Available online: https://www3.nhk.or.jp/nhkworld/en/news/20210405_20/ (accessed on 8 April 2021).
- Kadoya, Y.; Khan, M.S.R. Can financial literacy reduce anxiety about life in old age? J. Risk Res. 2017, 21, 1533–1550. [Google Scholar] [CrossRef]
- Kadoya, Y.; Khan, M.S.R.; Hamada, T.; Dominguez, A. Financial literacy and anxiety about life in old age: Evidence from the USA. Rev. Econ. Househ. 2018, 16, 859–878. [Google Scholar] [CrossRef]
- Khan, M.; Putthinun, P.; Watanapongvanich, S.; Yuktadatta, P.; Uddin, A.; Kadoya, Y. Do financial literacy and financial education influence smoking behavior in the United States? Int. J. Environ. Res. Public Health 2021, 18, 2579. [Google Scholar] [CrossRef]
- Watanapongvanich, S.; Khan, M.S.R.; Putthinun, P.; Ono, S.; Kadoya, Y. Financial literacy, financial education, and smoking behavior: Evidence from Japan. Front. Public Health 2021, 8. [Google Scholar] [CrossRef]
- Ono, S.; Yuktadatta, P.; Taniguchi, T.; Iitsuka, T.; Noguchi, M.; Tanaka, S.; Ito, H.; Nakamura, K.; Yasuhara, N.; Miyawaki, C.; et al. Financial Literacy and Exercise Behavior: Evidence from Japan. Sustainability 2021, 13, 4189. [Google Scholar] [CrossRef]
- Khubchandani, J.; Sharma, S.; Price, J.H.; Wiblishauser, M.J.; Sharma, M.; Webb, F.J. COVID-19 vaccination hesitancy in the United States: A rapid national assessment. J. Community Health 2021, 46, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Schwarzinger, M.; Watson, V.; Arwidson, P.; Alla, F.; Luchini, S. COVID-19 vaccine hesitancy in a representative working-age population in France: A survey experiment based on vaccine characteristics. Lancet Public Health 2021, 6, e210–e221. [Google Scholar] [CrossRef]
- BBC News. ‘Normal’ to Feel a Bit Unwell after Covid Vaccine. Available online: https://www.bbc.com/news/health-56284154 (accessed on 6 April 2021).
- Centers for Disease Control and Prevention (CDC). Information about the Pfizer-BioNTech COVID-19 Vaccine. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/Pfizer-BioNTech.html (accessed on 8 April 2021).
- Davis, N. Covid Vaccine Side-Effects: What Are They, Who Gets Them and Why? The Guardian. Available online: https://www.theguardian.com/world/2021/mar/18/covid-vaccine-side-effects-what-are-they-who-gets-them-and-why (accessed on 4 April 2021).
- Hooper, M.W.; Nápoles, A.M.; Pérez-Stable, E.J. No populations left behind: Vaccine hesitancy and equitable diffusion of effective COVID-19 vaccines. J. Gen. Intern. Med. 2021, 1–4. [Google Scholar] [CrossRef]
- Reiss, D.R.; Caplan, A.L. Workers with COVID-19 Vaccine Side Effects Deserve Time off to Recover. Health Affairs. Available online: https://www.healthaffairs.org/do/10.1377/hblog20210204.959004/full/ (accessed on 1 April 2021).
- ZOE COVID Symptom Study. Vaccine After Effects More Common in Those Who Already Had COVID. COVID Symptom Study. Available online: https://covid.joinzoe.com/post/vaccine-after-effects-more-common-in-those-who-already-had-covid (accessed on 28 March 2021).
- Ruiz, J.B.; Bell, R.A. Predictors of intention to vaccinate against COVID-19: Results of a nationwide survey. Vaccine 2021, 39, 1080–1086. [Google Scholar] [CrossRef]
- James, B.D.; Boyle, P.A.; Bennett, J.S.; Bennett, D.A. The impact of health and financial literacy on decision making in community-based older adults. Gerontology 2012, 58, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Chou, W.-Y.S.; Budenz, A. Considering emotion in COVID-19 vaccine communication: Addressing vaccine hesitancy and fostering vaccine confidence. Heal. Commun. 2020, 35, 1718–1722. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Internal Affairs and Communications (MIC). Communications Usage Trend Survey in 2019 Compiled. 2020. Available online: http://www.soumu.go.jp/johotsusintokei/statistics/data/200529_1.pdf (accessed on 8 April 2021). (In Japanese)
- Statistics Bureau. Summary of the Latest Month on Family Income and Expenditure Survey. Statistics Bureau of Japan. Available online: https://www.stat.go.jp/english/data/kakei/156.html (accessed on 8 April 2021).
- Statistics Bureau. Japan Statistical Yearbook 2021. Available online: https://www.stat.go.jp/english/data/nenkan/70nenkan/zenbun/en70/book/book.pdf (accessed on 7 April 2021).
Variable | Definition |
---|---|
Dependent Variables | |
Willingness to take vaccine | Ordinal variable: 1 = It does not hold true at all for you; 2 = It is not so true for you; 3 = It is either true or not true; 4 = It is rather true for you; 5 = It is particularly true for you for the statement “Once the Covid-19 vaccination becomes available with free of charge, I will take it soon.” |
Vaccine hesitancy | Binary variable: 1 = Respondent selected 1, 2, or 3 for the statement “Once the Covid-19 vaccination becomes available with free of charge, I will take it soon,” and 0 = Otherwise. |
Explanatory Variables | |
Male * | Binary variable: 1 = Male and 0 = Female |
Age * | Continuous variable: Respondent’s age |
Age squared * | Continuous variable: Respondent’s age squared |
University degree * | Binary variable: 1 = Obtained university degree and 0 = Otherwise |
Living in central area * | Binary variable: 1 = Living in the Kanto (around Tokyo metropolis) and Kinki (around Osaka metropolis) areas and 0 = Otherwise |
Marriage | Binary variable: 1 = Currently married and 0 = Otherwise |
Children * | Binary variable: 1 = Respondent has child/children and 0 = Otherwise |
Living alone | Binary variable: 1 = Living alone and 0 = Otherwise |
Employed | Binary variable: 1 = Respondent is employed and 0 = otherwise |
Household income | Continuous variable: Annual earned income before taxes and with bonuses of entire household in 2020 (unit: JPY) |
Log of household income | Log of household income |
Household assets | Continuous variable: Balance of financial assets (savings, stocks, bonds, insurance, etc.) of entire household (unit: JPY) |
Log of household assets | Log of household assets |
Financial literacy * | Continuous variable: Average score of correct answers from the three financial literacy questions |
Subjective health status | Ordinal variable: 1 = It does not hold true at all for you; 2 = It is not so true for you; 3 = Neither true nor not true; 4 = It is rather true for you; 5 = It is particularly true for you for the statement “I am now healthy and was generally healthy in the last 1 year.” |
Future anxiety | Ordinal variable: 1 = It does not hold true at all for you; 2 = It is not so true for you; 3 = Neither true nor not true; 4 = It is rather true for you; 5 = It is particularly true for you for the statement “I have anxieties about my life after I am 65 years old (for those who are already aged 65 or above, ‘life in the future’).” |
Level of risk preference | Continuous variable: Percentage score from the question “Usually when you go out, how high does the probability of rain have to be before you take an umbrella?” |
Myopic view of the future | Ordinal variable: 1 = Completely disagree; 2 = Disagree; 3 = Neither agree nor disagree; 4 = Agree; 5 = Completely agree for the statement “Since the future is uncertain, it is a waste to think about it.” |
Variable | Mean | Standard Deviation (SD) | Min | Max |
---|---|---|---|---|
Dependent Variables | ||||
Willingness to take vaccine | 3.41 | 1.24 | 1 | 5 |
Vaccine hesitancy | 0.53 | 0.50 | 0 | 1 |
Explanatory Variables | ||||
Male | 0.65 | 0.48 | 0 | 1 |
Age | 50.32 | 13.83 | 21 | 86 |
Age squared | 2723.05 | 1411.23 | 441 | 7396 |
University degree | 0.62 | 0.49 | 0 | 1 |
Living in central area | 0.61 | 0.49 | 0 | 1 |
Marriage | 0.66 | 0.47 | 0 | 1 |
Children | 0.57 | 0.49 | 0 | 1 |
Living alone | 0.20 | 0.40 | 0 | 1 |
Employed | 0.64 | 0.48 | 0 | 1 |
Household income | 6,338,702 | 4,095,128 | 500,000 | 21,000,000 |
Log of household income | 15.43 | 0.76 | 13.12 | 16.86 |
Household assets | 19,800,000 | 29,100,000 | 1,250,000 | 125,000,000 |
Log of household assets | 15.85 | 1.43 | 14.04 | 18.64 |
Financial literacy | 0.65 | 0.36 | 0 | 1 |
Subjective health status | 3.24 | 1.09 | 1 | 5 |
Future anxiety | 3.71 | 1.14 | 1 | 5 |
Level of risk preference | 0.46 | 0.22 | 0 | 1 |
Myopic view of the future | 2.69 | 1.02 | 1 | 5 |
Observations | 4253 |
Willingness to Take Vaccine | Age | Total | ||||
21–30 | 31–40 | 41–50 | 51–60 | ≥61 | ||
1 | 41 | 66 | 121 | 79 | 65 | 372 |
9.83% | 9.24% | 11.37% | 8.14% | 5.97% | 8.75% | |
2 | 77 | 130 | 150 | 123 | 85 | 565 |
18.47% | 18.21% | 14.10% | 12.68% | 7.81% | 13.28% | |
3 | 136 | 249 | 386 | 323 | 239 | 1333 |
32.61% | 34.87% | 36.28% | 33.30% | 21.97% | 31.34% | |
4 | 87 | 141 | 209 | 189 | 289 | 915 |
20.86% | 19.75% | 19.64% | 19.48% | 26.56% | 21.51% | |
5 | 76 | 128 | 198 | 256 | 410 | 1068 |
18.23% | 17.93% | 18.61% | 26.39% | 37.68% | 25.11% | |
Total | 417 | 714 | 1064 | 970 | 1088 | 4253 |
100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% |
Vaccine Hesitancy | Age | Total | ||||
---|---|---|---|---|---|---|
21–30 | 31–40 | 41–50 | 51–60 | ≥61 | ||
0 | 163 | 269 | 407 | 445 | 699 | 1983 |
39.09% | 37.68% | 38.25% | 45.88% | 64.25% | 46.63% | |
1 | 254 | 445 | 657 | 525 | 389 | 2270 |
60.91% | 62.32% | 61.75% | 54.12% | 35.75% | 53.37% | |
Total | 417 | 714 | 1064 | 970 | 1088 | 4253 |
100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% |
Variable | Dependent Variable: Willingness to Take Vaccine | |||
---|---|---|---|---|
Model 1.1 | Model 1.2 | Model 1.3 | Model 1.4 | |
Male | 0.133 *** | 0.141 *** | 0.165 *** | 0.166 *** |
(0.0402) | (0.0409) | (0.0415) | (0.0414) | |
Age | −0.0450 *** | −0.0486 *** | −0.0474 *** | −0.0473 *** |
(0.00839) | (0.00844) | (0.00845) | (0.00847) | |
Age squared | 0.000566 *** | 0.000589 *** | 0.000579 *** | 0.000577 *** |
(8.41 × 10−5) | (8.46 × 10−5) | (8.49 × 10−5) | (8.49 × 10−5) | |
University degree | 0.0828 ** | 0.0311 | 0.0288 | 0.0229 |
(0.0355) | (0.0372) | (0.0373) | (0.0375) | |
Living in central area | 0.0325 | 0.0156 | 0.0214 | 0.0175 |
(0.0339) | (0.0341) | (0.0341) | (0.0342) | |
Marriage | 0.0680 | 0.0444 | 0.0434 | 0.0406 |
(0.0532) | (0.0545) | (0.0544) | (0.0546) | |
Children | 0.184 *** | 0.180 *** | 0.182 *** | 0.182 *** |
(0.0436) | (0.0439) | (0.0438) | (0.0438) | |
Living alone | 0.0126 | 0.0437 | 0.0418 | 0.0404 |
(0.0568) | (0.0574) | (0.0574) | (0.0575) | |
Employed | 0.0804 ** | 0.0362 | 0.0233 | 0.0231 |
(0.0400) | (0.0425) | (0.0426) | (0.0426) | |
Log of household income | 0.0677 ** | 0.0609 ** | 0.0606 ** | |
(0.0289) | (0.0292) | (0.0292) | ||
Log of household assets | 0.0234 | 0.0337 ** | 0.0309 ** | |
(0.0144) | (0.0147) | (0.0148) | ||
Financial literacy | 0.105 ** | 0.101 ** | 0.0919 * | |
(0.0498) | (0.0498) | (0.0499) | ||
Subjective health status | 0.104 *** | 0.105 *** | ||
(0.0171) | (0.0171) | |||
Future anxiety | 0.0666 *** | 0.0640 *** | ||
(0.0170) | (0.0171) | |||
Level of risk preference | −0.0817 | |||
(0.0763) | ||||
Myopic view of the future | −0.0296 | |||
(0.0183) | ||||
/cut1 | −1.765 *** | −0.478 | 0.191 | 0.00789 |
(0.204) | (0.429) | (0.448) | (0.459) | |
/cut2 | −1.165 *** | 0.123 | 0.795 * | 0.611 |
(0.203) | (0.429) | (0.447) | (0.458) | |
/cut3 | −0.276 | 1.014 ** | 1.693 *** | 1.510 *** |
(0.202) | (0.429) | (0.447) | (0.458) | |
/cut4 | 0.337 * | 1.629 *** | 2.315 *** | 2.132 *** |
(0.202) | (0.429) | (0.448) | (0.458) | |
Observations | 4253 | 4253 | 4253 | 4253 |
Log pseudolikelihood | −6332 | −6321 | −6291 | −6289 |
Wald chi2 | 270.7 | 288.7 | 342 | 344.5 |
p-Value | 0 | 0 | 0 | 0 |
Pseudo R2 | 0.0221 | 0.0238 | 0.0284 | 0.0287 |
Variable | Dependent Variable: Vaccine Hesitancy | |||
---|---|---|---|---|
Model 2.1 | Model 2.2 | Model 2.3 | Model 2.4 | |
Male | −0.109 ** | −0.118 ** | −0.144 *** | −0.144 *** |
(0.0487) | (0.0497) | (0.0502) | (0.0503) | |
Age | 0.0629 *** | 0.0681 *** | 0.0660 *** | 0.0656 *** |
(0.0103) | (0.0104) | (0.0104) | (0.0104) | |
Age squared | −0.000775 *** | −0.000806 *** | −0.000787 *** | −0.000783 *** |
(0.000102) | (0.000103) | (0.000104) | (0.000104) | |
University degree | −0.108 ** | −0.0386 | −0.0346 | −0.0284 |
(0.0423) | (0.0448) | (0.0451) | (0.0453) | |
Living in central area | −0.0167 | 0.00561 | −0.00194 | 0.00122 |
(0.0409) | (0.0412) | (0.0414) | (0.0416) | |
Marriage | −0.0815 | −0.0603 | −0.0597 | −0.0549 |
(0.0630) | (0.0646) | (0.0648) | (0.0650) | |
Children | −0.166 *** | −0.166 *** | −0.165 *** | −0.165 *** |
(0.0518) | (0.0522) | (0.0523) | (0.0524) | |
Living alone | −0.00911 | −0.0457 | −0.0425 | −0.0407 |
(0.0667) | (0.0679) | (0.0685) | (0.0685) | |
Employed | −0.103 ** | −0.0567 | −0.0433 | −0.0427 |
(0.0483) | (0.0517) | (0.0520) | (0.0521) | |
Log of household income | −0.0647 * | −0.0554 | −0.0548 | |
(0.0345) | (0.0349) | (0.0349) | ||
Log of household assets | −0.0409 ** | −0.0510 *** | −0.0478 *** | |
(0.0168) | (0.0174) | (0.0175) | ||
Financial literacy | −0.147 ** | −0.145 ** | −0.132 ** | |
(0.0610) | (0.0613) | (0.0615) | ||
Subjective health status | −0.127 *** | −0.129 *** | ||
(0.0187) | (0.0187) | |||
Future anxiety | −0.0661 *** | −0.0626 *** | ||
(0.0188) | (0.0189) | |||
Level of risk preference | 0.0635 | |||
(0.0900) | ||||
Myopic view of the future | 0.0385 * | |||
(0.0200) | ||||
Constant | −0.604 ** | 0.875 * | 1.611 *** | 1.404 ** |
(0.247) | (0.517) | (0.544) | (0.554) | |
Observations | 4253 | 4253 | 4253 | 4253 |
Log pseudolikelihood | −2803 | −2789 | −2761 | −2759 |
Wald chi2 | 255.1 | 278.7 | 323.9 | 326.6 |
p-Value | 0 | 0 | 0 | 0 |
Pseudo R2 | 0.0462 | 0.0506 | 0.0602 | 0.0609 |
Variable | Dependent Variable: Willingness to Take Vaccine | |||||||
---|---|---|---|---|---|---|---|---|
Sub-Sample: Age <65 | Sub-Sample: Age ≥65 | |||||||
Model 3.1 | Model 3.2 | Model 3.3 | Model 3.4 | Model 4.1 | Model 4.2 | Model 4.3 | Model 4.4 | |
Male | 0.130 *** | 0.137 *** | 0.164 *** | 0.164 *** | 0.156 | 0.202 * | 0.227 * | 0.231 * |
(0.0435) | (0.0442) | (0.0449) | (0.0449) | (0.120) | (0.123) | (0.123) | (0.123) | |
Age | −0.0535 *** | −0.0575 *** | −0.0581 *** | −0.0571 *** | 0.0292 | −0.0346 | −0.0386 | −0.0280 |
(0.0135) | (0.0136) | (0.0136) | (0.0136) | (0.267) | (0.264) | (0.268) | (0.269) | |
Age squared | 0.000666 *** | 0.000700 *** | 0.000711 *** | 0.000699 *** | −7.14 × 10−5 | 0.000348 | 0.000369 | 0.000296 |
(0.000150) | (0.000152) | (0.000152) | (0.000152) | (0.00185) | (0.00183) | (0.00186) | (0.00187) | |
University degree | 0.0737 * | 0.0242 | 0.0213 | 0.0144 | 0.0985 | 0.0389 | 0.0317 | 0.0337 |
(0.0390) | (0.0410) | (0.0412) | (0.0414) | (0.0915) | (0.0944) | (0.0942) | (0.0942) | |
Living in central area | 0.0152 | −0.000528 | 0.00702 | 0.00335 | 0.130 | 0.0990 | 0.0979 | 0.0935 |
(0.0372) | (0.0374) | (0.0374) | (0.0375) | (0.0832) | (0.0831) | (0.0834) | (0.0841) | |
Marriage | 0.0802 | 0.0478 | 0.0432 | 0.0394 | 0.104 | 0.0735 | 0.0865 | 0.0885 |
(0.0562) | (0.0579) | (0.0578) | (0.0581) | (0.180) | (0.180) | (0.180) | (0.179) | |
Children | 0.145 *** | 0.138 *** | 0.144 *** | 0.144 *** | 0.456 *** | 0.452 *** | 0.450 *** | 0.449 *** |
(0.0464) | (0.0467) | (0.0466) | (0.0466) | (0.132) | (0.132) | (0.133) | (0.133) | |
Living alone | 0.00653 | 0.0374 | 0.0356 | 0.0347 | 0.117 | 0.148 | 0.143 | 0.145 |
(0.0601) | (0.0608) | (0.0609) | (0.0610) | (0.198) | (0.200) | (0.199) | (0.199) | |
Employed | 0.0869 * | 0.0350 | 0.0174 | 0.0173 | 0.0645 | 0.0407 | 0.0411 | 0.0419 |
(0.0453) | (0.0481) | (0.0482) | (0.0482) | (0.0919) | (0.0990) | (0.0994) | (0.0993) | |
Log of household income | 0.0853 *** | 0.0785 ** | 0.0781 ** | 0.0353 | 0.0225 | 0.0251 | ||
(0.0314) | (0.0317) | (0.0318) | (0.0783) | (0.0783) | (0.0789) | |||
Log of household assets | 0.00953 | 0.0194 | 0.0166 | 0.0660 * | 0.0638 * | 0.0644 * | ||
(0.0159) | (0.0163) | (0.0164) | (0.0337) | (0.0357) | (0.0362) | |||
Financial literacy | 0.1000 * | 0.101 * | 0.0908 * | 0.177 | 0.169 | 0.171 | ||
(0.0538) | (0.0539) | (0.0539) | (0.136) | (0.136) | (0.136) | |||
Subjective health status | 0.113 *** | 0.115 *** | 0.0621 | 0.0623 | ||||
(0.0191) | (0.0191) | (0.0395) | (0.0395) | |||||
Future anxiety | 0.0819 *** | 0.0782 *** | −0.0161 | −0.0156 | ||||
(0.0185) | (0.0187) | (0.0435) | (0.0434) | |||||
Level of risk preference | −0.0794 | −0.0703 | ||||||
(0.0826) | (0.200) | |||||||
Myopic view of the future | −0.0356 * | 0.0163 | ||||||
(0.0203) | (0.0425) | |||||||
/cut1 | −1.989 *** | −0.661 | 0.0589 | −0.129 | 0.865 | 0.157 | −0.0795 | 0.363 |
(0.295) | (0.503) | (0.519) | (0.529) | (9.588) | (9.559) | (9.741) | (9.794) | |
/cut2 | −1.370 *** | −0.0407 | 0.682 | 0.494 | 1.336 | 0.630 | 0.393 | 0.835 |
(0.294) | (0.503) | (0.519) | (0.529) | (9.583) | (9.554) | (9.735) | (9.789) | |
/cut3 | −0.442 | 0.890 * | 1.622 *** | 1.435 *** | 2.000 | 1.297 | 1.061 | 1.504 |
(0.293) | (0.503) | (0.519) | (0.529) | (9.583) | (9.554) | (9.735) | (9.789) | |
/cut4 | 0.148 | 1.482 *** | 2.222 *** | 2.035 *** | 2.721 | 2.025 | 1.792 | 2.235 |
(0.293) | (0.503) | (0.520) | (0.529) | (9.583) | (9.554) | (9.736) | (9.789) | |
Observations | 3485 | 3485 | 3485 | 3485 | 768 | 768 | 768 | 768 |
Log pseudolikelihood | −5258 | −5249 | −5217 | −5215 | −1052 | −1048 | −1046 | −1046 |
Wald chi2 | 113.8 | 129.3 | 182.2 | 185.1 | 28.11 | 38.54 | 41.27 | 42.26 |
p-Value | 0 | 0 | 0 | 0 | 0.000914 | 0.000125 | 0.000161 | 0.000360 |
Pseudo R2 | 0.0104 | 0.0120 | 0.0180 | 0.0184 | 0.0141 | 0.0187 | 0.0203 | 0.0204 |
Variable | Dependent Variable: Vaccine Hesitancy | |||||||
---|---|---|---|---|---|---|---|---|
Sub-Sample: Age <65 | Sub-Sample: Age ≥65 | |||||||
Model 5.1 | Model 5.2 | Model 5.3 | Model 5.4 | Model 6.1 | Model 6.2 | Model 6.3 | Model 6.4 | |
Male | −0.0973 * | −0.104 * | −0.133 ** | −0.132 ** | −0.198 | −0.266 * | −0.289 ** | −0.298 ** |
(0.0530) | (0.0540) | (0.0548) | (0.0549) | (0.138) | (0.142) | (0.142) | (0.143) | |
Age | 0.0655 *** | 0.0710 *** | 0.0710 *** | 0.0693 *** | 0.0862 | 0.185 | 0.180 | 0.157 |
(0.0163) | (0.0164) | (0.0166) | (0.0166) | (0.301) | (0.298) | (0.304) | (0.305) | |
Age squared | −0.000803 *** | −0.000843 *** | −0.000851 *** | −0.000832 *** | −0.000738 | −0.00139 | −0.00135 | −0.00119 |
(0.000181) | (0.000182) | (0.000184) | (0.000184) | (0.00208) | (0.00206) | (0.00210) | (0.00211) | |
University degree | −0.0996 ** | −0.0303 | −0.0251 | −0.0182 | −0.107 | −0.0365 | −0.0247 | −0.0277 |
(0.0464) | (0.0493) | (0.0498) | (0.0500) | (0.107) | (0.111) | (0.111) | (0.112) | |
Living in central area | −0.000356 | 0.0209 | 0.0109 | 0.0131 | −0.125 | −0.0833 | −0.0812 | −0.0711 |
(0.0450) | (0.0453) | (0.0455) | (0.0458) | (0.0999) | (0.101) | (0.101) | (0.102) | |
Marriage | −0.108 | −0.0765 | −0.0713 | −0.0642 | 0.0137 | 0.0525 | 0.0528 | 0.0512 |
(0.0668) | (0.0688) | (0.0691) | (0.0693) | (0.211) | (0.212) | (0.213) | (0.213) | |
Children | −0.109 ** | −0.104 * | −0.109 * | −0.108 * | −0.549 *** | −0.556 *** | −0.558 *** | −0.554 *** |
(0.0554) | (0.0559) | (0.0561) | (0.0562) | (0.148) | (0.149) | (0.149) | (0.150) | |
Living alone | −0.00270 | −0.0399 | −0.0380 | −0.0369 | −0.0518 | −0.0695 | −0.0426 | −0.0421 |
(0.0703) | (0.0716) | (0.0725) | (0.0725) | (0.230) | (0.233) | (0.235) | (0.235) | |
Employed | −0.122 ** | −0.0647 | −0.0451 | −0.0444 | −0.0625 | −0.0555 | −0.0596 | −0.0611 |
(0.0548) | (0.0587) | (0.0591) | (0.0592) | (0.112) | (0.119) | (0.120) | (0.120) | |
Log of household income | −0.0883 ** | −0.0793 ** | −0.0787 ** | 0.0135 | 0.0343 | 0.0295 | ||
(0.0374) | (0.0381) | (0.0381) | (0.0955) | (0.0959) | (0.0961) | |||
Log of household assets | −0.0242 | −0.0347 * | −0.0314 | −0.105 *** | −0.0921 ** | −0.0934 ** | ||
(0.0187) | (0.0193) | (0.0194) | (0.0388) | (0.0419) | (0.0423) | |||
Financial literacy | −0.147 ** | −0.151 ** | −0.137 ** | −0.210 | −0.213 | −0.219 | ||
(0.0662) | (0.0667) | (0.0670) | (0.162) | (0.163) | (0.164) | |||
Subjective health status | −0.143 *** | −0.146 *** | −0.0498 | −0.0501 | ||||
(0.0208) | (0.0208) | (0.0452) | (0.0452) | |||||
Future anxiety | −0.0882 *** | −0.0827 *** | 0.0567 | 0.0561 | ||||
(0.0207) | (0.0208) | (0.0494) | (0.0494) | |||||
Level of risk preference | 0.0443 | 0.157 | ||||||
(0.0983) | (0.234) | |||||||
Myopic view of the future | 0.0490 ** | −0.0310 | ||||||
(0.0222) | (0.0478) | |||||||
Constant | −0.678 * | 0.894 | 1.741 *** | 1.532 ** | −2.084 | −4.144 | −4.593 | −3.647 |
(0.354) | (0.602) | (0.628) | (0.637) | (10.85) | (10.84) | (11.07) | (11.15) | |
Observations | 3485 | 3485 | 3485 | 3485 | 768 | 768 | 768 | 768 |
Log pseudolikelihood | −2328 | −2319 | −2287 | −2284 | −466.8 | −460.6 | −459 | −458.6 |
Wald chi2 | 81.68 | 100.8 | 159.3 | 163.6 | 26.73 | 38.50 | 41.43 | 42.17 |
p-Value | 0 | 0 | 0 | 0 | 0.00155 | 0.000127 | 0.000152 | 0.000372 |
Pseudo R2 | 0.0172 | 0.0214 | 0.0347 | 0.0358 | 0.0278 | 0.0405 | 0.0439 | 0.0448 |
Variable | Dependent Variable: Willingness to Take Vaccine | |||||||
---|---|---|---|---|---|---|---|---|
Sub-Sample: Female | Sub-Sample: Male | |||||||
Model 7.1 | Model 7.2 | Model 7.3 | Model 7.4 | Model 8.1 | Model 8.2 | Model 8.3 | Model 8.4 | |
Age | −0.0453 *** | −0.0485 *** | −0.0444 *** | −0.0442 *** | −0.0431 *** | −0.0438 *** | −0.0435 *** | −0.0438 *** |
(0.0137) | (0.0136) | (0.0137) | (0.0137) | (0.0120) | (0.0120) | (0.0121) | (0.0121) | |
Age squared | 0.000574 *** | 0.000593 *** | 0.000548 *** | 0.000543 *** | 0.000545 *** | 0.000540 *** | 0.000538 *** | 0.000540 *** |
(0.000147) | (0.000147) | (0.000148) | (0.000148) | (0.000117) | (0.000117) | (0.000118) | (0.000118) | |
University degree | 0.121 ** | 0.0759 | 0.0618 | 0.0581 | 0.0572 | −0.00437 | −0.00126 | −0.00760 |
(0.0580) | (0.0611) | (0.0613) | (0.0614) | (0.0456) | (0.0478) | (0.0481) | (0.0484) | |
Living in central area | −0.0248 | −0.0423 | −0.0372 | −0.0467 | 0.0649 | 0.0476 | 0.0547 | 0.0524 |
(0.0563) | (0.0568) | (0.0567) | (0.0570) | (0.0425) | (0.0427) | (0.0427) | (0.0428) | |
Marriage | 0.0923 | 0.0404 | 0.0175 | 0.0176 | 0.0543 | 0.0473 | 0.0602 | 0.0557 |
(0.0845) | (0.0869) | (0.0872) | (0.0874) | (0.0718) | (0.0727) | (0.0724) | (0.0728) | |
Children | 0.176 *** | 0.172 *** | 0.165 ** | 0.168 ** | 0.193 *** | 0.185 *** | 0.189 *** | 0.189 *** |
(0.0654) | (0.0661) | (0.0662) | (0.0662) | (0.0599) | (0.0603) | (0.0600) | (0.0601) | |
Living alone | 0.0561 | 0.113 | 0.0981 | 0.0950 | −0.0138 | 0.00803 | 0.0145 | 0.0135 |
(0.0957) | (0.0974) | (0.0975) | (0.0976) | (0.0707) | (0.0713) | (0.0712) | (0.0713) | |
Employed | 0.0844 | 0.0291 | 0.0102 | 0.0138 | 0.0661 | 0.0248 | 0.0112 | 0.00857 |
(0.0622) | (0.0647) | (0.0648) | (0.0647) | (0.0579) | (0.0634) | (0.0638) | (0.0637) | |
Log of household income | 0.114 ** | 0.108 ** | 0.108 ** | 0.0462 | 0.0395 | 0.0391 | ||
(0.0460) | (0.0459) | (0.0459) | (0.0379) | (0.0385) | (0.0385) | |||
Log of household assets | 0.0134 | 0.0143 | 0.0112 | 0.0292 * | 0.0452 ** | 0.0419 ** | ||
(0.0255) | (0.0261) | (0.0260) | (0.0174) | (0.0179) | (0.0180) | |||
Financial literacy | 0.0339 | 0.0516 | 0.0424 | 0.153 ** | 0.134 ** | 0.122 * | ||
(0.0788) | (0.0790) | (0.0792) | (0.0648) | (0.0649) | (0.0649) | |||
Subjective health status | 0.104 *** | 0.106 *** | 0.104 *** | 0.105 *** | ||||
(0.0285) | (0.0285) | (0.0215) | (0.0215) | |||||
Future anxiety | 0.0386 | 0.0369 | 0.0812 *** | 0.0780 *** | ||||
(0.0276) | (0.0279) | (0.0215) | (0.0216) | |||||
Level of risk preference | −0.209 | −0.0378 | ||||||
(0.140) | (0.0909) | |||||||
Myopic view of the future | −0.0132 | −0.0380 * | ||||||
(0.0309) | (0.0228) | |||||||
/cut1 | −1.844 *** | −0.0421 | 0.422 | 0.216 | −1.819 *** | −0.672 | 0.104 | −0.111 |
(0.316) | (0.681) | (0.707) | (0.722) | (0.302) | (0.592) | (0.612) | (0.627) | |
/cut2 | −1.139 *** | 0.665 | 1.131 | 0.926 | −1.289 *** | −0.142 | 0.638 | 0.422 |
(0.314) | (0.679) | (0.705) | (0.720) | (0.301) | (0.592) | (0.611) | (0.626) | |
/cut3 | −0.263 | 1.544 ** | 2.017 *** | 1.813 ** | −0.393 | 0.757 | 1.544 ** | 1.329 ** |
(0.312) | (0.679) | (0.706) | (0.721) | (0.300) | (0.592) | (0.612) | (0.626) | |
/cut4 | 0.385 | 2.194 *** | 2.673 *** | 2.470 *** | 0.206 | 1.359 ** | 2.152 *** | 1.938 *** |
(0.312) | (0.679) | (0.707) | (0.722) | (0.300) | (0.592) | (0.612) | (0.627) | |
Observations | 1470 | 1470 | 1470 | 1470 | 2783 | 2783 | 2783 | 2783 |
Log pseudolikelihood | −2241 | −2236 | −2227 | −2226 | −4083 | −4074 | −4053 | −4051 |
Wald chi2 | 48.44 | 59.82 | 73.18 | 74.88 | 156.5 | 170.7 | 211.2 | 213.5 |
p-Value | 8.12 × 10−8 | 1.00 × 10−8 | 2.07 × 10−10 | 5.95 × 10−10 | 0 | 0 | 0 | 0 |
Pseudo R2 | 0.0114 | 0.0135 | 0.0174 | 0.0180 | 0.0199 | 0.0219 | 0.0271 | 0.0275 |
Variable | Dependent Variable: Vaccine Hesitancy | |||||||
---|---|---|---|---|---|---|---|---|
Sub-Sample: Female | Sub-Sample: Male | |||||||
Model 9.1 | Model 9.2 | Model 9.3 | Model 9.4 | Model 10.1 | Model 10.2 | Model 10.3 | Model 10.4 | |
Age | 0.0641 *** | 0.0683 *** | 0.0615 *** | 0.0615 *** | 0.0590 *** | 0.0603 *** | 0.0597 *** | 0.0597 *** |
(0.0166) | (0.0166) | (0.0168) | (0.0169) | (0.0146) | (0.0147) | (0.0148) | (0.0148) | |
Age squared | −0.000794 *** | −0.000823 *** | −0.000748 *** | −0.000744 *** | −0.000732 *** | −0.000725 *** | −0.000720 *** | −0.000720 *** |
(0.000175) | (0.000175) | (0.000178) | (0.000178) | (0.000142) | (0.000143) | (0.000144) | (0.000144) | |
University degree | −0.159 ** | −0.111 | −0.0895 | −0.0865 | −0.0752 | 0.0145 | 0.0122 | 0.0198 |
(0.0694) | (0.0739) | (0.0746) | (0.0746) | (0.0537) | (0.0570) | (0.0574) | (0.0578) | |
Living in central area | −0.00856 | 0.0105 | 0.00114 | 0.00877 | −0.0220 | 0.00350 | −0.00451 | −0.00168 |
(0.0691) | (0.0695) | (0.0698) | (0.0703) | (0.0509) | (0.0513) | (0.0516) | (0.0519) | |
Marriage | −0.166 | −0.110 | −0.0809 | −0.0805 | −0.0512 | −0.0488 | −0.0633 | −0.0561 |
(0.101) | (0.105) | (0.105) | (0.105) | (0.0841) | (0.0853) | (0.0856) | (0.0858) | |
Children | −0.196 ** | −0.192 ** | −0.179 ** | −0.181 ** | −0.166 ** | −0.161 ** | −0.162 ** | −0.163 ** |
(0.0817) | (0.0828) | (0.0833) | (0.0834) | (0.0682) | (0.0687) | (0.0687) | (0.0688) | |
Living alone | −0.0858 | −0.146 | −0.121 | −0.118 | 0.0376 | 0.00812 | 0.000328 | 0.00170 |
(0.111) | (0.115) | (0.117) | (0.117) | (0.0838) | (0.0849) | (0.0854) | (0.0855) | |
Employed | −0.183 ** | −0.124 | −0.102 | −0.105 | −0.0476 | −0.00290 | 0.0107 | 0.0153 |
(0.0774) | (0.0810) | (0.0814) | (0.0814) | (0.0680) | (0.0748) | (0.0755) | (0.0755) | |
Log of household income | −0.128 ** | −0.118 ** | −0.117 ** | −0.0415 | −0.0340 | −0.0335 | ||
(0.0576) | (0.0582) | (0.0582) | (0.0443) | (0.0449) | (0.0449) | |||
Log of household assets | −0.0102 | −0.00910 | −0.00682 | −0.0541 *** | −0.0703 *** | −0.0657 *** | ||
(0.0308) | (0.0314) | (0.0315) | (0.0201) | (0.0210) | (0.0212) | |||
Financial literacy | −0.0498 | −0.0764 | −0.0697 | −0.214 *** | −0.196 ** | −0.178 ** | ||
(0.0989) | (0.0993) | (0.0997) | (0.0781) | (0.0785) | (0.0789) | |||
Subjective health status | −0.154 *** | −0.155 *** | −0.113 *** | −0.115 *** | ||||
(0.0323) | (0.0324) | (0.0231) | (0.0232) | |||||
Future anxiety | −0.0392 | −0.0379 | −0.0797 *** | −0.0748 *** | ||||
(0.0322) | (0.0324) | (0.0232) | (0.0234) | |||||
Level of risk preference | 0.170 | 0.0363 | ||||||
(0.168) | (0.107) | |||||||
Myopic view of the future | 0.00831 | 0.0544 ** | ||||||
(0.0344) | (0.0247) | |||||||
Constant | −0.477 | 1.476 * | 2.058 ** | 1.891 ** | −0.728 ** | 0.731 | 1.543 ** | 1.254 * |
(0.378) | (0.855) | (0.903) | (0.915) | (0.365) | (0.700) | (0.729) | (0.744) | |
Observations | 1470 | 1470 | 1470 | 1470 | 2783 | 2783 | 2783 | 2783 |
Log pseudolikelihood | −955.1 | −951.3 | −939.3 | −938.8 | −1845 | −1833 | −1816 | −1814 |
Wald chi2 | 57.71 | 65.19 | 85.72 | 85.78 | 154.8 | 177.9 | 202.7 | 206.6 |
p-Value | 1.31 × 10−9 | 9.93 × 10−10 | 0 | 0 | 0 | 0 | 0 | 0 |
Pseudo R2 | 0.0292 | 0.0330 | 0.0452 | 0.0458 | 0.0433 | 0.0496 | 0.0583 | 0.0596 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadoya, Y.; Watanapongvanich, S.; Yuktadatta, P.; Putthinun, P.; Lartey, S.T.; Khan, M.S.R. Willing or Hesitant? A Socioeconomic Study on the Potential Acceptance of COVID-19 Vaccine in Japan. Int. J. Environ. Res. Public Health 2021, 18, 4864. https://doi.org/10.3390/ijerph18094864
Kadoya Y, Watanapongvanich S, Yuktadatta P, Putthinun P, Lartey ST, Khan MSR. Willing or Hesitant? A Socioeconomic Study on the Potential Acceptance of COVID-19 Vaccine in Japan. International Journal of Environmental Research and Public Health. 2021; 18(9):4864. https://doi.org/10.3390/ijerph18094864
Chicago/Turabian StyleKadoya, Yoshihiko, Somtip Watanapongvanich, Pattaphol Yuktadatta, Pongpat Putthinun, Stella T. Lartey, and Mostafa Saidur Rahim Khan. 2021. "Willing or Hesitant? A Socioeconomic Study on the Potential Acceptance of COVID-19 Vaccine in Japan" International Journal of Environmental Research and Public Health 18, no. 9: 4864. https://doi.org/10.3390/ijerph18094864