Spatiotemporal Evolution and Regional Differences in the Production-Living-Ecological Space of the Urban Agglomeration in the Middle Reaches of the Yangtze River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Classification of the Production-Living-Ecological Space (PLES)
2.4. Theil Index
2.5. Exploratory Spatial Data Analysis (ESDA) Method
3. Experimental Results and Analysis
3.1. Evolution Trend of the PLES
3.2. Analysis of the Spatial Aggregation of the PLES
3.2.1. Global Moran’s I Index Analysis
3.2.2. Local Moran’s I Index Analysis
3.3. Analysis of the Regional Differences between the Three Types of Spaces of the Urban Agglomeration in the Middle Reaches of the Yangtze River
3.3.1. Theil Index of the Two Types of Cities in the Urban Agglomeration in the Middle Reaches of the Yangtze River
3.3.2. Interregional and Intraregional Theil Indices of the PLES
3.3.3. Contribution Rate of the Regional Differences between the Two Types of Cities
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, E.; Jing, Y.; Liu, Y.; Yin, C.; Gao, Y.; Wei, J. Spatial–Temporal Patterns and Driving Forces of Ecological-Living-Production Land in Hubei Province, Central China. Sustainability 2017, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.; Crossman, N.D.; Smith, M.S.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nat. Cell Biol. 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Zhou, J.; Ma, J. Optimizing the Production-Living-Ecological Space for Reducing the Ecosystem Services Deficit. Land 2021, 10, 1001. [Google Scholar] [CrossRef]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Allington, G.R.; Li, W.; Brown, D.G. Urbanization and environmental policy effects on the future availability of grazing resources on the Mongolian Plateau: Modeling socio-environmental system dynamics. Environ. Sci. Policy 2017, 68, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Luo, M. Study on characteristics of the spatio-temporal evolution in coupling and coordination of “Ecolog-ical-Production-Living” spatial function in the Yangtze River Economic Belt. Sci. Technol. Manag. Land Resour. 2019, 36, 1–12. [Google Scholar]
- Liu, J.; Liu, Y.; Li, Y. Classification evaluation and spatial-temporal analysis of “production-living-ecological” spaces in China. Acta Geogr. Sin. 2017, 72, 1290–1304. (In Chinese) [Google Scholar] [CrossRef]
- Wei, X.F.; Zhao, Y.L.; Li, X.B. Characteristics and optimization of geographical space in urban agglomeration in the upper reaches of the Yangtze River based on the function of “production-living-ecological”. Resour. Environ. Yang-Tze Basin 2019, 28, 1070–1079. [Google Scholar] [CrossRef]
- Berger, T. Agent-based spatial models applied to agriculture: A simulation tool for technology diffusion, resource use changes and policy analysis. Agric. Econ. 2015, 25, 245–260. [Google Scholar] [CrossRef]
- Tian, F.; Li, M.; Han, X.; Liu, H.; Mo, B. A Production–Living–Ecological Space Model for Land-Use Optimisation: A case study of the core Tumen River region in China. Ecol. Model. 2020, 437, 109310. [Google Scholar] [CrossRef]
- Yang, Q.K.; Duan, X.J.; Wang, L. Land use transformation based on ecological-production-living spaces and associated eco-environment effects: A case study in the Yangtze River Delta. Sci. Geogr. Sin. 2018, 38, 97–106. [Google Scholar]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total. Environ. 2020, 735, 139542. [Google Scholar] [CrossRef]
- Pérez-Soba, M.; Petit, S.; Jones, L.; Bertrand, N.; Briquel, V.; Omodei-Zorini, L.; Contini, C.; Helming, K.; Farrington, J.H.; Mossello, M.T.; et al. Land Use Functions—A Multifunctionality Approach to Assess the Impact of Land Use Changes on Land Use Sustainability; Springer: Singapore, 2008; pp. 375–404. [Google Scholar]
- Chen, Q.; Pan, S. Transport-related experiences in China in response to the Coronavirus (COVID-19). Transp. Res. Interdiscip. Perspect. 2020, 8, 100246. [Google Scholar] [CrossRef]
- Allen, C.; Nejdawi, R.; El-Baba, J.; Hamati, K.; Metternicht, G.; Wiedmann, T. Indicator-based assessments of progress towards the sustainable development goals (SDGs): A case study from the Arab region. Sustain. Sci. 2017, 12, 975–989. [Google Scholar] [CrossRef]
- Stein, E.D.; Doughty, C.L.; Lowe, J.; Cooper, M.; Sloane, E.B.; Bram, D.L. Establishing Targets for Regional Coastal Wetland Restoration Planning Using Historical Ecology and Future Scenario Analysis: The Past, Present, Future Approach. Chesap. Sci. 2020, 43, 207–222. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, H.; Huang, A.; Xu, Y.; Lu, L.; Ji, Z. Identification and spatial-temporal evolution of rural “production-living-ecological” space from the perspective of villagers’ behavior—A case study of Ertai Town, Zhangjiakou City. Land Use Policy 2021, 106, 105457. [Google Scholar] [CrossRef]
- Altshuler, I.; Hamel, J.; Turney, S.; Magnuson, E.; Lévesque, R.; Greer, C.W.; Whyte, L.G. Species interactions and distinct microbial communities in high Arctic permafrost affected cryosols are associated with the CH4and CO2gas fluxes. Environ. Microbiol. 2019, 21, 3711–3727. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Q.; Zou, Y. Simulation and Analysis of Urban Production–Living–Ecological Space Evolution Based on a Macro–Micro Joint Decision Model. Int. J. Environ. Res. Public Heal. 2021, 18, 9832. [Google Scholar] [CrossRef]
- Ou, D.; Zhang, Q.; Wu, Y.; Qin, J.; Xia, J.; Deng, O.; Gao, X.; Bian, J.; Gong, S. Construction of a Territorial Space Classification System Based on Spatiotemporal Heterogeneity of Land Use and Its Superior Territorial Space Functions and Their Dynamic Coupling: Case Study on Qionglai City of Sichuan Province, China. Int. J. Environ. Res. Public Heal. 2021, 18, 9052. [Google Scholar] [CrossRef]
- He, C.; Okada, N.; Zhang, Q.; Shi, P.; Li, J. Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landsc. Urban Plan. 2008, 86, 79–91. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, D.; Wang, H.; Li, X. What is the future for production-living-ecological spaces in the Greater Bay Area? A multi-scenario perspective based on DEE. Ecol. Indic. 2021, 131, 108171. [Google Scholar] [CrossRef]
- Akodad, S.; Bombrun, L.; Xia, J.; Berthoumieu, Y.; Germain, C. Ensemble Learning Approaches Based on Covariance Pooling of CNN Features for High Resolution Remote Sensing Scene Classification. Remote Sens. 2020, 12, 3292. [Google Scholar] [CrossRef]
- Paquette, S.; Domon, G. Changing ruralities, changing landscapes: Exploring social recomposition using a multi-scale approach. J. Rural. Stud. 2003, 19, 425–444. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, S.; Min, Y. Exploring Urban Population Forecasting and Spatial Distribution Modeling with Artificial Intelligence Technology. Comput. Model. Eng. Sci. 2019, 119, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Huang, A.; Xu, Y.; Sun, P.; Zhou, G.; Liu, C.; Lu, L.; Xiang, Y.; Wang, H. Land use/land cover changes and its impact on ecosystem services in ecologically fragile zone: A case study of Zhangjiakou City, Hebei Province, China. Ecol. Indic. 2019, 104, 604–614. [Google Scholar] [CrossRef]
- Liao, T.; Li, D.; Wan, Q. Tradeoff of Exploitation-protection and Suitability Evaluation of Low-slope hilly from the perspective of “production-living-ecological” optimization. Phys. Chem. Earth Parts A/B/C 2020, 120, 102943. [Google Scholar] [CrossRef]
- Li, M.W.; Yun, Y.H.; Chen, W.Q.; Ma, Y.; Guo, R. Classification and spatial-temporal analysis of “production-living-ecological spaces in Henan Province. Chin. J. Agric. Resour. Reg. Plan. 2018, 39, 13–20. [Google Scholar]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Anselin, L. Interactive techniques and exploratory spatial data analysis. In Geographical Information Systems: Principles, Technical Issues, Management Issues and Applications; Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W., Eds.; John Wiley& Sons: Hoboken, NJ, USA, 1999; pp. 253–266. [Google Scholar]
- Jin, F.; Ma, L.; Xu, D. Environmental stress and optimized path of industrial development in the Yellow River Basin. Resour. Sci. 2020, 42, 127–136. [Google Scholar] [CrossRef]
- Day, J.; Lewis, B. Beyond univariate measurement of spatial autocorrelation: Disaggregated spillover effects for Indonesia. Ann. GIS 2013, 19, 169–185. [Google Scholar] [CrossRef]
- Ghermandi, A.; Fichtman, E. Cultural ecosystem services of multifunctional constructed treatment wetlands and waste stabilization ponds: Time to enter the mainstream? Ecol. Eng. 2015, 84, 615–623. [Google Scholar] [CrossRef]
- Li, B.H.; Zeng, C.; Dou, Y.D. Change of Human Settlement Environment and Driving Mechanism in Traditional Villages Based on “Living-Production-Ecological” Space: A Case Study of Lanxi village, Jiangyong County, Hunan Province. Prog. Geogr. 2018, 37, 677–687. [Google Scholar]
- Brown, G.; Glanz, H. Identifying potential NIMBY and YIMBY effects in general land use planning and zoning. Appl. Geogr. 2018, 99, 1–11. [Google Scholar] [CrossRef]
- Cui, J.X.; Luo, J.; Kong, X.S. The Spatial Pattern and Evolution Characteristics of the Production, Living and Ecological Space in Wuhan Metropolitan Region. In Proceedings of the 2018 China Land Resources Scientific Innovation and Development & Mr. Ni Shaoxiang Academic Thought Seminar, Nanjing, China, 10 July 2021. [Google Scholar]
- Ma, X.D.; Li, Q.L.; Shen, Y. Morphological difference and regional types of ruralsettlements in Jiangsu province. Acta Geogr. Sinica 2012, 67, 516–525. [Google Scholar]
- Zhu, Y.Y.; Yu, B.; Zeng, J.X. Spatial optimization from three spaces of production, living and ecology in national restricted zones: A case study of Wufeng County in Hubei Province. Econ. Geogr. 2015, 35, 26–32. [Google Scholar]
- Jin, X.; Lu, Y.; Lin, J.; Qi, X.; Hu, G.; Li, X. Research on the evolution of spatiotemporal patterns of production-living-ecological space in an urban agglomeration in the Fujian Delta region, China. Acta Ecol. Sin. 2018, 38, 4286–4295. [Google Scholar] [CrossRef]
- Zeng, X.J.; Wang, F.; Feng, Y.F.; Zhu, Z. Analysis on the spatiotemporal pattern of “Sansheng” space in less developed areas of Guangdong Province: Take Lianzhou City in Yuebei as an example. Guangdong Land Sci. 2018, 17, 36–44. [Google Scholar]
- Liu, J.Y.; Hoshino, B. Study on spatial-temporal feature of modern land- use change in China: Using remote sensing techniques. Quat. Sci. 2000, 20, 229–239. [Google Scholar] [CrossRef]
- Huan, L.L.; Yan, H.W.; Sun, S.Q.; Chen, X. Analysis of the spatial-temporal patterns of production-living-ecology space in Hai-yang City. Land. Resour. Inf. 2018, 1, 49–56. [Google Scholar] [CrossRef]
- Clarke, K.C.; Hoppen, S.; Gaydos, L. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ. Plan. B Plan. Des. 1997, 24, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Shoubao, G.; Wanrui, Z.; Peili, S. A Functional Land Use Classification for Ecological, Production and Living Spaces in the Taihang Mountains. J. Resour. Ecol. 2019, 10, 246–255. [Google Scholar] [CrossRef]
- Tao, H.; Liu, J.M.; Luo, K. The study of spatial division of tourism urbanization area based on the conception of production-living-ecological space: A case study of Mayangxi Ecotourism Area. Hum. Geol. 2016, 31, 153–160. [Google Scholar] [CrossRef]
- Hu, H.; Xu, W.; Yue, Q. Exploration on Mode of Coastal Zoning Based on Ecological-Living-Industrial Spaces: A Case Study of Tangshan City. Areal. Res. Dev. 2017, 6, 29–33. [Google Scholar]
- Dai, L.; Li, S.; Lewis, B.J.; Wu, J.; Yu, D.; Zhou, W.; Zhou, L.; Wu, S. The influence of land use change on the spatial–temporal variability of habitat quality between 1990 and 2010 in Northeast China. J. For. Res. 2018, 30, 2227–2236. [Google Scholar] [CrossRef]
- Sommer, W.; Valstar, J.; Leusbrock, I.; Grotenhuis, T.; Rijnaarts, H. Optimization and spatial pattern of large-scale aquifer thermal energy storage. Appl. Energy 2015, 137, 322–337. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, D.; Fu, J.; Lin, G.; Zhang, J. Comprehensive Assessment of Production–Living–Ecological Space Based on the Coupling Coordination Degree Model. Sustainability 2020, 12, 2009. [Google Scholar] [CrossRef] [Green Version]
- Leemans, R.; De Groot, R.S. Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Paracchini, M.L.; Pacini, G.C.; Jones, M.L.M.; Pérez-Soba, M. An aggregation framework to link indicators associated with multifunctional land use to the stakeholder evaluation of policy options. Ecol. Indic. 2011, 11, 71–80. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, H.; Ou, W.; Guo, J. A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region. Land Use Policy 2018, 72, 250–258. [Google Scholar] [CrossRef]
Type | Data Year | Data Source |
---|---|---|
Remote sensing data of land use/land cover in China (LUCC,1 km accuracy) | 1995, 2000, 2005, 2010, 2015 | Data center of resources and environment science, Chinese Academy of Sciences (http://www.resdc.cn/ accessed on 20 September 2021) |
Population distribution of 1 km grid in China | 1995, 2000, 2005, 2010, 2015 | Data center of resources and environment science, Chinese Academy of Sciences (http://www.resdc.cn/ accessed on 20 September 2021) |
GDP distribution of 1 km grid in China | 1995, 2000, 2005, 2010, 2015 | Data center of resources and environment science, Chinese Academy of Sciences (http://www.resdc.cn/ accessed on 20 September 2021) |
Primary Classification | Secondary Classification |
---|---|
Production space (PS) | Paddy field, dry land, other forest land (non-forest forest land, slash land, nursery and various gardens), other construction land (refer to land for factories and mines, large industrial areas, oil fields, salt fields, quarries, traffic roads, airports and special land) |
Living space (LS) | Urban land (land for large, medium and small cities and built-up areas above counties and towns), rural residential areas (rural residential areas independent of cities and towns) |
Ecological space (ES) | There are woodland (referring to natural forest and artificial forest with canopy density >30%), shrub forest (referring to dwarf forest and shrub forest with canopy density >40% and height below 2 m), sparse forest (referring to forest with canopy density of 10–30%), high coverage grassland (referring to natural grassland, improved grassland and mowed grassland with coverage >50%) and medium coverage grassland (refers to natural grassland and improved grassland with a coverage of 20–50%), low coverage grassland (refers to natural grassland with a coverage of 5–20%), rivers, lakes, reservoirs, ponds, permanent Glacial Snow, beaches, beaches, sandy lands, Gobi, saline alkali lands, swamps, bare lands, bare rocky lands, oceans and others |
Year | Type | Moran’s I | Z Value | p-Value |
---|---|---|---|---|
1995 | ||||
PS | 0.397 | 11.681 | 0.001 | |
LS | 0.438 | 13.031 | 0.000 | |
ES | 0.492 | 14.404 | 0.000 | |
2000 | ||||
PS | 0.39 | 11.459 | 0.000 | |
LS | 0.441 | 13.131 | 0.000 | |
ES | 0.491 | 14.376 | 0.000 | |
2005 | ||||
PS | 0.39 | 11.459 | 0.000 | |
LS | 0.423 | 12.461 | 0.002 | |
ES | 0.49 | 14.348 | 0.000 | |
2010 | ||||
PS | 0.316 | 9.318 | 0.000 | |
LS | 0.386 | 11.472 | 0.002 | |
ES | 0.43 | 12.242 | 0.000 | |
2015 | ||||
PS | 0.378 | 11.113 | 0.000 | |
LS | 0.432 | 12.775 | 0.000 | |
ES | 0.49 | 14.322 | 0.000 |
Weight Type | Year | Tr-PS | Tr-LS | Tr-ES | Tg-PS | Tg-LS | Tg-ES |
---|---|---|---|---|---|---|---|
GDP | 1995 | 0.577 | 0.306 | 0.772 | 0.719 | 0.528 | 0.849 |
2000 | 0.645 | 0.461 | 0.785 | 0.779 | 0.581 | 0.831 | |
2005 | 0.644 | 0.48 | 0.796 | 0.793 | 0.572 | 0.992 | |
2010 | 0.585 | 0.429 | 0.728 | 0.635 | 0.439 | 0.920 | |
2015 | 0.659 | 0.480 | 0.835 | 0.624 | 0.749 | 0.834 | |
POP | 1995 | 0.352 | 0.460 | 0.485 | 0.361 | 0.271 | 0.600 |
2000 | 0.293 | 0.314 | 0.508 | 0.495 | 0.371 | 0.722 | |
2005 | 0.376 | 0.299 | 0.505 | 0.399 | 0.268 | 0.642 | |
2010 | 0.416 | 0.329 | 0.552 | 0.622 | 0.448 | 0.860 | |
2015 | 0.420 | 0.321 | 0.559 | 0.639 | 0.462 | 0.874 |
Weight Type | Year | Tw-PS | Tw-LS | Tw-ES | Tb-PS | Tb-LS | Tb-ES |
---|---|---|---|---|---|---|---|
GDP | 1995 | 0.6785 | 0.4618 | 0.8241 | 0.0030 | 0.0050 | 0.0098 |
2000 | 0.7411 | 0.5453 | 0.8157 | 0.0026 | 0.0042 | 0.0089 | |
2005 | 0.7504 | 0.5443 | 0.9281 | 0.1963 | 0.1847 | 0.1648 | |
2010 | 0.6311 | 0.6687 | 0.8342 | 0.0033 | 0.0018 | 0.0001 | |
2015 | 0.6314 | 0.6693 | 0.8342 | 0.0190 | 0.0204 | 0.0303 | |
POP | 1995 | 0.3585 | 0.3274 | 0.5624 | 0.0012 | 0.0004 | 0.0001 |
2000 | 0.4378 | 0.3541 | 0.6519 | 0.0004 | 0.0012 | 0.0041 | |
2005 | 0.3922 | 0.2777 | 0.5973 | 0.0005 | 0.0001 | 0.0003 | |
2010 | 0.5641 | 0.4126 | 0.7587 | 0.0024 | 0.0041 | 0.0091 | |
2015 | 0.5753 | 0.4204 | 0.7714 | 0.0028 | 0.0033 | 0.0077 |
Weight Type | Year | CTr-PS | CTr-LS | CTr-ES | CTg-PS | CTg-LS | CTg-ES |
---|---|---|---|---|---|---|---|
GDP | 1995 | 0.245 | 0.197 | 0.303 | 0.755 | 0.793 | 0.685 |
2000 | 0.247 | 0.250 | 0.311 | 0.749 | 0.742 | 0.678 | |
2005 | 0.196 | 0.198 | 0.238 | 0.597 | 0.548 | 0.612 | |
2010 | 0.261 | 0.191 | 0.286 | 0.718 | 0.460 | 0.741 | |
2015 | 0.295 | 0.206 | 0.314 | 0.676 | 0.765 | 0.651 | |
POP | 1995 | 0.278 | 0.421 | 0.282 | 0.718 | 0.578 | 0.718 |
2000 | 0.191 | 0.264 | 0.253 | 0.808 | 0.733 | 0.740 | |
2005 | 0.275 | 0.324 | 0.276 | 0.724 | 0.675 | 0.724 | |
2010 | 0.208 | 0.235 | 0.236 | 0.788 | 0.755 | 0.752 | |
2015 | 0.212 | 0.224 | 0.233 | 0.784 | 0.768 | 0.757 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Cheng, J.; Zhu, Y.; Zhao, Y. Spatiotemporal Evolution and Regional Differences in the Production-Living-Ecological Space of the Urban Agglomeration in the Middle Reaches of the Yangtze River. Int. J. Environ. Res. Public Health 2021, 18, 12497. https://doi.org/10.3390/ijerph182312497
Zhao Y, Cheng J, Zhu Y, Zhao Y. Spatiotemporal Evolution and Regional Differences in the Production-Living-Ecological Space of the Urban Agglomeration in the Middle Reaches of the Yangtze River. International Journal of Environmental Research and Public Health. 2021; 18(23):12497. https://doi.org/10.3390/ijerph182312497
Chicago/Turabian StyleZhao, Yanqiong, Jinhua Cheng, Yongguang Zhu, and Yanpu Zhao. 2021. "Spatiotemporal Evolution and Regional Differences in the Production-Living-Ecological Space of the Urban Agglomeration in the Middle Reaches of the Yangtze River" International Journal of Environmental Research and Public Health 18, no. 23: 12497. https://doi.org/10.3390/ijerph182312497
APA StyleZhao, Y., Cheng, J., Zhu, Y., & Zhao, Y. (2021). Spatiotemporal Evolution and Regional Differences in the Production-Living-Ecological Space of the Urban Agglomeration in the Middle Reaches of the Yangtze River. International Journal of Environmental Research and Public Health, 18(23), 12497. https://doi.org/10.3390/ijerph182312497