A Case-Crossover Study to Investigate the Effects of Atmospheric Particulate Matter Concentrations, Season, and Air Temperature on Accident and Emergency Presentations for Cardiovascular Events in Northern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Exposure Assessment
2.3. Study Design and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Lag 0 | same day as A&E presentation |
Lag 1 | day before A&E presentation |
Lag 2 | two days before A&E presentation |
Lag 0–2 | mean of PM10 levels from lag 0 to lag 2 |
PM | atmospheric particulate matter |
CVE | cardiovascular event |
A&E | accident and emergency |
CI | confidence interval |
OR | odds ratio |
ARPA | Lombardy Environmental Protection Agency |
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Barman, S.C.; Kumar, N.; Singh, R.; Kisku, G.C.; Khan, A.H.; Kidwai, M.M.; Murthy, R.C.; Negi, M.P.; Pandey, P.; Verma, A.K.; et al. Assessment of urban air pollution and it’s probable health impact. J. Environ. Biol. 2010, 31, 913–920. [Google Scholar] [PubMed]
- IARC Monographs: Volume 109: Outdoor Air Pollution. Available online: http://monographs.iarc.fr/ENG/Monographs/vol109/mono109.pdf (accessed on 13 September 2019).
- IARC Scientific Publication. No. 161: Air Pollution and Cancer. Available online: http://www.iarc.fr/en/publications/books/sp161/AirPollutionandCancer161.pdf (accessed on 13 September 2019).
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef]
- WHO Mortality Database. Available online: http://apps.who.int/healthinfo/statistics/mortality/whodpms/ (accessed on 18 November 2019).
- Vidale, S.; Campana, C. Ambient air pollution and cardiovascular diseases: From bench to bedside. Eur. J. Prev. Cardiol. 2018, 25, 818–825. [Google Scholar] [CrossRef]
- Requia, W.J.; Adams, M.D.; Arain, A.; Papatheodorou, S.; Koutrakis, P.; Mahmoud, M. Global Association of Air Pollution and Cardiorespiratory Diseases: A Systematic Review, Meta-Analysis, and Investigation of Modifier Variables. Am. J. Public Health 2018, 108, S123–S130. [Google Scholar] [CrossRef]
- Basu, R. High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environ. Health 2009, 16, 8–40. [Google Scholar] [CrossRef]
- Ren, C.; Tong, S. Temperature modifies the health effects of particulate matter in Brisbane, Australia. Int. J. Biometeorol. 2006, 51, 87–96. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Fan, X.; Ye, X. Temperature modulation of the health effects of particulate matter in Beijing, China. Environ. Sci. Pollut. Res. Int. 2018, 25, 10857–10866. [Google Scholar] [CrossRef]
- Gordon, C.J. Role of environmental stress in the physiological response to chemical toxicants. Environ. Res. 2003, 92, 1–7. [Google Scholar] [CrossRef]
- Stewart, S.; Keates, A.K.; Redfern, A.; McMurray, J.J.V. Seasonal variations in cardiovascular disease. Nat. Rev. Cardiol. 2017, 14, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ. Health Perspect. 2015, 123, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Giannini, S.; Baccini, M.; Randi, G.; Bonafè, G.; Lauriola, P.; Ranzi, A. Estimating deaths attributable to airborne particles: Sensitivity of the results to different exposure assessment approaches. Environ. Health 2017, 22, 13. [Google Scholar] [CrossRef]
- AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap23_FINAL.pdf (accessed on 13 September 2019).
- IPCC Intergovernmental Panel on Climate Change. Available online: http://www.ipcc.ch/ipccreports/tar/wg1/index.php?idp=49 (accessed on 13 September 2019).
- A Modelling Tool for PM10 Exposure Assessment: An Application Example. Available online: https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/116/19648 (accessed on 13 September 2019).
- ARPA LOMBARDIA. Available online: https://www.arpalombardia.it/siti/arpalombardia/meteo/richiesta-dati-misurati/Pagine/RichiestaDatiMisurati.aspx (accessed on 13 September 2019).
- R Development Core Team. R: A Language and Environment for Statistical Computing. 2007. Available online: http://www.r-project.org (accessed on 18 November 2019).
- Rizzo, C.; Bella, A.; Alfonsi, V.; Puzelli, S.; Palmieri, A.P.; Chironna, M.; Pariani, E.; Piatti, A.; Tiberti, D.; Ghisetti, V.; et al. Influenza vaccine effectiveness in Italy: Age, subtype-specific and vaccine type estimates 2014/15 season. Vaccine 2016, 34, 3102–3108. [Google Scholar] [CrossRef]
- InfluNet, Rete Italiana Sorveglianza Influenza. ISS. Available online: https://old.iss.it/site/RMI/influnet/Default.aspx (accessed on 13 September 2019).
- Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, 2nd ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- WHO. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Available online: http://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf;sequence=1 (accessed on 13 September 2019).
- Ethun, C.G.; Bilen, M.A.; Jani, A.B.; Maithel, S.K.; Ogan, K.; Master, V.A. Frailty and cancer: Implications for oncology surgery, medical oncology, and radiation oncology. CA Cancer J. Clin. 2017, 67, 362–377. [Google Scholar] [CrossRef]
- Chen, K.; Wolf, K.; Breitner, S.; Gasparrini, A.; Stafoggia, M.; Samoli, E.; Andersen, Z.J.; Bero-Bedada, G.; Bellander, T.; Hennig, F.; et al. Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban areas. Environ. Int. 2018, 116, 186–196. [Google Scholar] [CrossRef]
- Perrino, C.; Catrambone, M.; Dalla Torre, S.; Rantica, E.; Sargolini, T.; Canepari, S. Seasonal variations in the chemical composition of particulate matter: A case study in the Po Valley. Part I: Macro-components and mass closure. Environ. Sci. Pollut. Res. Int. 2014, 21, 3999–4009. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, T.; Liu, Q.; Zhang, R.; Sun, Z.; Zhang, M. Seasonal variation of Physical and Chemical Properties in TSP, PM10 and PM2.5 at a Roadside Site in Beijing and Their Influence on Atmospheric Visibility. Aerosol and Air. Qual. Res. 2014, 14, 954–969. [Google Scholar] [CrossRef]
- Bengalli, R.; Molteni, E.; Longhin, E.; Refsnes, M.; Camatini, M.; Gualtieri, M. Release of IL-1 β triggered by Milan summer PM10: Molecular pathways involved in the cytokine release. Biomed. Res. Int. 2013, 2013, 158093. [Google Scholar] [CrossRef]
- Meng, X.; Ma, Y.; Chen, R.; Zhou, Z.; Zhou, Z.; Chen, B.; Kan, H. Size-fractionated particle number concentrations and daily mortality in a Chinese city. Environ. Health Perspect. 2013, 121, 1174–1178. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.L.; Yang, W.; Ito, K.; Matte, T.D.; Shaman, J.; Kinney, P.L. Seasonal Influenza Infections and Cardiovascular Disease Mortality. JAMA Cardiol. 2016, 1, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Kwong, J.C.; Schwartz, K.L.; Campitelli, M.A.; Chung, H.; Crowcroft, N.S.; Karnauchow, T. Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection. N. Engl. J. Med. 2018, 378, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Kaplanski, G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev. 2018, 281, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Kimberly, D.A.; Salice, C.J. Understanding interactive effects of climate change and toxicants: Importance of evolutionary processes. Integr. Environ. Assess. Manag. 2012, 8, 385–386. [Google Scholar] [CrossRef]
- Lenneman, C.G.; Sawyer, D.B. Cardio-Oncology: An Update on Cardiotoxicity of Cancer-Related Treatment. Circ. Res. 2016, 118, 1008–1020. [Google Scholar] [CrossRef]
- Tagliabue, G.; Borgini, A.; Tittarelli, A.; van Donkelaar, A.; Martin, R.V.; Bertoldi, M.; Fabiano, S.; Maghini, A.; Codazzi, T.; Scaburri, A.; et al. Atmospheric fine particulate matter and breast cancer mortality: A population-based cohort study. BMJ Open 2016, 6, e012T580. [Google Scholar] [CrossRef] [Green Version]
Season | ||||
---|---|---|---|---|
Spring | Summer | Autumn | Winter | |
Distribution of A&E presentations (%) | 28.8 | 22.7 | 19.8 | 28.7 |
Age distribution (years) | ||||
Median (IQR) | 78 (67–84) | 76 (63–83) | 78 (68–85) | 80 (71–86) |
Sex (%) | ||||
Male | 56.6 | 58.4 | 58.5 | 54.3 |
Female | 44.4 | 41.6 | 41.5 | 45.7 |
PM10 (μg/m3) | ||||
Median (IQR) | 24 (17–34) | 23 (17–28) | 38 (29–54) | 47 (31–59) |
Apparent temperature (°C) | ||||
Median (IQR) | 17 (14–20) | 22 (20–25) | 13 (10–16) | 6 (4–8) |
Influenza incidence (as % of days) | ||||
Absent | 95 | 100 | 96 | 13 |
Low | 5 | 0 | 4 | 39 |
Medium | 0 | 0 | 0 | 43 |
High | 0 | 0 | 0 | 5 |
Model Variables | OR (95%CI) | |||
---|---|---|---|---|
Basic Model (PM10) | PM10 + Season Interaction | PM10 + Season + Temperature Interaction | PM10 + Season + Temperature + Influenza Interaction | |
PM10 | 0.96 (0.86–1.07) | 0.83 (0.72–0.96) | 0.91 (0.66–1.25) | 0.92 (0.67–1.28) |
PM10 and season interaction: | ||||
PM10 and spring | N/A | 1 (ref) | 1 (ref) | 1 (ref) |
PM10 and summer | N/A | 1.11 (0.93–1.33) | 1.06 (0.87–1.28) | 1.05 (0.86–1.27) |
PM10 and autumn | N/A | 1.21 (1.09–1.35) | 1.23 (1.10–1.38) | 1.22 (1.09–1.37) |
PM10 and winter | N/A | 1.13 (1.02–1.26) | 1.15 (1.02–1.29) | 1.20 (1.02–1.40) |
PM10 and temperature interaction: | ||||
PM10 and mod. temp. | N/A | N/A | 1 (ref) | 1 (ref) |
PM10 and cold temp. | N/A | N/A | 1.01 (0.92–1.10) | 0.99 (0.90–1.10) |
PM10 and hot temp. | N/A | N/A | 1.18 (0.97–1.45) | 1.19 (0.97–1.46) |
PM10 and flu incidence interaction: | ||||
PM10 and no flu | N/A | N/A | N/A | 1 (ref) |
PM10 and low flu | N/A | N/A | N/A | 0.91 (0.79–1.06) |
PM10 and medium flu | N/A | N/A | N/A | 0.97 (0.82–1.14) |
PM10 and high flu | N/A | N/A | N/A | 1.15 (0.73–1.81) |
Model Variables | OR (95%CI) | |||
---|---|---|---|---|
Basic Model (PM10) | PM10 + Season Interaction | PM10 + Season + Temperature Interaction | PM10 + Season + Temperature + Influenza Interaction | |
PM10 | 1.03 (0.92–1.16) | 0.92 (0.79–1.06) | 0.99 (0.73–1.34) | 0.99 (0.73–1.34) |
PM10 and season interaction: | ||||
PM10 and spring | N/A | 1 (ref) | 1 (ref) | 1 (ref) |
PM10 and summer | N/A | 1.18 (0.99–1.41) | 1.07 (0.88–1.31) | 1.07 (0.88–1.31) |
PM10 and autumn | N/A | 1.14 (1.02–1.27) | 1.16 (1.04–1.30) | 1.16 (1.04–1.30) |
PM10 and winter | N/A | 1.15 (1.04–1.28) | 1.17 (1.04–1.32) | 1.16 (1.00–1.36) |
PM10 and temperature interaction: | ||||
PM10 and mod. temp. | N/A | N/A | 1 (ref) | 1 (ref) |
PM10 and cold temp. | N/A | N/A | 1.01 (0.93–1.10) | 0.99 (0.90–1.09) |
PM10 and hot temp. | N/A | N/A | 1.28 (1.04–1.57) | 1.28 (1.04–1.57) |
PM10 and flu incidence interaction: | ||||
PM10 and no flu | N/A | N/A | N/A | 1 (ref) |
PM10 and low flu | N/A | N/A | N/A | 0.99 (0.86–1.14) |
PM10 and medium flu | N/A | N/A | N/A | 1.03 (0.88–1.20) |
PM10 and high flu | N/A | N/A | N/A | 1.34 (0.80–2.25) |
Model Variables | OR (95%CI) | |||
---|---|---|---|---|
Basic Model (PM10) | PM10 + Season Interaction | PM10 + Season + Temperature Interaction | PM10 + Season + Temperature + Influenza Interaction | |
PM10 | 1.09 (0.97–1.23) | 1.05 (0.91–1.21) | 1.14 (0.87–1.51) | 1.12 (0.85-1.47) |
PM10 and season interaction: | ||||
PM10 and spring | N/A | 1 (ref) | 1 (ref) | 1 (ref) |
PM10 and summer | N/A | 1.02 (0.86–1.21) | 0.94 (0.77–1.13) | 0.96 (0.79–1.21) |
PM10 and autumn | N/A | 1.05 (0.94–1.17) | 1.07 (0.95–1.19) | 1.08 (0.97–1.21) |
PM10 and winter | N/A | 1.06 (0.96–1.18) | 1.09 (0.97–1.23) | 1.02 (0.88–1.19) |
PM10 and temperature interaction: | ||||
PM10 and mod. temp. | N/A | N/A | 1 (ref) | 1 (ref) |
PM10 and cold temp. | N/A | N/A | 0.98 (0.90–1.07) | 0.97 (0.88–1.07) |
PM10 and hot temp. | N/A | N/A | 1.23 (1.00–1.51) | 1.25 (1.01–1.55) |
PM10 and flu incidence interaction: | ||||
PM10 and no flu | N/A | N/A | N/A | 1 (ref) |
PM10 and low flu | N/A | N/A | N/A | 1.11 (0.96–1.27) |
PM10 and medium flu | N/A | N/A | N/A | 1.09 (0.93–1.27) |
PM10 and high flu | N/A | N/A | N/A | 1.35 (0.84–2.17) |
Model Variables | OR (95%CI) | |||
---|---|---|---|---|
Basic Model (PM10) | PM10 + Season Interaction | PM10 + Season + Temperature Interaction | PM10 + Season + Temperature + Influenza Interaction | |
PM10 | 1.03 (0.90.1.18) | 0.90 (0.76–1.06) | 0.99 (0.73–1.03) | 0.99 (0.70–1.40) |
PM10 and season interaction: | ||||
PM10 and spring | N/A | 1 (ref) | 1 (ref) | 1 (ref) |
PM10 and summer | N/A | 1.14 (0.93–1.41) | 1.03 (0.82–1.29) | 1.03 (0.82–1.29) |
PM10 and autumn | N/A | 1.17 (1.04–1.33) | 1.20 (1.06–1.37) | 1.21 (1.06–1.37) |
PM10 and winter | N/A | 1.16 (1.03–1.31) | 1.19 (1.03–1.36) | 1.17 (0.98–1.39) |
PM10 and temperature interaction: | ||||
PM10 and mod. temp. | N/A | N/A | 1 (ref) | 1 (ref) |
PM10 and cold temp. | N/A | N/A | 1.00 (0.91–1.11) | 0.98 (0.88–1.10) |
PM10 and hot temp. | N/A | N/A | 1.34 (1.04–1.71) | 1.34 (1.04–1.71) |
PM10 and flu incidence interaction: | ||||
PM10 and no flu | N/A | N/A | N/A | 1 (ref) |
PM10 and low flu | N/A | N/A | N/A | 1.01 (0.85–1.19) |
PM10 and medium flu | N/A | N/A | N/A | 1.04 (0.87–1.26) |
PM10 and high flu | N/A | N/A | N/A | 2.34 (1.01–5.42) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contiero, P.; Boffi, R.; Tagliabue, G.; Scaburri, A.; Tittarelli, A.; Bertoldi, M.; Borgini, A.; Favia, I.; Ruprecht, A.A.; Maiorino, A.; et al. A Case-Crossover Study to Investigate the Effects of Atmospheric Particulate Matter Concentrations, Season, and Air Temperature on Accident and Emergency Presentations for Cardiovascular Events in Northern Italy. Int. J. Environ. Res. Public Health 2019, 16, 4627. https://doi.org/10.3390/ijerph16234627
Contiero P, Boffi R, Tagliabue G, Scaburri A, Tittarelli A, Bertoldi M, Borgini A, Favia I, Ruprecht AA, Maiorino A, et al. A Case-Crossover Study to Investigate the Effects of Atmospheric Particulate Matter Concentrations, Season, and Air Temperature on Accident and Emergency Presentations for Cardiovascular Events in Northern Italy. International Journal of Environmental Research and Public Health. 2019; 16(23):4627. https://doi.org/10.3390/ijerph16234627
Chicago/Turabian StyleContiero, Paolo, Roberto Boffi, Giovanna Tagliabue, Alessandra Scaburri, Andrea Tittarelli, Martina Bertoldi, Alessandro Borgini, Immacolata Favia, Ario Alberto Ruprecht, Alfonso Maiorino, and et al. 2019. "A Case-Crossover Study to Investigate the Effects of Atmospheric Particulate Matter Concentrations, Season, and Air Temperature on Accident and Emergency Presentations for Cardiovascular Events in Northern Italy" International Journal of Environmental Research and Public Health 16, no. 23: 4627. https://doi.org/10.3390/ijerph16234627
APA StyleContiero, P., Boffi, R., Tagliabue, G., Scaburri, A., Tittarelli, A., Bertoldi, M., Borgini, A., Favia, I., Ruprecht, A. A., Maiorino, A., Voza, A., Ripoll Pons, M., Cau, A., DeMarco, C., Allegri, F., Tresoldi, C., & Ciccarelli, M. (2019). A Case-Crossover Study to Investigate the Effects of Atmospheric Particulate Matter Concentrations, Season, and Air Temperature on Accident and Emergency Presentations for Cardiovascular Events in Northern Italy. International Journal of Environmental Research and Public Health, 16(23), 4627. https://doi.org/10.3390/ijerph16234627