Screening for Autochthonous Phytoextractors in a Heavy Metal Contaminated Coal Mining Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sample Collection and Analysis
2.3. Potential Ecological Risk Assessment
2.4. Screening of Phytoextractors
2.4.1. BCF Calculation
2.4.2. TF Calculation
2.4.3. Adaptability Factor
2.5. Statistical Analyses
3. Results and Discussion
3.1. Soil HM Contamination
3.2. Vegetation Species and HM Content
3.3. Screening for Native Phytoextractors
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Larocque, A.C.; Rasmussen, P.E. An overview of trace metals in the environment, from mobilization to remediation. Environ. Geol. 1998, 33, 85–91. [Google Scholar] [CrossRef]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaq, W.; Kamran, A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liu, J.; Wang, Y.; Sun, L.; Yu, H. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in dehui, northeast China. Chemosphere 2013, 92, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, V.; Sheoran, A.; Poonia, P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: A review. Crit. Rev. Environ. Sci. Technol. 2010, 41, 168–214. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecol. 2011. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Greipsson, S. Phytoremediation. Nat. Educ. Knowl. 2011, 3, 7. [Google Scholar]
- Alkorta, I.; Hernández-Allica, J.; Becerril, J.; Amezaga, I.; Albizu, I.; Garbisu, C. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev. Environ. Sci. Biotechnol. 2004, 3, 71–90. [Google Scholar] [CrossRef]
- Rafati, M.; Khorasani, N.; Moattar, F.; Shirvany, A.; Moraghebi, F.; Hosseinzadeh, S. Phytoremediation potential of populus alba and morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int. J. Environ. Res. 2011, 5, 961–970. [Google Scholar]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Cherian, S.; Oliveira, M.M. Transgenic plants in phytoremediation: Recent advances and new possibilities. Environ. Sci. Technol. 2005, 39, 9377–9390. [Google Scholar] [CrossRef] [PubMed]
- Milić, D.; Luković, J.; Ninkov, J.; Zeremski-Škorić, T.; Zorić, L.; Vasin, J.; Milić, S. Heavy metal content in halophytic plants from inland and maritime saline areas. Open Life Sci. 2012, 7, 307–317. [Google Scholar] [CrossRef]
- Pandey, V.C. Assisted phytoremediation of fly ash dumps through naturally colonized plants. Ecol. Eng. 2015, 82, 1–5. [Google Scholar] [CrossRef]
- Wójcik, M.; Sugier, P.; Siebielec, G. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Sci. Total Environ. 2014, 487, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Gaertner, M.; Den Breeyen, A.; Hui, C.; Richardson, D.M. Impacts of alien plant invasions on species richness in mediterranean-type ecosystems: A meta-analysis. Prog. Phys. Geogr. 2009, 33, 319–338. [Google Scholar] [CrossRef]
- Hejda, M.; Pyšek, P.; Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 2009, 97, 393–403. [Google Scholar] [CrossRef]
- Powell, K.I.; Chase, J.M.; Knight, T.M. A synthesis of plant invasion effects on biodiversity across spatial scales. Am. J. Bot. 2011, 98, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Vilà, M.; Espinar, J.L.; Hejda, M.; Hulme, P.E.; Jarošík, V.; Maron, J.L.; Pergl, J.; Schaffner, U.; Sun, Y.; Pyšek, P. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 2011, 14, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Pratas, J.; Favas, P.J.; D’Souza, R.; Varun, M.; Paul, M.S. Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned pb mine in central portugal. Chemosphere 2013, 90, 2216–2225. [Google Scholar] [CrossRef] [PubMed]
- Favas, P.J.; Pratas, J.; Varun, M.; D’Souza, R.; Paul, M.S. Phytoremediation of soils contaminated with metals and metalloids at mining areas: Potential of native flora. In Environmental Risk Assessment of Soil Contamination; InTech: Rijeka, Croatia, 2014. [Google Scholar]
- Wu, Q.; Wang, S.; Thangavel, P.; Li, Q.; Zheng, H.; Bai, J.; Qiu, R. Phytostabilization potential of jatropha curcas l. In polymetallic acid mine tailings. Int. J. Phytoremed. 2011, 13, 788–804. [Google Scholar] [CrossRef] [PubMed]
- Adesodun, J.K.; Atayese, M.O.; Agbaje, T.; Osadiaye, B.A.; Mafe, O.; Soretire, A.A. Phytoremediation potentials of sunflowers (tithonia diversifolia and helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut. 2010, 207, 195–201. [Google Scholar] [CrossRef]
- Sakakibara, M.; Ohmori, Y.; Ha, N.T.H.; Sano, S.; Sera, K. Phytoremediation of heavy metal-contaminated water and sediment by eleocharis acicularis. CLEAN–Soil Air Water 2011, 39, 735–741. [Google Scholar] [CrossRef]
- Shabani, N.; Sayadi, M. Evaluation of heavy metals accumulation by two emergent macrophytes from the polluted soil: An experimental study. Environmentalist 2012, 32, 91–98. [Google Scholar] [CrossRef]
- Li, K.; Gu, Y.; Li, M.; Zhao, L.; Ding, J.; Lun, Z.; Tian, W. Spatial analysis, source identification and risk assessment of heavy metals in a coal mining area in henan, central China. Int. Biodeterior. Biodegrad. 2017. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Ladislas, S.; El-Mufleh, A.; Gérente, C.; Chazarenc, F.; Andrès, Y.; Béchet, B. Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water Air Soil Pollut. 2012, 223, 877–888. [Google Scholar] [CrossRef]
- Zhuang, P.; Yang, Q.; Wang, H.; Shu, W. Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut. 2007, 184, 235–242. [Google Scholar] [CrossRef]
- Padmavathiamma, P.K.; Li, L.Y. Phytoremediation technology: Hyper-accumulation metals in plants. Water Air Soil Pollut. 2007, 184, 105–126. [Google Scholar] [CrossRef]
- China Environmental Protection Administration. Soil Element Background Value in China; China Environmental Science Press: Beijing, China, 1990.
- Awofolu, O. A survey of trace metals in vegetation, soil and lower animal along some selected major roads in metropolitan city of lagos. Environ. Monit. Assess. 2005, 105, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Degraeve, N. Carcinogenic, teratogenic and mutagenic effects of cadmium. Mutat. Res./Rev. Genet. Toxicol. 1981, 86, 115–135. [Google Scholar] [CrossRef]
- Salem, H.; Eweida, E.A.; Farag, A. Heavy metals in drinking water & their environment impact on human health. In Proceedings of the International Conference for Environmental Hazards Mitigation, Oula, Egypt, 9–12 September 2000; pp. 542–556. [Google Scholar]
- Leung, A.O.; Duzgoren-Aydin, N.S.; Cheung, K.; Wong, M.H. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environ. Sci. Technol. 2008, 42, 2674–2680. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual Part A; Office of Emergency and Remedial Response: Washington, DC, USA, 1989; Volume 1.
- Peijnenburg, W.; Baerselman, R.; De Groot, A.; Jager, T.; Leenders, D.; Posthuma, L.; Van Veen, R. Quantification of metal bioavailability for lettuce (Lactuca sativa L.) in field soils. Arch. Environ. Contam. Toxicol. 2000, 39, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-L. Flora Reipublicae Popularis Sinicae; Science Press: Beijing, China, 1981. (In Chinese) [Google Scholar]
- Chaney, R. Toxic element accumulation in soils and crops: Protecting soil fertility and agricultural food-chains. In Inorganic Contaminants in the Vadose Zone; Springer: New York, NY, USA, 1989; pp. 140–158. [Google Scholar]
- Morel, J.-L.; Echevarria, G.; Goncharova, N. Phytoremediation of Metal-Contaminated Soils; Springer: Berlin, Germany, 2006; Volume 68. [Google Scholar]
- Reeves, R.D.; Baker, A.J. Metal accumulating plants. In Phytoremediation of Toxic Metals Using Plants to Clean up the Environment; Raskin, I., Ensley, B.D., Eds.; John Wiley & Sons Inc.: New York, NY, USA, 2000. [Google Scholar]
- Bar-Yosef, B.; Barrow, N.; Goldshmid, J. Inorganic Contaminants in the Vadose Zone; Springer: Berlin, Germany, 2012; Volume 74. [Google Scholar]
- Baker, A. Metal tolerance. New Phytol. 1987, 106, 93–111. [Google Scholar] [CrossRef]
- Baker, A.J. Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Baker, A.J.; Walker, P.L. Ecophysiology of metal uptake by tolerant plants. In Heavy Metal Tolerance in Plants. Evolutionary Aspects; CRC Press: Boca Raton, FL, USA, 1989; pp. 155–176. [Google Scholar]
- Taylor, G.J. Exclusion of metals from the symplasm: A possible mechanism of metal tolerance in higher plants. J. Plant Nutr. 1987, 10, 1213–1222. [Google Scholar] [CrossRef]
- Baker, A.J.; Whiting, S.N. In search of the holy grail—A further step in understanding metal hyperaccumulation? New Phytol. 2002, 155, 1–4. [Google Scholar] [CrossRef]
- Singh, R.; Singh, D.; Kumar, N.; Bhargava, S.; Barman, S. Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. J. Environ. Biol. 2010, 31, 421–430. [Google Scholar] [PubMed]
- Jamil, S.; Abhilash, P.; Singh, N.; Sharma, P. Jatropha curcas: A potential crop for phytoremediation of coal fly ash. J. Hazard. Mater. 2009, 172, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Malar, S.; Manikandan, R.; Favas, P.J.; Sahi, S.V.; Venkatachalam, P. Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in sesbania grandiflora: A potential plant for phytoremediation. Ecotoxicol. Environ. Saf. 2014, 108, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Alia, N.; Sardar, K.; Said, M.; Salma, K.; Sadia, A.; Sadaf, S.; Toqeer, A.; Miklas, S. Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment. Int. J. Environ. Res. Public Health 2015, 12, 7400–7416. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.N.; Husain, S.; Nazir, I. Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pak. J. Bot. 2010, 42, 291–301. [Google Scholar]
- Sun, Y.; Zhou, Q.; Wang, L.; Liu, W. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. As a potential cd-hyperaccumulator. J. Hazard. Mater. 2009, 161, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Zhou, Q.; Xiao, H.; Yang, C.; Hu, Y.; Ren, L. Hyperaccumulative property comparison of 24 weed species to heavy metals using a pot culture experiment. Environ. Monit. Assess. 2009, 152, 299. [Google Scholar] [CrossRef] [PubMed]
- Nawab, J.; Khan, S.; Shah, M.T.; Qamar, Z.; Din, I.; Mahmood, Q.; Gul, N.; Huang, Q. Contamination of soil, medicinal, and fodder plants with lead and cadmium present in mine-affected areas, northern pakistan. Environ. Monit. Assess. 2015, 187, 605. [Google Scholar] [CrossRef] [PubMed]
- Alirzayeva, E.G.; Shirvani, T.S.; Alverdiyeva, S.M.; Shukurov, E.S.; Öztürk, L.; Ali-zade, V.M.; Çakmak, İ. Heavy metal accumulation in artemisia and foliaceous lichen species from the Azerbaijan flora. For. Snow Landsc. Res. 2006, 80, 339–348. [Google Scholar]
- Lei, D.; Duan, C. Restoration potential of pioneer plants growing on lead-zinc mine tailings in lanping, southwest China. J. Environ. Sci. 2008, 20, 1202–1209. [Google Scholar] [CrossRef]
- Abe, T.; Fukami, M.; Ogasawara, M. Cadmium accumulation in the shoots and roots of 93 weed species. Soil Sci. Plant Nutr. 2008, 54, 566–573. [Google Scholar] [CrossRef]
Pb | Cr | Cu | Zn | Cd | |
---|---|---|---|---|---|
Backgroundin Henan | 19.60 ± 4.62 | 63.80 ± 13.25 | 19.70 ± 4.80 | 60.10 ± 15.30 | 0.07 ± 0.02 |
CNS (GB15618-1995) | 35 I, 300 II | 90 I | 35 I, 100 II | 100 I | 0.20 I, 0.60 II |
Plants at the Sampling Location | Pb | Cr | Cu | Zn | Cd |
---|---|---|---|---|---|
Zea mays Linn. (H) | 43.21 ± 18.55 ac | 38.76 ± 11.69 a | 20.61 ± 6.71 ab | 62.18 ± 26.83 ab | 0.35 ± 0.16 ab |
Arthraxon hispidus (Trin.) Makino (H) | 79.03 ± 12.10 cd | 51.13 ± 9.28 a | 26.83 ± 3.06 ab | 130.23 ± 42.15 ab | 0.92 ± 0.47 ab |
Bidens pilosa Linn. (H) | 69.1 ± 22.04b cd | 32.75 ± 9.11 a | 24.86 ± 5.02 ab | 134.00 ± 38.38 ab | 0.82 ± 0.57 ab |
Artemisia argyi Lévl. et Van. (H) | 91.13 ± 25.51 d | 41.85 ± 8.07 a | 29.88 ± 4.63 b | 172.38 ± 30.93 b | 1.38 ± 0.28 b |
Artemisia roxburghiana Bess. (H) | 23.96 ± 4.81 ab | 28.28 ± 2.90 a | 12.25 ± 3.29 a | 52.55 ± 15.37 a | 0.18 ± 0.06 a |
Artemisia scoparia Waldst. Et Kit. (H) | 66.93 ± 15.22 bcd | 60.4 ± 22.58 a | 23.77 ± 4.29 ab | 88.08 ± 28.37 ab | 0.45 ± 0.13 ab |
Salsola collina Pall. (H) | 28.36 ± 4.40 ab | 30.13 ± 1.85 a | 13.16 ± 0.91 ab | 51.73 ± 0.82 a | 0.17 ± 0.02 a |
Ailanthus altissima (Mill.) Swingle (T) | 78.59 ± 8.36 cd | 51.46 ± 6.41 a | 25.75 ± 2.76 ab | 119.79 ± 35.06 ab | 0.79 ± 0.39 ab |
Humulus scandens (Lour.) Merr. (H) | 69.67 ± 2.74 bcd | 54.27 ± 6.14 a | 23.15 ± 0.63 ab | 89.94 ± 1.86 ab | 0.42 ± 0.04 ab |
Glycine max (Linn.) Merr. (H) | 19.25 ± 4.72 a | 48.52 ± 19.78 a | 12.14 ± 11.62 a | 97.19 ± 59.06 | 0.51 ± 0.41 ab |
Populus adenopoda Maxim. (T) | 75.05 ± 2.65 cd | 50.13 ± 2.00 a | 23.06 ± 0.54 ab | 95.35 ± 3.55 ab | 0.47 ± 0.09 ab |
Broussonetia papyrifera (Linn.) L’Hér. ex Vent. (T) | 81.77 ± 9.36 cd | 44.99 ± 3.14 a | 26.20 ± 3.68 ab | 132.09 ± 40.29 ab | 0.88 ± 0.50 ab |
Allium tuberosum Rottler ex Sprengle (H) | 77.05 ± 0.65 cd | 52.02 ± 0.11 a | 24.34 ± 0.75 ab | 99.25 ± 0.35 ab | 0.54 ± 0.01 ab |
SD | 26.59 | 14.05 | 7.32 | 45.82 | 0.45 |
Mean | 61.78 | 44.97 | 22.00 | 101.90 | 0.60 |
CV | 0.43 | 0.31 | 0.33 | 0.45 | 0.74 |
Plants | Status | Habitat | Pb | Cr | Cu | Zn | Cd |
---|---|---|---|---|---|---|---|
Zea mays Linn. (H) | D | MRS | 7.71 ± 2.16 b | 23.27 ± 0.02 ac | 20.32 ± 4.22 a | 31.75 ± 9.38 a | 0.50 ± 0.16 ab |
Arthraxon hispidus (Trin.) Makino (H) | D | CRS | 8.10 ± 0.19 b | 34.93 ± 0.68 c | 12.73 ± 2.28 a | 56.00 ± 8.80 a | 0.54 ± 0.05 ab |
Bidens pilosa Linn. (H) | D | CRS | 6.86 ± 0.56 b | 23.42 ± 2.56 ac | 12.95 ± 0.81 a | 81.09 ± 21.71 a | 1.16 ± 0.3 ab |
Artemisia argyi Lévl. et Van. (H) | D | CRS | 15.45 ± 2.62 c | 29.05 ± 3.91 bc | 19.13 ± 4.28 a | 56.35 ± 9.37 a | 2.67 ± 0.69 c |
Artemisia roxburghiana Bess. (H) | D | MRS | 6.45 ± 1.04 b | 20.73 ± 2.49 ab | 19.29 ± 3.72 a | 87.68 ± 26.74 a | 1.48 ± 0.33 b |
Artemisia scoparia Waldst. Et Kit. (H) | D | CRS | 14.01 ± 1.73 c | 30.00 ± 7.51 bc | 37.08 ± 13.52 b | 446.25 ± 55.84 b | 2.62 ± 0.16 c |
Salsola collina Pall. (H) | D | MRS | 0.59 ± 0.38 a | 13.13 ± 0.23 a | 5.92 ± 0.09 a | 30.75 ± 3.65 a | 0.34 ± 0.03 a |
Ailanthus altissima (Mill.) Swingle (T) | R | CRS | 10.58 ± 2.61 bc | 29.70 ± 5.58 bc | 10.40 ± 0.68 a | 53.74 ± 24.04 a | 0.76 ± 0.27 ab |
Humulus scandens (Lour.) Merr. (H) | D | CRS | 6.40 ± 1.25 ab | 25.27 ± 5.73 ac | 12.03 ± 0.16 a | 58.59 ± 26.91 a | 0.45 ± 0.16 a |
Glycine max (Linn.) Merr. (H) | C | CRS | 3.65 ± 0.52 a | 32.70 ± 4.70 c | 15.02 ± 2.29 a | 47.8 ± 11.36 a | 0.33 ± 0.14 a |
Populus adenopoda Maxim. (T) | C | MRS | 6.37 ± 0.40 b | 29.35 ± 5.34 bc | 12.80 ± 0.40 a | 98.39 ± 60.59 a | 0.74 ± 0.12 ab |
Broussonetia papyrifera (Linn.) L’Hér. ex Vent. (T) | C | CRS | 10.47 ± 2.52 bc | 29.92 ± 1.94 bc | 9.63 ± 2.03 a | 36.46 ± 13.29 a | 0.87 ± 0.34 ab |
Allium tuberosum Rottler ex Sprengle (H) | C | MRS | 5.51 ± 0.04 ab | 35.36 ± 2.08 c | 17.29 ± 1.19 a | 88.3 ± 5.93 a | 0.43 ± 0.09 a |
Plants | Status | Habitat | Pb | Cr | Cu | Zn | Cd |
---|---|---|---|---|---|---|---|
Zea mays Linn. (H) | D | MRS | 8.57 ± 3.77 bc | 24.72 ± 2.85 a | 13.01 ± 4.95 ab | 63.13 ± 46.55 ab | 0.66 ± 0.32 ab |
Arthraxon hispidus (Trin.) Makino (H) | D | CRS | 13.46 ± 2.7 c | 27.98 ± 6.43 a | 16.33 ± 3.73 b | 51.73 ± 14.48 ab | 1.40 ± 0.38 bc |
Bidens pilosa Linn. (H) | D | CRS | 2.96 ± 0.74 ab | 25.61 ± 5.37 a | 14.93 ± 2.18 ab | 123.63 ± 29.73 b | 0.38 ± 0.09 a |
Artemisia argyi Lévl. et Van. (H) | D | CRS | 5.71 ± 1.92 ab | 25.5 ± 5.83 a | 12.55 ± 2.43 ab | 52.7 ± 11.85 ab | 1.5 ± 0.33 c |
Artemisia roxburghiana Bess. (H) | D | MRS | 1.57 ± 0.37 ab | 23.16 ± 4.83 a | 6.76 ± 1.38 a | 19.56 ± 3.44 a | 0.22 ± 0.05 a |
Artemisia scoparia Waldst. Et Kit. (H) | D | CRS | 8.03 ± 2.42 bc | 20.57 ± 2.36 a | 9.35 ± 1.59 ab | 47.85 ± 12.73 ab | 0.46 ± 0.06 a |
Salsola collina Pall. (H) | D | MRS | 0.56 ± 0.14 a | 14.67 ± 2.05a | 8.39 ± 0.79 ab | 45.78 ± 18.63 ab | 0.85 ± 0.12 ac |
Plants | Sample Types | BCF Pb | BCF Cr | BCF Cu | BCF Zn | BCF Cd |
---|---|---|---|---|---|---|
Zea mays Linn. | leaf | 0.18 | 0.60 | 0.99 | 0.51 | 1.11 |
root | 0.20 | 0.64 | 0.63 | 1.02 | 1.47 | |
Glycine max (Linn.) Merr. | AG | 0.19 | 0.67 | 1.24 | 0.49 | 0.46 |
Arthraxon hispidus (Trin.) Makino | AG | 0.10 | 0.68 | 0.47 | 0.43 | 0.59 |
root | 0.17 | 0.55 | 0.61 | 0.40 | 1.52 | |
Ailanthus altissima (Mill.) Swingle | leaf | 0.13 | 0.58 | 0.40 | 0.45 | 0.96 |
Bidens pilosa Linn. | AG | 0.10 | 0.72 | 0.52 | 0.61 | 1.41 |
root | 0.04 | 0.78 | 0.60 | 0.92 | 0.46 | |
Artemisia argyi Lévl. et Van. | AG | 0.17 | 0.69 | 0.64 | 0.33 | 1.93 |
root | 0.06 | 0.61 | 0.42 | 0.31 | 1.09 | |
Artemisia roxburghiana Bess. | AG | 0.27 | 0.73 | 1.57 | 1.67 | 8.22 |
root | 0.07 | 0.82 | 0.55 | 0.37 | 1.22 | |
Artemisia scoparia Waldst. Et Kit. | AG | 0.21 | 0.50 | 1.56 | 5.07 | 5.82 |
root | 0.12 | 0.34 | 0.39 | 0.54 | 1.02 | |
Populus adenopoda Maxim. | leaf | 0.08 | 0.59 | 0.56 | 1.03 | 1.57 |
Broussonetia papyrifera (Linn.) L’Hér. ex Vent. | leaf | 0.13 | 0.67 | 0.37 | 0.28 | 0.99 |
Salsola collina Pall. | AG | 0.02 | 0.44 | 0.45 | 0.59 | 2.00 |
root | 0.02 | 0.49 | 0.64 | 0.88 | 5.00 | |
Humulus scandens (Lour.) Merr. | AG | 0.09 | 0.47 | 0.52 | 0.65 | 1.07 |
Allium tuberosum Rottler ex Sprengle | AG | 0.07 | 0.68 | 0.71 | 0.89 | 0.80 |
Plants | Sample Types | TF Pb | TF Cr | TF Cu | TF Zn | TF Cd |
---|---|---|---|---|---|---|
Zea mays Linn. | leaf | 0.90 | 0.94 | 1.56 | 0.50 | 0.76 |
Arthraxon hispidus (Trin.) Makino | AG | 0.60 | 1.25 | 0.78 | 1.08 | 0.39 |
Bidens pilosa Linn. | AG | 2.32 | 0.91 | 0.87 | 0.66 | 3.05 |
Artemisia argyi Lévl. et Van. | AG | 2.71 | 1.14 | 1.52 | 1.07 | 1.78 |
Artemisia roxburghiana Bess. | AG | 4.11 | 0.90 | 2.85 | 4.48 | 6.73 |
Artemisia scoparia Waldst. Et Kit. | AG | 1.74 | 1.46 | 3.97 | 9.33 | 5.70 |
Salsola collina Pall. | AG | 1.05 | 0.90 | 0.71 | 0.67 | 0.40 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Lun, Z.; Zhao, L.; Zhu, Q.; Gu, Y.; Li, M. Screening for Autochthonous Phytoextractors in a Heavy Metal Contaminated Coal Mining Area. Int. J. Environ. Res. Public Health 2017, 14, 1068. https://doi.org/10.3390/ijerph14091068
Li K, Lun Z, Zhao L, Zhu Q, Gu Y, Li M. Screening for Autochthonous Phytoextractors in a Heavy Metal Contaminated Coal Mining Area. International Journal of Environmental Research and Public Health. 2017; 14(9):1068. https://doi.org/10.3390/ijerph14091068
Chicago/Turabian StyleLi, Kuangjia, Zijian Lun, Lin Zhao, Qilong Zhu, Yansheng Gu, and Manzhou Li. 2017. "Screening for Autochthonous Phytoextractors in a Heavy Metal Contaminated Coal Mining Area" International Journal of Environmental Research and Public Health 14, no. 9: 1068. https://doi.org/10.3390/ijerph14091068
APA StyleLi, K., Lun, Z., Zhao, L., Zhu, Q., Gu, Y., & Li, M. (2017). Screening for Autochthonous Phytoextractors in a Heavy Metal Contaminated Coal Mining Area. International Journal of Environmental Research and Public Health, 14(9), 1068. https://doi.org/10.3390/ijerph14091068