Attractive Toxic Sugar Bait (ATSB) For Control of Mosquitoes and Its Impact on Non-Target Organisms: A Review
Abstract
:1. Perspectives and Overview
2. Toxic Sugar Baits
3. Mosquito Attractants and Attractant Studies
4. Attractive Toxic Sugar Baits Applications for Control of Adult and Larval Mosquitoes
5. Non-Target Insects
6. Preliminary Studies for Future Applications of ATSB/TSBs
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ATSB | Attractive toxic sugar bait |
ds-RNA | Double stranded RNA |
IMM | Integrated mosquito management |
LRC | Landing rate count |
MOA | Mode of action |
TSB | Toxic sugar bait |
WHO | World Health Organization |
References
- World Health Organization. A Global Brief on Vector-Borne Diseases; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- American Mosquito Control Association. Best Management Practices for Integrated Mosquito Management; American Mosquito Control Association: Mount Laurel, NJ, USA, 2009. [Google Scholar]
- World Health Organization. Handbook for Integrated Vector Management; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- World Health Organization. Global Plan for Insecticide Resistance Management in Malaria Vectors; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Dethier, V.G. Chemical Insect Attractants and Repellents; Maple Press Company: York, PA, USA, 1947. [Google Scholar]
- Foster, W.A. Mosquito sugar feeding and reproductive energetics. Annu. Rev. Entomol. 1995, 40, 443–474. [Google Scholar] [CrossRef] [PubMed]
- Schlein, Y.; Müller, G.C. An approach to mosquito control: Using the dominant attraction of flowering Tamarix jordanis trees against Culex pipiens. J. Med. Entomol. 2008, 45, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.C.; Kravchenko, V.D.; Schlein, Y. Decline of Anopheles sergentii and Aedes caspius populations following presentations of attractive toxic (spinosad) sugar bait stations in oasis. J. Am. Mosq. Control Assoc. 2008, 24, 147–149. [Google Scholar] [CrossRef]
- Müller, G.C.; Beier, J.C.; Traore, S.F.; Toure, M.B.; Traore, M.M.; Bah, S.; Doumbia, S.; Schlein, Y. Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa. Malar. J. 2010, 9, 210. [Google Scholar]
- Lewis, D.J.; Domoney, C.R. Sugar meals in Phlebotominae and Simuliidae (Diptera). Proc. R. Entomol. Soc. Ser. A Gen. Entomol. 1966, 41, 175–179. [Google Scholar] [CrossRef]
- Mascari, T.M.; Foil, L.D. Laboratory evaluation of insecticide-treated sugar baits for control of Phlebotomine sand flies (Diptera: Psychodidae). J. Am. Mosq. Control Assoc. 2010, 26, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Schlein, Y.; Müller, G.C. Experimental control of Phlebotomus papatasi by spraying attractive toxic sugar bait (ATSB) on vegetation. Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.C.; Revay, E.E.; Beier, J.C. Simplified and improved monitoring traps for sampling sand flies. J. Vector Ecol. 2011, 36, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.D.; Kline, D.L.; Ali, A.; Barnard, D.R. Application of boric acid baits to plant foliage for adult mosquito control. J. Am. Mosq. Control Assoc. 2006, 22, 497–500. [Google Scholar] [CrossRef]
- Allan, S.A. Susceptibility of adult mosquitoes to insecticides in aqueous sucrose baits. J. Vector Ecol. 2011, 36, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Clements, A.N. The Biology of Mosquitoes; Volume 2: Sensory Reception and Behavior; CABI Publishing: London, UK, 1999. [Google Scholar]
- Lea, A.O. Sugar-baited insecticide residues against mosquitoes. Mosq. News 1965, 25, 65–66. [Google Scholar]
- Schlein, Y.; Pener, H. Bait-fed Culex pipiens carry the larvicide Bacillus sphaericus to larval habitats. Med. Vet. Entomol. 1990, 4, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.D.; Barnard, D.R. Boric acid bait kills adult mosquitoes (Diptera: Culicidae). J. Econ. Entomol. 2003, 96, 1559–1562. [Google Scholar] [CrossRef] [PubMed]
- Insecticide Resistance Action Committee. Mode of Action Labeling of Insecticides. Available online: http://www.irac-online.org (accessed on 16 December 2016).
- Ali, A.; Xue, R.D.; Barnard, D.R. Effects of sublethal exposure to boric acid sugar bait on adult survival, host-seeking, blood feeding behavior, and reproduction of Stegomyia albopictus. J. Am. Mosq. Control Assoc. 2006, 22, 464–468. [Google Scholar] [CrossRef]
- Lindh, J.M.; Terenius, O.; Eriksson-Gonzales, K.; Knols, B.G.J.; Faye, I. Re-introducing bacteria in mosquitoes—A method for determination of mosquito feeding preferences based on colored sugar solutions. Acta Trop. 2006, 99, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.; Park, C.; Ahn, Y.-J.; Lee, D.-K.; Chang., K.-S. Insecticidal and repellent activities of insecticide-sucrose solutions to Culex pipiens molestus (Diptera: Culicidae) under laboratory and field conditions. Pest Manag. Sci. 2011, 67, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Coy, M.R.; Sanscrainte, N.D.; Chalaire, K.C.; Inberg, A.; Maayan, I.; Glick, E.; Paldi, N.; Becnel, J.J. Gene silencing in adult Aedes aegypti mosquitoes through oral delivery of double-stranded RNA. J. Appl. Entomol. 2012, 136, 741–748. [Google Scholar] [CrossRef]
- Schlein, Y.; Müller, G.C. Diurnal resting behavior of adult Culex pipiens in arid habitat in Israel and possible control measures with toxic sugar baits. Acta Trop. 2012, 124, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Fulcher, A.; Scott, J.M.; Qualls, W.A.; Müller, G.C.; Xue, R.D. Attractive toxic sugar bait mixed with pyriproxyfen sprayed on plants against adult larval Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2014, 51, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Hossain, T.T.; Fulcher, A.; Davidson, C.; Beier, J.C.; Xue, R.D. Evaluation of boric acid sprayed on plants against salt marsh mosquitoes, Aedes taeniorhynchus (Diptera: Culicidae). Fla. Entomol. 2014, 97, 1865–1868. [Google Scholar] [CrossRef]
- Bidlingmayer, W.I.; Hem, D.G. Sugar feeding by Florida mosquitoes. Mosq. News 1973, 33, 535–538. [Google Scholar]
- Heil, M. Nectar: Generation, regulation and ecological functions. Trends Plant Sci. 2011, 16, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Knab, F. Mosquitoes as flower visitors. JNY Entomol. Soc. 1907, 15, 215–219. [Google Scholar]
- Müller, G.C.; Schlein, Y. Sugar questing mosquitoes in arid areas gather on scarce blossoms that can be used for control. Int. J. Parasitol. 2006, 36, 1077–1080. [Google Scholar]
- Theobald, F.V. A Monograph of the Culicidae or Mosquitoes; Clowes & Sons: London, UK, 1901; Volume 1. [Google Scholar]
- Joseph, S.R. Fruit feeding of mosquitoes in nature. Proc. Annu. Meet. N.J. Mosq. Exterm. Assoc. 1970, 57, 125–131. [Google Scholar]
- Müller, G.C.; Beier, J.C.; Traore, S.F.; Toure, M.B.; Traore, M.M.; Bah, S.; Doumbia, S.; Schlein, Y. Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods. Malar. J. 2010, 9, 262. [Google Scholar]
- Müller, G.C.; Xue, R.D.; Schlein, Y. Differential attraction of Aedes albopictus in the field to flowers, fruits, and honeydew. Acta Trop. 2011, 118, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.D.; Ali, A.; Kline, D.L.; Barnard, D.R. Field evaluation of boric acid-and fipronil-based bait stations against adult mosquitoes. J. Am. Mosq. Control Assoc. 2008, 25, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Beier, J.C.; Müller, G.C.; Gu, W.; Arheart, K.L.; Schlein, Y. Attractive toxic sugar bait (ATSB) methods decimate populations of Anopheles malaria vectors in arid environments regardless of the local availability of favored sugar-source blossoms. Malar. J. 2012, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Qualls, W.A.; Müller, G.C.; Revay, E.E.; Allan, S.A.; Arheart, K.L.; Beier, J.C.; Smith, M.L.; Scott, J.M.; Kravchenko, V.D.; Hausmann, A.; et al. Evaluation of attractive toxic sugar bait (ATSB)-barrier for control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida. Acta Trop. 2014, 131, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Mulla, M.S. Susceptibility of the adult eye gnat Liohippelates collusor (Diptera: Chloropidae) to neonicotinoids and spinosad insecticides. J. Vector Ecol. 2006, 31, 65–70. [Google Scholar] [CrossRef]
- Müller, G.C.; Junnila, A.; Schlein, Y. Effective control of adult Culex pipiens by spraying an attractive toxic sugar bait in the vegetation near larval habitats. J. Med. Entomol. 2010, 47, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.C.; Schlein, Y. Efficacy of toxic sugar baits against cistern-dwelling Anopheles claviger. Trans. R. Soc. Trop. Med. 2008, 102, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.C.; Junnila, A.; Qualls, W.A.; Revay, E.E.; Kline, D.L.; Allan, S.A.; Schlein, Y.; Xue, R.D. Control of Culex quinquefasciatus in a storm drain system in Florida using attractive toxic sugar bait. Med. Vet. Entomol. 2010, 24, 346–351. [Google Scholar]
- Qualls, W.A.; Xue, R.D.; Revay, E.E.; Allan, S.A.; Müller, G.C. Implications for operational control of adult mosquito production in cisterns and wells in St. Augustine, FL using attractive sugar baits. Acta Trop. 2012, 124, 158–161. [Google Scholar] [CrossRef]
- Revay, E.E.; Müller, G.C.; Qualls, W.A.; Kline, D.L.; Naranjo, D.P.; Arheart, K.L.; Kravchenko, V.D.; Yfremova, Z.; Hausmann, A.; Beier, J.C.; et al. Control of Aedes albopictus with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in St. Augustine, Florida. Parasitol. Res. 2014, 113, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Qualls, W.A.; Müller, G.C.; Traore, S.F.; Traore, M.M.; Arheart, K.L.; Doumbia, S.; Schlein, Y.; Kravchenko, V.D.; Xue, R.D.; Beier, J.C. Indoor use of attractive toxic sugar bait (ATSB) to effectively control malaria vectors in Mali, West Africa. Malar. J. 2015, 14, 301. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, D.P.; Qualls, W.A.; Müller, G.C.; Samson, D.M.; Roque, D.; Alimi, T.; Arheart, K.; Beier, J.C.; Xue, R.D. Evaluation of boric acid baits against Aedes albopictus (Diptera: Culicidae) in tropical environments. Parasitol. Res. 2013, 112, 1583–1587. [Google Scholar] [CrossRef]
- Stewart, Z.P.; Oxborough, R.M.; Tungu, P.K.; Kirby, M.J.; Rowland, M.W.; Irish, S.R. Indoor applications of attractive toxic sugar bait (ATSB) in combination with mosquito nets for control of pyrethroid-resistant mosquitoes. PLoS ONE 2013, 8, e84168. [Google Scholar] [CrossRef] [PubMed]
- Junnila, A.; Revay, E.E.; Müller, G.C.; Kravchenko, Y.; Qualls, W.A.; Xue, R.D.; Allan, S.A.; Beier, J.C.; Schlein, Y. Efficacy of attractive toxic sugar bait (ATSB) against Aedes albopictus with garlic oil encapsulated in beta-cyclodextrin as the active ingredient. Acta Trop. 2015, 152, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Revay, E.E.; Schlein, Y.; Tsabari, O.; Kravchenko, V.; Qualls, W.A.; Xue, R.D.; Beier, J.C.; Traore, S.F.; Doumbia, S.; Hausmann, A.; et al. Formulation of attractive toxic sugar bait (ATSB) with safe EPA-exempt substance significantly diminishes the Anopheles sergentii population in a desert oasis. Acta Trop. 2015, 150, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Schlein, Y.; Müller, G.C. Decrease of larval and subsequent adult Anopheles sergentii populations following feeding of adult mosquitoes from Bacillus sphaericus- containing attractive sugar baits. Parasit. Vectors 2015, 8, 244. [Google Scholar] [CrossRef] [PubMed]
- Khallaayoune, K.; Qualls, W.A.; Revay, E.E.; Allan, S.A.; Arheart, K.L.; Kravchenko, V.D.; Xue, R.D.; Schlein, Y.; Beier, J.C.; Müller, G.C. Attractive toxic sugar baits: Control of mosquitoes with the low-risk active ingredient dinotefuran and potential impacts on non-target organisms in Morocco. Environ. Entomol. 2013, 42, 1040–1045. [Google Scholar] [CrossRef] [PubMed]
- Florida Coordinating Council on Mosquito Control. Florida Mosquito Control: The State Mission as Defined by Mosquito Controllers, Regulators, and Environmental Managers; Florida Coordinating Council on Mosquito Control, University of Florida: Gainesville, FL, USA, 1998. [Google Scholar]
- Rose, R.I. Pesticides and public health: Integrated methods of mosquito management. Emerg. Infect. Dis. 2001, 7, 17–23. [Google Scholar] [CrossRef] [PubMed]
Group # | Subgroup | Class | Common Name | Mode of Action | % Active Ingredient |
---|---|---|---|---|---|
1 | 1A | Carbamates | Bendiocarb | Acetylcholinesterase (AChE) inhibitors | 10 g/L |
1B | Organophosphates | Pirimiphos-methyl | |||
Malathion | 0.10, 0.25, 0.50, 1.0 mg | ||||
2 | 2B | Phenylprazoles (Fiproles) | Fipronil | GABA-gated chloride channel blockers | 0.10% |
9.10% | |||||
3 | 3A | Pyrethroids | λ-Cyhalothrin | Sodium channel modulators | 10 g/L |
Bifenthrin | |||||
Cyfluthrin | |||||
Deltamethrin | |||||
Etofenprox | |||||
Permethrin | |||||
D-Phenothrin (sumithrin) | |||||
α-Cypermethrin | |||||
Bifenthrin | 7.90% | ||||
Cyfluthrin | 11.80% | ||||
Deltamethrin | 4.75% | ||||
Permethrin | 36.80% | ||||
4 | 4A | Neonicotinoids | dinotefuran | Nicotinic acetylcholine receptor (nAChR) competitive modulators | 0.01% |
Imidacloprid | 0.50% | ||||
Thiamethoxam | 21.60% | ||||
5 | 5 | Spinosyns | Spinosad | Nicotinic acetylcholine receptor (nAChR) allosteric modulators | 0.04% |
2.46% | |||||
6 | 6 | Avermectins, Milbemycins | Ivermectin | Glutamate-gated chlorida channel (GluCl) allosteric modulators | 0.10% |
7 | 7C | Pyriproxyfen | Pyriproxyfen | Juvenile hormone mimics | 1 mg/L |
8 | 8D | Borates | Boric acid | Miscellaneous non-specific (multi-site) inhibitors | 0.0001%, 0.001%, 0.01%, 0.1%, 1% |
0.10% | |||||
0.25%, 0.50%, 0.75%, 1% | |||||
1.50% | |||||
2% | |||||
11 | 11A | Biopesticide | Bacillus thuringiensis Berliner. | Microbial gut disruptors | N/A |
11B | Biopesticide | Bacillus sphaericus | Microbial gut disruptors | N/A | |
13 | 13 | Pyrroles | Chlorfenapyr | Uncouplers of oxidative phosporylation via disruption of proton gradient | 0.50% |
21.45% | |||||
21 | 21A | METI acaricides and insecticides | Tolfenpyrad | Mitochondrial complex I electron transport inhibitors | 1% |
N/A | N/A | Double stranded RNA (dsRNA) | Remebee® | Endogenous insect gene slicer | 0, 100, 500, 1000, 5000 ng/µL |
Botanical | Eugenol | Unknown | 0.80% | ||
1% | |||||
beta-cyclodextrin encapsulated garlic-oil | 0.40% | ||||
Biopesticide | Klebsiella sp. | 1000 bacteria/mL | |||
P. stewartii sp. | |||||
Pseudomonas sp. | |||||
P. stewartii sp. |
Attractant/Phagostimulant | Active Ingredient | Reference # and Year of Study | Mosquito Species | Results/Control |
---|---|---|---|---|
~85% overripe/rotting nectarines and 15% brown sugar | Spinosad | [41] 2008 | An. claviger | ~90% |
75% overripe/rotting nectarines and 10% brown sugar | Spinosad | [8] 2008 | Ae. caspius | 91% |
An. sergentii | ||||
80% overripe/rotting nectarines and 10% brown sugar | Spinosad | [40] 2010 | Cx. pipens s.l. | 94% |
75% overripe/rotting Prickly pear and 20% brown sugar | Boric acid | [37] 2012 | An. sergentii | ~97% |
29% Goya Mango juice and 29% Goya Guava juice and 21% brown sugar | [46] 2013 | Ae. albopictus | ~52% | |
30% overripe/rotting Guava and 30% Honey melon and 12% brown sugar | [45] 2015 | An. gambiae | ~92% | |
30% overripe/rotting Guava and 30% Honey melon and 12% brown sugar | Boric acid | [9] 2010 | Anopheles arabiensis Patton | 90% |
An. gambiae | ||||
95% overripe/rotting Plums and 10% brown sugar | Boric acid | [42] 2010 | Cx. quinquefasciatus | ~85% |
95% overripe/rotting Plums and 10% brown sugar | N/A | [43] 2012 | Ae. albopictus | >90% Stained |
Anopheles crucians Wiedemann | ||||
Cx. quinquefasciatus | ||||
Toxorhynchites rutilus rutilus Theobald | ||||
35% Guava juice and 10% brown sugar | Boric acid | [47] 2013 | An. arabiensis | 41% |
An. gambiae s.s. | 85% | |||
Cx. quinquefasciatus | 40% | |||
Tolfenpyrad | An. gambiae s.s. | 86% | ||
An. arabiensis | 45% | |||
Cx. quinquefasciatus | 36% | |||
Chlorfenapyr | An. gambiae s.s. | 100% | ||
An. arabiensis | 48% | |||
Cx. quinquefasciatus | 43% |
Attractant/Phagostimulant | Active Ingredient | Reference # and Year of Study | Mosquito Species | Results/Control |
---|---|---|---|---|
Commercial-Attractant Formulation | dinotefuran | [51] 2013 | Culex theileri Theobald | >70% |
Ae. aegypti | ||||
Ae. caspius | ||||
Culex perexiguus Theobald | ||||
Cx. pipiens | ||||
Cx. quinquefasciatus | ||||
Eugenol | [38] 2014 | Aedes infirmatus Dyar and Knab | 94% | |
An. crucians | 62% | |||
Cx. nigripalpus | 70% | |||
Culiseta melanura (Coquillett) | 55% | |||
Uranotaenia sapphirina (Osten Sacken) | 69% | |||
Aedes atlanticus Dyar and Knab | 89% | |||
Culex erraticus (Dyar and Knab) | 57% | |||
[44] 2014 | Ae. albopictus | 62% | ||
beta-cyclodextrin encapsulated garlic-oil | [48] 2015 | Ae. albopictus | 70% | |
[49] 2015 | An. sergentii | 81% four days post application, 97.5% overall decline |
Reference # and Year of Study | Evaluation Method of ASB | Non-Targets Insect Orders | Percentage of Insects Stained |
---|---|---|---|
[51] 2013 | Consumption effects-Barrier | Hymenoptera | 1.30% |
Lepidoptera | 0.60% | ||
Coleoptera | 0.60% | ||
Diptera | 15.00% | ||
Hemiptera | 0.80% | ||
Orthoptera | 1.00% | ||
Neuroptera | 0.30% | ||
[38] 2014 | Consumption effects-Barrier | Hymenoptera | 15% Flowering, 0.85% Non-flowering |
Lepidoptera | 6.71% Flowering, 0.75% Non-flowering | ||
Coleoptera | 5.18% Flowering, 0.69% Non-flowering | ||
Diptera | 17.85% Flowering, 1.45% Non-flowering | ||
Hemiptera | 3.21% Flowering, 0.27% Non-flowering | ||
Orthoptera | 1.25% Flowering, 0.50 Non-flowering | ||
[44] 2014 | Consumption effects-Barrier | Hymenoptera | 9.2% Flowering, 0.4% Non-flowering |
Lepidoptera | 2.5% Flowering, 0.6% Non-flowering | ||
Coleoptera | 3.5% Flowering, 0.5% Non-flowering | ||
Diptera | 11.0% Flowering, 2.1% Non-flowering | ||
Hemiptera | 7.6% Flowering, 0.0% Non-flowering | ||
Orthoptera | Insect order not evaluated | ||
Consumption effects-Bait Stations | Hymenoptera | 0.003 | |
Lepidoptera | 0.30% | ||
Coleoptera | 0.10% | ||
Diptera | 4.30% | ||
Hemiptera | Insect order not evaluated | ||
Orthoptera | 0.30% | ||
[49] 2015 | Consumption effects | Does not specify | 9.2%: 93% of the 9.2% from flowering |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorenzano, J.M.; Koehler, P.G.; Xue, R.-D. Attractive Toxic Sugar Bait (ATSB) For Control of Mosquitoes and Its Impact on Non-Target Organisms: A Review. Int. J. Environ. Res. Public Health 2017, 14, 398. https://doi.org/10.3390/ijerph14040398
Fiorenzano JM, Koehler PG, Xue R-D. Attractive Toxic Sugar Bait (ATSB) For Control of Mosquitoes and Its Impact on Non-Target Organisms: A Review. International Journal of Environmental Research and Public Health. 2017; 14(4):398. https://doi.org/10.3390/ijerph14040398
Chicago/Turabian StyleFiorenzano, Jodi M., Philip G. Koehler, and Rui-De Xue. 2017. "Attractive Toxic Sugar Bait (ATSB) For Control of Mosquitoes and Its Impact on Non-Target Organisms: A Review" International Journal of Environmental Research and Public Health 14, no. 4: 398. https://doi.org/10.3390/ijerph14040398