Prevailing Opinions on Connected Health in Austria: Results from an Online Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants’ Recruitment
2.3. Study Questionnaire
2.4. Data Analysis
3. Results
3.1. Socio-Demographic Characteristics
3.2. Perceived Benefits and Barriers
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Lustria, M.L.; Smith, S.A.; Hinnant, C.C. Exploring digital divides: An examination of ehealth technology use in health information seeking, communication and personal health information management in the USA. Health Inform. J. 2011, 17, 224–243. [Google Scholar] [CrossRef] [PubMed]
- Showell, C.; Nohr, C. How should we define ehealth, and does the definition matter? Stud. Health Technol. Inform. 2012, 180, 881–884. [Google Scholar] [PubMed]
- Doarn, C.R.; Pruitt, S.; Jacobs, J.; Harris, Y.; Bott, D.M.; Riley, W.; Lamer, C.; Oliver, A.L. Original research federal efforts to define and advance telehealth-a work in progress. Telemed. E Health 2014, 20, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Aires, L.M.; Finley, J.P. Telemedicine activity at a Canadian university medical school and its teaching hospitals. J. Telemed. Telecare 2000, 6, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.B.; Sorensen, N.S.; Petersen, M.G.; Kjeldsen, G.F. Towards a shared service centre for telemedicine: Telemedicine in Denmark, and a possible way forward. Health Inform. J. 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Eysenbach, G. What is e-health? J. Med. Internet Res. 2001, 3, E20. [Google Scholar] [CrossRef] [PubMed]
- Iglehart, J.K. Connected health: Emerging disruptive technologies. Health Aff. 2014, 33, 190. [Google Scholar] [CrossRef] [PubMed]
- Barr, P.J.; Brady, S.C.; Hughes, C.M.; McElnay, J.C. Public knowledge and perceptions of connected health. J. Eval. Clin. Pract. 2014, 20, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Lluch, M. Healthcare professionals’ organisational barriers to health information technologies—A literature review. Int. J. Med. Inform. 2011, 80, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, N.; Safdari, R. Patient monitoring in mobile health: Opportunities and challenges. Med. Arch. 2014, 68, 57–60. [Google Scholar] [PubMed]
- Kailas, A. A Generic Conceptual Model Linking Wellness, Health Lifestyles, and User Assistance. In Proceedings of the 13th IEEE International Conference on e-Health Networking Applications and Services (Healthcom), Columbia, MO, USA, 13–15 June 2011; pp. 266–269.
- Broens, T.H.; Huis in’t Veld, R.M.; Vollenbroek-Hutten, M.M.; Hermens, H.J.; van Halteren, A.T.; Nieuwenhuis, L.J. Determinants of successful telemedicine implementations: A literature study. J. Telemed. Telecare 2007, 13, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Haluza, D.; Jungwirth, D. ICT and the future of health care: Aspects of doctor-patient communication. Int. J. Technol. Assess. 2014, 30, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Haluza, D.; Jungwirth, D. ICT and the future of health care: Aspects of health promotion. Int. J. Med. Inform. 2015, 84, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Prestin, A.; Vieux, S.N.; Chou, W.Y. Is online health activity alive and well or flatlining? Findings from 10 years of the health information national trends survey. J. Health Commun. 2015, 20, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Prensky, M. Digital Natives, Digital Immigrants Part 1. In On the Horizon; MCB UP Ltd.: Bingley, UK, 2001; Volume 9, pp. 1–6. [Google Scholar]
- Kontos, E.; Blake, K.D.; Chou, W.Y.; Prestin, A. Predictors of ehealth usage: Insights on the digital divide from the health information national trends survey 2012. J. Med. Internet Res. 2014, 16, e172. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.B. Researching internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. J. Comput. Mediat. Commun. 2005, 10. [Google Scholar] [CrossRef]
- Leiner, D.J. SoSci Survey Version 2.5.00-i (Computer Software). 2014. Available online: http://www.soscisurvey.com (accessed on 5 April 2016).
- Batinic, B.; Bosnjak, M. Fragebogenuntersuchungen im Internet. In Internet für Psychologen; Springer: Berlin, Germany; Heidelberg, Germany, 2000; pp. 221–244. [Google Scholar]
- Fabiola Baltar, I.B. Social research 2.0: Virtual snowball sampling method using facebook. Internet Res. 2012, 22, 57–74. [Google Scholar] [CrossRef]
- Herring, S.C. Questioning the generational divide: Technological exoticism and adult constructions of online youth identity. Youth Identity Digit. Media 2008. [Google Scholar] [CrossRef]
- Repique, R.J. Digital natives, digital immigrants: Dichotomy or diversity in psychiatric nursing? J. Am. Psychiatr. Nurses Assoc. 2013, 19, 100–101. [Google Scholar] [CrossRef] [PubMed]
- Simon, S.R.; Evans, J.S.; Benjamin, A.; Delano, D.; Bates, D.W. Patients’ attitudes toward electronic health information exchange: Qualitative study. J. Med. Internet Res. 2009, 11, e30. [Google Scholar] [CrossRef] [PubMed]
- Driessen, J.; Bonhomme, A.; Chang, W.; Nace, D.A.; Kavalieratos, D.; Perera, S.; Handler, S.M. Nursing home provider perceptions of telemedicine for reducing potentially avoidable hospitalizations. J. Am. Med. Dir. Assoc. 2016, 17, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Kluge, E.H.W. Ethical and legal challenges for health telematics in a global world: Telehealth and the technological imperative. Int. J. Med. Inform. 2011, 80, E1–E5. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.G. Social, ethical and legal barriers to e-health. Int. J. Med. Inform. 2007, 76, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Cabieses, B.; Faba, G.; Espinoza, M.; Santorelli, G. The link between information and communication technologies and global public health: Pushing forward. Telemed. J. E Health 2013, 19, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.C. The promise of e-health—A Canadian perspective. E-Health Int. 2002, 1, 4. [Google Scholar]
- Statistik Austria. Register-Based Census Held on 31 October 2011. Available online: http://www.statistik.at/web_en/statistics/PeopleSociety/population/population_censuses_register_based_census_register_based_labour_market_statistics/totaL_population/index.html (accessed on 5 April 2016).
- Hesse, B.W.; O’Connell, M.; Augustson, E.M.; Chou, W.Y.; Shaikh, A.R.; Rutten, L.J. Realizing the promise of Web 2.0: Engaging community intelligence. J. Health Commun. 2011, 1, 10–31. [Google Scholar] [CrossRef] [PubMed]
- Gururajan, R.; Hafeez-Baig, A. An empirical study to determine factors that motivate and limit the implementation of ICT in healthcare environments. BMC Med. Inform. Decis. Mak. 2014, 14, 98. [Google Scholar] [CrossRef] [PubMed]
- Morgan, S.A.; Agee, N.H. Mobile healthcare. Front. Health Serv. Manag. 2012, 29, 3–10. [Google Scholar]
- Magnusson, L.; Hanson, E.J. Ethical issues arising from a research, technology and development project to support frail older people and their family carers at home. Health Soc. Care Community 2003, 11, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, M.P.; Desmartis, M.; Labrecque, M.; Car, J.; Pagliari, C.; Pluye, P.; Fremont, P.; Gagnon, J.; Tremblay, N.; Legare, F. Systematic review of factors influencing the adoption of information and communication technologies by healthcare professionals. J. Med. Syst. 2012, 36, 241–277. [Google Scholar] [CrossRef] [PubMed]
- Demiris, G.; Thompson, H.; Boquet, J.; Le, T.; Chaudhuri, S.; Chung, J. Older adults’ acceptance of a community-based telehealth wellness system. Inform. Health Soc. Care 2013, 38, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Viitanen, J.; Hypponen, H.; Laaveri, T.; Vanska, J.; Reponen, J.; Winblad, I. National questionnaire study on clinical ICT systems proofs: Physicians suffer from poor usability. Int. J. Med. Inform. 2011, 80, 708–725. [Google Scholar] [CrossRef] [PubMed]
- Rho, M.J.; Choi, I.Y.; Lee, J. Predictive factors of telemedicine service acceptance and behavioral intention of physicians. Int. J. Med. Inform. 2014, 83, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Edwards, L.; Thomas, C.; Gregory, A.; Yardley, L.; O’Cathain, A.; Montgomery, A.A.; Salisbury, C. Are people with chronic diseases interested in using telehealth? A cross-sectional postal survey. J. Med. Internet Res. 2014, 16. [Google Scholar] [CrossRef] [PubMed]
- Lupianez-Villanueva, F.; Hardey, M.; Torrent, J.; Ficapal, P. The integration of information and communication technology into medical practice. Int. J. Med. Inform. 2010, 79, 478–491. [Google Scholar] [CrossRef] [PubMed]
- Meher, S.K.; Tyagi, R.S.; Chaudhry, T. Awareness and attitudes to telemedicine among doctors and patients in India. J. Telemed. Telecare 2009, 15, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Palfrey, J.; Gasser, U. Born Digital: Understanding the First Generation of Digital Natives; Basic Books, Inc.: New York, NY, USA, 2008; p. 288. [Google Scholar]
- Peek, S.T.; Wouters, E.J.; van Hoof, J.; Luijkx, K.G.; Boeije, H.R.; Vrijhoef, H.J. Factors influencing acceptance of technology for aging in place: A systematic review. Int. J. Med. Inform. 2014, 83, 235–248. [Google Scholar] [CrossRef] [PubMed]
- De Wet, C.; Yelland, M. The challenges and opportunities in medical education for digital ‘natives’ and ‘immigrants’ in Scotland and abroad. Scott. Med. J. 2015, 60, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Whiddett, R.; Hunter, I.; Engelbrecht, J.; Handy, J. Patients’ attitudes towards sharing their health information. Int. J. Med. Inform. 2006, 75, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Hardiker, N.R.; Grant, M.J. Factors that influence public engagement with ehealth: A literature review. Int. J. Med. Inform. 2011, 80, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, A.L.; Sully, B.G.; Campbell, M.J. Pilot and feasibility studies: Is there a difference from each other and from a randomised controlled trial? Contemp. Clin. Trials 2014, 38, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, M.M.H.J.; Bretveld, R.W.; Roeleveld, N. Web-based questionnaires: The future in epidemiology? Am. J. Epidemiol. 2010, 172, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Hofmarcher, M.M.; Quentin, W. Austria: Health system review. Health Syst. Transit. 2013, 15, 1–292. [Google Scholar] [PubMed]
Total | Austrian Census Data | ||
---|---|---|---|
N | % | % | |
Total | 562 | 100 | 100 |
Gender | |||
Female | 331 | 58.9 | 51.3 |
Male | 231 | 41.1 | 48.7 |
Place of living | |||
Capital Vienna | 357 | 63.5 | 20.4 |
East | 133 | 23.7 | 43.6 |
West | 72 | 12.8 | 36.0 |
Chronic disease | |||
Yes | 320 | 56.9 | 62.3 |
No | 242 | 43.1 | 37.7 |
Using mobile devices | |||
Yes | 532 | 94.7 | 84.0 |
No | 30 | 5.3 | 16.0 |
Age groups (years) | |||
<29 | 261 | 46.4 | 41.4 |
30–39 | 82 | 14.6 | 13.1 |
40–49 | 70 | 12.5 | 16.5 |
50–59 | 99 | 17.6 | 13.6 |
>60 | 50 | 8.9 | 15.4 |
Digital age group | |||
Digital natives (<35 years) | 305 | 54.3 | 54.5 § |
Digital immigrants (>35 years) | 257 | 45.7 | 45.5 |
Education level | |||
Primary | 90 | 16.0 | 19.2 |
Secondary | 191 | 34.0 | 65.1 |
Tertiary | 281 | 50.0 | 15.7 |
Education | |||
No university (primary and secondary) | 281 | 50.0 | 84.3 |
University (tertiary) | 281 | 50.0 | 15.7 |
Health profession | |||
Yes | 243 | 43.2 | - |
No | 319 | 56.8 | - |
Overall Rank (%) | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | Total | |
CONNECTED HEALTH | ||||||||
Benefits | ||||||||
Better quality of life | 21.4 | 13.4 | 11.7 | 14.9 | 14.3 | 11.8 | 12.7 | 100 |
Better quality of healthcare | 17.6 | 21.6 | 15.1 | 16.4 | 11.3 | 12.5 | 5.6 | 100 |
Better financing of healthcare | 3.2 | 10.6 | 15.2 | 13.5 | 14.0 | 19.2 | 24.5 | 100 |
Avoidance of multiple diagnostic tests | 12.8 | 16.9 | 14.9 | 12.9 | 14.2 | 14.3 | 14.2 | 100 |
Better relationship between doctors and patients | 3.3 | 8.1 | 13.8 | 14.5 | 19.8 | 19.1 | 21.5 | 100 |
Increasing knowledge of patients | 15.2 | 13.7 | 17.3 | 17.5 | 15.8 | 12.5 | 8.3 | 100 |
Location-independent access to healthcare services | 26.6 | 16.0 | 12.1 | 10.4 | 10.9 | 10.8 | 13.5 | 100 |
Barriers | ||||||||
Costs, financing | 12.9 | 15.3 | 16.8 | 17.4 | 19.2 | 18.6 | - | 100 |
Data security | 54.1 | 17.0 | 9.8 | 7.2 | 6.0 | 6.0 | - | 100 |
Lack of acceptance by doctors | 10.1 | 18.1 | 23.7 | 19.0 | 17.9 | 11.4 | - | 100 |
Lack of acceptance by patients | 7.5 | 20.3 | 19.6 | 18.3 | 17.3 | 17.2 | - | 100 |
Increase of administrative burden | 3.7 | 10.3 | 13.5 | 22.3 | 25.4 | 24.9 | - | 100 |
Lack of technical prerequisites | 11.9 | 19.1 | 16.8 | 16.0 | 14.4 | 22.1 | - | 100 |
Total | Digital Age Group | Gender | Health Profession | Education | |||
---|---|---|---|---|---|---|---|
Mean | SD | Rank | p Values | ||||
CONNECTED HEALTH | |||||||
Benefits | |||||||
Better quality of healthcare | 3.4 | 1.6 | 1 | 0.537 | 0.139 | 0.744 | 0.715 |
Location-independent access to healthcare services | 3.5 | 1.9 | 2 | 0.064 | 0.002 * | 0.629 | 0.011 * |
Better quality of life | 3.7 | 1.9 | 3 | 0.001 ** | 0.013 * | 0.405 | 0.023 * |
Increasing knowledge of patients | 3.8 | 1.5 | 4 | 0.086 | 0.120 | 0.017 * | 0.456 |
Avoidance of multiple diagnostic tests | 4.0 | 1.7 | 5 | 0.001 ** | 0.462 | 0.032 * | 0.390 |
Better financing of healthcare | 4.8 | 1.6 | 6 | 0.203 | 0.019 * | 0.250 | 0.843 |
Better relationship between doctors and patients | 4.8 | 1.5 | 7 | 0.478 | 0.406 | 0.847 | 0.019 * |
Barriers | |||||||
Data security | 2.1 | 1.4 | 1 | 0.038 * | 0.068 | 0.680 | 0.178 |
Lack of acceptance by doctors | 3.5 | 1.4 | 2 | 0.127 | 0.003 * | 0.111 | 0.645 |
Lack of technical prerequisites | 3.7 | 1.5 | 3 | 0.092 | 0.001 ** | 0.306 | 0.757 |
Lack of acceptance by patients | 3.7 | 1.4 | 4 | 0.115 | 0.623 | 0.114 | 0.947 |
Costs, financing | 3.7 | 1.5 | 5 | 0.254 | 0.053 | 0.614 | 0.093 |
Increase of administrative burden | 4.3 | 1.3 | 6 | 0.204 | 0.769 | 0.136 | 0.917 |
Total | Digital Age Group | Gender | Health Profession | Education | |||
---|---|---|---|---|---|---|---|
Mean | SD | Rank | p Values | ||||
EHEALTH | |||||||
Benefits | |||||||
Better quality of healthcare | 3.4 | 1.8 | 1 | 0.056 | 0.673 | 0.961 | 0.813 |
Increasing knowledge of patients | 3.5 | 1.9 | 2 | 0.900 | 0.502 | 0.065 | 0.295 |
Avoidance of multiple diagnostic tests | 3.7 | 2.0 | 3 | 0.001 ** | 0.958 | 0.008 ** | 0.109 |
Location-independent access to healthcare services | 3.8 | 2.1 | 4 | 0.344 | 0.050 * | 0.280 | 0.049 * |
Better quality of life | 3.9 | 2.0 | 5 | 0.001 * | 0.075 | 0.471 | 0.041 * |
Better relationship between doctors and patients | 4.8 | 1.7 | 6 | 0.207 | 0.155 | 0.586 | 0.004 * |
Better financing of healthcare | 4.9 | 1.8 | 7 | 0.830 | 0.101 | 0.504 | 0.568 |
Barriers | |||||||
Data security | 1.9 | 1.4 | 1 | 0.913 | 0.332 | 0.862 | 0.232 |
Lack of acceptance by doctors | 3.5 | 1.5 | 2 | 0.039 * | 0.003 * | 0.202 | 0.631 |
Lack of acceptance by patients | 3.7 | 1.6 | 3 | 0.252 | 0.289 | 0.124 | 0.628 |
Lack of technical prerequisites | 3.7 | 1.7 | 4 | 0.040 * | 0.001 ** | 0.397 | 0.936 |
Costs, financing | 3.9 | 1.6 | 5 | 0.754 | 0.057 | 0.894 | 0.201 |
Increase of administrative burden | 4.2 | 1.5 | 6 | 0.111 | 0.174 | 0.121 | 0.523 |
TELEMEDICINE | |||||||
Benefits | |||||||
Location-independent access to healthcare services | 3.2 | 2.1 | 1 | 0.017 * | 0.001 ** | 0.866 | 0.015 * |
Better quality of healthcare | 3.4 | 1.8 | 2 | 0.463 | 0.037 | 0.565 | 0.642 |
Better quality of life | 3.6 | 2.1 | 3 | 0.001 ** | 0.006 * | 0.643 | 0.037 * |
Increasing knowledge of patients | 4.0 | 1.8 | 4 | 0.002 * | 0.095 | 0.036 * | 0.818 |
Avoidance of multiple diagnostic tests | 4.2 | 1.9 | 5 | 0.001 ** | 0.192 | 0.227 | 0.741 |
Better financing of healthcare | 4.7 | 1.8 | 6 | 0.063 | 0.019 * | 0.199 | 0.995 |
Better relationship between doctors and patients | 4.9 | 1.7 | 7 | 0.895 | 0.800 | 0.852 | 0.202 |
Barriers | |||||||
Data security | 2.3 | 1.6 | 1 | 0.004 * | 0.052 | 0.550 | 0.280 |
Costs, financing | 3.5 | 1.7 | 2 | 0.090 | 0.105 | 0.459 | 0.076 |
Lack of acceptance by doctors | 3.5 | 1.5 | 3 | 0.429 | 0.012 * | 0.135 | 0.872 |
Lack of technical prerequisites | 3.6 | 1.7 | 4 | 0.391 | 0.001 ** | 0.368 | 0.651 |
Lack of acceptance by patients | 3.6 | 1.6 | 5 | 0.123 | 0.892 | 0.213 | 0.830 |
Increase of administrative burden | 4.4 | 1.4 | 6 | 0.353 | 0.047 * | 0.283 | 0.658 |
eHealth Knowledge | Telemedicine Knowledge | Reliability Health Information | Reasonability Data Exchange | Desirability Monitoring | Desirability Lifestyle | |
---|---|---|---|---|---|---|
Choices of answer; N (%) | ||||||
Very good | 11 (2.0) | 12 (2.1) | 20 (3.6) | 13 (2.3) | 49 (8.7) | 30 (5.3) |
Good | 70 (12.5) | 47 (8.4) | 233 (41.5) | 50 (8.9) | 172 (30.6) | 122 (21.7) |
Moderate | 197 (35.1) | 152 (27.0) | 251 (44.7) | 131 (23.3) | 107 (19.0) | 115 (20.5) |
Poor | 201 (35.8) | 211 (37.5) | 54 (9.6) | 269 (47.9) | 124 (22.1) | 149 (26.5) |
Very poor | 83 (14.8) | 140 (24.9) | 4 (0.7) | 99 (17.6) | 110 (19.6) | 146 (26.0) |
Socio-demographic characteristics; p values | ||||||
Digital age group | 0.213 | 0.004 * | 0.008 * | 0.142 | 0.001 ** | 0.001 ** |
Gender | 0.042 * | 0.001 ** | 0.441 | 0.001 ** | 0.253 | 0.162 |
Health profession | 0.001 ** | 0.001 ** | 0.699 | 0.395 | 0.318 | 0.125 |
Education | 0.138 | 0.509 | 0.061 | 0.802 | 0.031 * | 0.101 |
eHealth Knowledge | Telemedicine Knowledge | Reliability Health Information | Reasonability Data Exchange | Desirability Monitoring | Desirability Lifestyle | |
---|---|---|---|---|---|---|
OR (95% CI) | ||||||
Socio-demographic characteristics | ||||||
Digital age group | 0.96 (0.61; 1.52) | 1.34 (0.84; 2.14) | 0.56 (0.38; 0.82) * | 1.04 (0.67; 1.60) | 0.49 (0.31; 0.75) ** | 0.60 (0.40; 0.90) * |
Gender | 1.14 (0.75; 1.74) | 1.92 (1.25; 2.96) * | 1.02 (0.72; 1.46) | 1.14 (0.76; 1.70) | 1.22 (0.81; 1.83) | 0.57 (0.39; 0.84) * |
Health profession | 0.60 (0.39; 0.91) * | 0.56 (0.37; 0.87) * | 1.25 (0.87; 1.79) | 1.00 (0.67; 1.50) | 1.37 (0.91; 2.07) | 1.33 (0.90; 1.95) |
Education | 1.64 (1.07; 2.51) * | 1.03 (0.66; 1.61) | 1.08 (0.75; 1.55) | 1.15 (0.77; 1.73) | 0.71 (0.47; 1.07) | 1.05 (0.72; 1.55) |
Scores & | ||||||
eHealth knowledge | Dependent variable | 12.61 (8.01; 19.85) ** | 0.70 (0.46; 1.05) | 1.33 (0.84; 2.09) | 0.97 (0.61; 1.55) | 1.24 (0.80; 1.92) |
Telemedicine knowledge | 12.60 (8.01; 19.83) ** | Dependent variable | 1.17 (0.77; 1.79) | 1.20 (0.74; 1.94) | 1.42 (0.88; 2.29) | 1.05 (0.67; 1.65) |
Reliability health information | 0.70 (0.46; 1.05) | 1.16 (0.76; 1.78) | Dependent variable | 0.60 (0.40; 0.88) * | 0.69 (0.46; 1.03) | 0.99 (0.68; 1.44) |
Reasonability data exchange | 1.35 (0.86; 2.13) | 1.17 (0.73; 1.88) | 0.60 (0.41; 0.89) * | Dependent variable | 3.46 (2.19; 5.45) ** | 1.54 (1.02; 2.32) |
Desirability monitoring | 0.98 (0.61; 1.56) | 1.39 (0.86; 2.24) | 0.71 (0.48; 1.05) | 3.39 (2.16; 5.33) ** | Dependent variable | 4.27 (2.88; 6.35) ** |
Desirability lifestyle | 1.26 (0.81; 1.95) | 1.07 (0.68; 1.68) | 0.99 (0.68; 1.44) | 1.57 (1.04; 2.36) * | 4.31 (2.90; 6.41) ** | Dependent variable |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haluza, D.; Naszay, M.; Stockinger, A.; Jungwirth, D. Prevailing Opinions on Connected Health in Austria: Results from an Online Survey. Int. J. Environ. Res. Public Health 2016, 13, 813. https://doi.org/10.3390/ijerph13080813
Haluza D, Naszay M, Stockinger A, Jungwirth D. Prevailing Opinions on Connected Health in Austria: Results from an Online Survey. International Journal of Environmental Research and Public Health. 2016; 13(8):813. https://doi.org/10.3390/ijerph13080813
Chicago/Turabian StyleHaluza, Daniela, Marlene Naszay, Andreas Stockinger, and David Jungwirth. 2016. "Prevailing Opinions on Connected Health in Austria: Results from an Online Survey" International Journal of Environmental Research and Public Health 13, no. 8: 813. https://doi.org/10.3390/ijerph13080813