Protective Effects of Laminaria japonica Polysaccharide Composite Microcapsules on the Survival of Lactobacillus plantarum during Simulated Gastrointestinal Digestion and Heat Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Particle Size
2.2. FTIR Analysis
2.3. Thermal Properties
2.4. Zeta Potential
2.5. Encapsulation Efficiency and Resistance to Simulated Gastrointestinal Fluid
2.6. In Vitro Release
2.7. Resistance to Heat Treatments
3. Materials and Methods
3.1. Materials
3.2. Preparation of LJP
3.3. Bacterial Cultivation
3.4. Microencapsulation of L. plantarum
3.5. Microcapsule Characterization
3.5.1. Morphology and Particle size
3.5.2. Infrared
3.5.3. Thermal Properties
3.5.4. Zeta Potential Determination
3.5.5. Encapsulation Efficiency
3.5.6. Survival Rate in Simulated Gastrointestinal Fluid
3.5.7. Determination of Metabolic Enzyme Activity
3.5.8. In Vitro Release Studies
3.5.9. Heat Treatments
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.F.; Feng, K.; Huang, R.M.; Wei, Y.S.; Wu, H. Insights into Protective Effects of Different Synbiotic Microcapsules on the Survival of Lactiplantibacillus plantarum by Electrospraying. Foods 2022, 11, 3872. [Google Scholar] [CrossRef]
- Mao, L.; Pan, Q.; Hou, Z.; Yuan, F.; Gao, Y. Development of soy protein isolate-carrageenan conjugates through Maillard reaction for the microencapsulation of Bifidobacterium longum. Food Hydrocolloid. 2018, 84, 489–497. [Google Scholar] [CrossRef]
- Peñalva, R.; Martínez-López, A.; Gamazo, C.; Gonzalez-Navarro, C.; González-Ferrero, C.; Virto-Resano, R.; Brotons-Canto, A.; Vitas, A.; Collantes, M.; Peñuelas, I.; et al. Encapsulation of Lactobacillus plantarum in casein-chitosan microparticles facilitates the arrival to the colon and develops an immunomodulatory effect. Food Hydrocolloid. 2023, 136, 108213. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; Tian, Z.; Si, Y.; Chen, H.; Gan, J. The Mechanisms of the potential probiotic Lactiplantibacillus plantarum against cardiovascular disease and the recent developments in its fermented foods. Foods 2022, 11, 2549. [Google Scholar] [CrossRef]
- Dehkordi, S.; Alemzadeh, I.; Vaziri, A.; Vossoughi, A. Optimization of Alginate-Whey Protein Isolate Microcapsules for Survivability and Release Behavior of Probiotic Bacteria. Appl. Biochem. Biotech. 2020, 190, 182–196. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Liao, N.; Xu, F.; Wang, J.; Shao, D.; Jiang, C.; Shi, J. Construction of walnut protein/tea polyphenol/alginate complex for enhancing heat and gastrointestinal tolerance of lactic acid bacteria. Food Hydrocolloid. 2024, 149, 109523. [Google Scholar] [CrossRef]
- Li, H.; Peng, F.; Peng, Z.; Liu, Z.; Huang, T.; Xiong, T. Protection effect of gelatin-xylooligosaccharides Maillard reaction products on spray-dried Limosilactobacillus fermentum and possible action mechanism. Food Biosci. 2023, 56, 103251. [Google Scholar] [CrossRef]
- Arslan-Tontul, S.; Erbas, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT-Food Sci Technol. 2017, 81, 160–169. [Google Scholar] [CrossRef]
- Ji, R.; Wu, J.; Zhang, J.; Wang, T.; Zhang, X.; Shao, L.; Chen, D.; Wang, J. Extending Viability of Bifidobacterium longum in Chitosan-Coated Alginate Microcapsules Using Emulsification and Internal Gelation Encapsulation Technology. Front. Microbiol. 2019, 10, 1389. [Google Scholar] [CrossRef]
- Azam, M.; Saeed, M.; Ahmad, T. Characterization of biopolymeric encapsulation system for improved survival of Lactobacillus brevis. J. Food Meas. Charact. 2022, 16, 2292–2299. [Google Scholar] [CrossRef]
- Iqbal, R.; Zahoor, T.; Huma, N.; Jamil, A.; Ünlü, G. In-vitro GIT Tolerance of Microencapsulated Bifidobacterium bifidum ATCC 35914 Using Polysaccharide-Protein Matrix. Probiotics Antimicrob. Proteins 2019, 11, 830–839. [Google Scholar] [CrossRef]
- Kavousi, H.; Fathi, M.; Goli, S. Novel cress seed mucilage and sodium caseinate microparticles for encapsulation of curcumin: An approach for controlled release. Food Bioprod. Process. 2018, 110, 126–135. [Google Scholar] [CrossRef]
- Baranauskaite, J.; Kopustinskiene, D.; Bernatoniene, J. Impact of Gelatin Supplemented with Gum Arabic, Tween 20, and β-Cyclodextrin on the Microencapsulation of Turkish Oregano Extract. Molecules 2019, 24, 176. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, Y.; Xie, Q.; Chen, H.; Zhang, Y.; Hong, Z.; Chen, S.; Zhang, M. Microencapsulation of Lactobacillus plantarum with Improved Survivability Using Pufferfish Skin Gelatin-Based Wall Materials. Mar. Drugs 2024, 22, 124. [Google Scholar] [CrossRef] [PubMed]
- Tomadoni, B.; Fabra, M.J.; Lopez-Rubio, A. Electrohydrodynamic processing of phycocolloids for food-related applications: Recent advances and future prospects. Trends Food Sci. Tech. 2022, 125, 114–125. [Google Scholar] [CrossRef]
- Xie, C.; Lee, Z.; Ye, S.; Barrow, C.; Dunshea, F.; Suleria, H. A Review on Seaweeds and Seaweed-Derived Polysaccharides: Nutrition, Chemistry, Bioactivities, and Applications. Food Rev. Int. 2023, 40, 1312–1347. [Google Scholar] [CrossRef]
- Chen, Q.; Fan, J.; Lin, L.; Zhao, M. Combination of Lycium barbarum L. and Laminaria japonica polysaccharides as a highly efficient prebiotic: Optimal screening and complementary regulation of gut probiotics and their metabolites. Int. J. Biol. Macromol. 2023, 246, 125534. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Lan, Y.; Ohm, J.; Chen, B.; Rao, J. The viability of complex coacervate encapsulated probiotics during simulated sequential gastrointestinal digestion affected by wall materials and drying methods. Food Funct. 2021, 12, 8907. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Zhao, N.; Hong, Z.; Cai, B.; Le, Q.; Yang, T.; Shi, L.; He, J. Soluble polysaccharide derived from Laminaria japonica attenuates obesity-related nonalcoholic fatty liver disease associated with gut microbiota regulation. Mar. Drugs 2021, 19, 699. [Google Scholar] [CrossRef]
- He, J.; Xu, Y.; Chen, H.; Sun, P. Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four Seaweeds. Int. J. Mol. Sci. 2016, 17, 1988. [Google Scholar] [CrossRef]
- Zhu, K.; Liu, S.; Ye, X.; Cheng, S. Effects of sulfation of pectin polysaccharides and its degraution products from citrus segment membrane on antitumor activity. J. Chin. Inst. Food Sci. Technol. 2022, 22, 23–30. [Google Scholar]
- Zhang, X.; Liu, Y.; Chen, X.; Aweya, J.; Cheong, K. Catabolism of Saccharina japonica polysaccharides and oligosaccharides by human fecal microbiota. LWT-Food Sci. Technol. 2020, 130, 109635. [Google Scholar]
- Yang, M.; Zhang, J.; Guo, X.; Deng, X.; Kang, S.; Zhu, X.; Guo, X. Effect of Phosphorylation on the Structure and Emulsification Properties of Different Fish Scale Gelatins. Foods 2022, 11, 804. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Deng, L.; Zeng, Y.; Song, G.; Zhong, G. Effects of glycosylation modification on emulsifying property and antioxidant activity of gelatin. Food Ferment. Ind. 2023, 49, 175–182. [Google Scholar]
- Lin, M.; Sun, G.; Hu, X.; Chen, F.; Zhu, Y. Role of galacturonic acid in acrylamide formation: Insights from structural analysis. Food Chem. 2024, 452, 139282. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Li, W.; Tan, Y.; Zhao, M.; Zeng, K.; Ruan, C. Preparation and characterization of 2,3-dialdehyde cellulose/gelatin film. Food Ferment. Ind. 2022, 48, 75–81. [Google Scholar]
- Vaziri, A.S.; Alemzadeh, I.; Vossoughi, M.; Khorasani, A.C. Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohyd. Polym. 2018, 199, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Faidi, A.; Lassoued, M.; Becheikh, M.; Touati, M.; Stumbé, J.; Farhat, F. Application of sodium alginate extracted from a Tunisian brown algae Padina pavonica for essential oil encapsulation: Microspheres preparation, characterization and in vitro release study. Internat. J. Biol. Macromol. 2019, 136, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Duhoranimana, E.; Karangwa, E.; Lai, L.; Xu, X.; Yu, J.; Xia, S.; Zhang, X.; Muhoza, B.; Habinshuti, I. Effect of sodium carboxymethyl cellulose on complex coacervates formation with gelatin: Coacervates characterization, stabilization and formation mechanism. Food Hydrocolloid. 2017, 69, 111–120. [Google Scholar] [CrossRef]
- Zhang, H.; Song, G.; Ma, W.; Guo, M.; Ling, X.; Yu, D.; Zhou, W.; Li, L. Microencapsulation protects the biological activity of sea buckthorn seed oil. Front. Nutr. 2023, 9, 1043879. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, L.; Hu, Q.; Xiao, J.; Kimatu, B.; Zheng, H. The structure–activity mechanism of the changes in the physicochemical properties of Flammulina velutipes polysaccharides during ultrasonic extraction. J. Sci. Food Agric. 2022, 102, 2916–2927. [Google Scholar] [CrossRef]
- Timilsena, Y.; Wang, B.; Adhikari, R.; Adhikari, B. Preparation and characterization of chia seed protein isolateechia seed gum complex coacervates. Food Hydrocolloid. 2016, 52, 554–563. [Google Scholar] [CrossRef]
- Mendes, A.; Baran, E.; Nunes, C.; Coimbra, M.; Azevedo, H.; Reis, R. Palmitoylation of xanthan polysaccharide for self-assembly microcapsule formation and encapsulation of cells in physiological conditions. Soft Matter. 2011, 7, 9647–9658. [Google Scholar] [CrossRef]
- Liu, H.; Gong, J.; Chabot, D.; Miller, S.; Cui, S.; Zhong, F.; Wang, Q. Improved survival of Lactobacillus zeae LB1 in a spray dried alginate-protein matrix. Food Hydrocolloid. 2018, 78, 100–108. [Google Scholar] [CrossRef]
- Mao, L.; Pan, Q.; Yuan, F.; Gao, Y. Formation of soy protein isolate-carrageenan complex coacervates for improved viability of Bifidobacterium longum during pasteurization and in vitro digestion. Food Chem. 2019, 276, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Zhang, X.; Abbas, S.; Karangwa, E. Simplified optimization for microcapsule preparation by complex coacervation based on the correlation between coacervates and the corresponding microcapsule. J. Food Eng. 2012, 111, 225–233. [Google Scholar] [CrossRef]
- Muhammad, Z.; Ramzan, R.; Huo, G.; Tian, H.; Bian, X. Integration of polysaccharide-thermoprotectant formulations for microencapsulation of Lactobacillus plantarum, appraisal of survivability and physico-biochemical properties during storage of spray dried powders. Food Hydrocolloid. 2017, 66, 286–295. [Google Scholar] [CrossRef]
- Chen, L.; Yang, T.; Song, Y.; Shu, G.; Chen, H. Effect of xanthan-chitosan-xanthan double layer encapsulation on survival of Bifidobacterium BB01 in simulated gastrointestinal conditions, bile salt solution and yogurt. LWT-Food Sci. Technol. 2017, 81, 274–280. [Google Scholar] [CrossRef]
- Zhen, N.; Zeng, X.; Wang, H.; Yu, J.; Pan, D.; Wu, Z.; Guo, Y. Effects of heat shock treatment on the survival rate of Lactobacillus acidophilus after freeze-drying. Food Res. Int. 2020, 136, 109507. [Google Scholar] [CrossRef]
- Wang, G.; Luo, L.; Dong, C.; Zheng, X.; Guo, B.; Xia, Y.; Tao, L.; Ai, L. Polysaccharides can improve the survival of Lactiplantibacillus plantarum subjected to freeze-drying. J. Dairy Sci. 2021, 104, 2606–2614. [Google Scholar] [CrossRef]
- Phreecha, N.; Chinpa, W. Environmentally friendly composites from seabass scale and oil palm empty fruit bunch waste. J. Polym. Environ. 2019, 27, 1043–1053. [Google Scholar] [CrossRef]
- Guo, Q.; Li, S.; Tang, J.; Chang, S.; Qiang, L.; Du, G.; Yue, T.; Yuan, Y. Microencapsulation of Lactobacillus plantarum by spray drying: Protective effects during simulated food processing, gastrointestinal conditions, and in kefir. Int. J. Biol. Macromol. 2022, 194, 539–545. [Google Scholar] [CrossRef]
- Fu, N.; Chen, X. Towards a maximal cell survival in convective thermal drying processes. Food Res. Int. 2011, 44, 1127–1149. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Vol IV; China Medical Science and Technology Press: Beijing, China, 2020.
- Li, H.; Peng, F.; Lin, J.; Xiong, T.; Huang, T. Preparation of probiotic microcapsules using gelatin-xylooligosaccharides conjugates by spray drying: Physicochemical properties, survival, digestion resistance and colonization. Food Biosci. 2023, 52, 102462. [Google Scholar] [CrossRef]
- Würth, R.; Wiesner, S.; Foerst, P.; Kulozik, U. Impact of the CaCl2 content in the rehydration media on the microcapsule formation out of spray dried capsule precursors for the immobilization of probiotic bacteria. Int. Dairy J. 2017, 68, 75–79. [Google Scholar] [CrossRef]
Samples | ΔTd (°C) | Td (°C) | ΔHd (J/g) |
---|---|---|---|
LJP | 102.5~142.2 | 115.9 | 284.3 |
SC/GE microcapsules | 84.5~137.5 | 119.2 | 172.5 |
LJP/SC/GE microcapsules | 89.2~138.3 | 120.4 | 194.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Zhou, Y.; Xie, Q.; Chen, H.; Zhang, M.; Yu, L.; Yan, G.; Chen, Y.; Lin, X.; Zhang, Y.; et al. Protective Effects of Laminaria japonica Polysaccharide Composite Microcapsules on the Survival of Lactobacillus plantarum during Simulated Gastrointestinal Digestion and Heat Treatment. Mar. Drugs 2024, 22, 308. https://doi.org/10.3390/md22070308
Guo H, Zhou Y, Xie Q, Chen H, Zhang M, Yu L, Yan G, Chen Y, Lin X, Zhang Y, et al. Protective Effects of Laminaria japonica Polysaccharide Composite Microcapsules on the Survival of Lactobacillus plantarum during Simulated Gastrointestinal Digestion and Heat Treatment. Marine Drugs. 2024; 22(7):308. https://doi.org/10.3390/md22070308
Chicago/Turabian StyleGuo, Honghui, Yelin Zhou, Quanling Xie, Hui Chen, Ming’en Zhang, Lei Yu, Guangyu Yan, Yan Chen, Xueliang Lin, Yiping Zhang, and et al. 2024. "Protective Effects of Laminaria japonica Polysaccharide Composite Microcapsules on the Survival of Lactobacillus plantarum during Simulated Gastrointestinal Digestion and Heat Treatment" Marine Drugs 22, no. 7: 308. https://doi.org/10.3390/md22070308
APA StyleGuo, H., Zhou, Y., Xie, Q., Chen, H., Zhang, M., Yu, L., Yan, G., Chen, Y., Lin, X., Zhang, Y., & Hong, Z. (2024). Protective Effects of Laminaria japonica Polysaccharide Composite Microcapsules on the Survival of Lactobacillus plantarum during Simulated Gastrointestinal Digestion and Heat Treatment. Marine Drugs, 22(7), 308. https://doi.org/10.3390/md22070308