Preparation and Biochemical Activity of Copper-Coated Cellulose Nonwoven Fabric via Magnetron Sputtering and Alginate-Calcium Ion Complexation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Methodology for the Preparation of Composite Materials
2.2. Determination of Metal Content
Samples Investigated | Concentrations a | Sample Codes b | |||
---|---|---|---|---|---|
Cu0 | Ca2+ | ||||
[g/kg] a | [mol/kg] c | [g/kg] a | [mol/kg] d | ||
CNW-Cu0 | 27.67 | 0.44 | ─ | CNW-Cu0(0.4) | |
CNW-Cu0/ALG−Na+ | 27.25 | 0.43 | ─ | CNW-Cu0(0.4)/ALG−Na+ | |
CNW-Cu0/ALG−Na+,Ca2+-1 | 26.93 | 0.42 | 56.00 | 1.40 | CNW-Cu0(0.4)/ALG−Ca(1.4) |
CNW-Cu0/ALG−Na+,Ca2+-2 | 27.18 | 0.43 | 87.00 | 2.17 | CNW-Cu0(0.4)/ALG−Ca(2.2) |
2.3. Optical Microscopy Combined with Elemental Analysis Using Laser-Induced Breakdown Spectroscopy (LIBS)
2.3.1. Optical Microscopy Analysis
2.3.2. Elemental Analysis Using Laser-Induced Breakdown Spectroscopy (LIBS) with a Digital Microscope
2.4. Scanning Electron Microscopy and Elemental Analysis (EDS)
2.4.1. Scanning Electron Microscopy
2.4.2. Elemental Analysis (EDS)
2.5. Surface Characteristics and Pore Volume in CNW-Cu0/ALG−Ca2+ Samples
2.6. Biological Invetigations
2.6.1. Measurement of Activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT)
2.6.2. Antimicrobial Activity
2.6.3. Effect of Copper-Coated Cellulose Nonwoven Fabric Samples on the Viability of PBM Cells
2.6.4. Effect of Copper-Coated Cellulose Nonwoven Fabric Samples on DNA
3. Materials and Methods
3.1. Materials
- In our previous research, we utilized cellulose nonwoven fabric with copper [34]. For the surface modification, we employed sodium alginate (CAS 9005-38-3, molecular weight ranging from 120,000 to 190,000 g/mol, M/G ratio of 1.56) supplied by Millipore Sigma (St. Louis, MO, USA).
- For the modification of the nonwoven copper-alginate composite surface, calcium chloride (CaCl2, 96%, CAS 10043-52-4) procured from Millipore Sigma (St. Louis, MO, USA) was utilized.
- The bacterial strains Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 6538) were obtained from Microbiologics in St. Cloud, MN, USA.
- The fungal strains Aspergillus niger (ATCC 6275) and Chaetomium globosum (ATCC 6205) were also sourced from Microbiologics in St. Cloud, MN, USA.
- We obtained lyophilized human blood plasma and clotting time assay reagents (Dia-PTT, Dia-PT, 0.025 M CaCl2 solution) from Diagon Kft, located in Budapest, Hungary. These products were prepared according to the manufacturer’s instructions for use with the K-3002 OPTIC coagulometers from KSELMED®, headquartered in Grudziądz, Poland.
- Resazurin sodium salt and molecular pure water were purchased from Sigma-Aldrich (St. Louis, MO, USA).
3.2. Methods
3.2.1. Methodology for the Preparation of Composite Materials
3.2.2. Determination of Calcium and Copper Content
3.2.3. Microscopy Analysis
3.2.4. Evaluation of Specific Surface Area and Total Pore Volume
3.2.5. Measurement of Activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT)
3.2.6. Antimicrobial Activity
3.2.7. PBM Cells
3.2.8. Cell Viability by the Resazurin Reduction Assay
3.2.9. DNA Damage by the Plasmid Relaxation Assay
3.2.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Wang, M.; Liu, Q.; Liu, G.; Wang, S.; Li, J. Recent Advances in the Medical Applications of Hemostatic Materials. Theranostics 2023, 13, 161–196. [Google Scholar] [CrossRef] [PubMed]
- Zarei, N.; Hassanzadeh-Tabrizi, S.A. Alginate/Hyaluronic Acid-Based Systems as a New Generation of Wound Dressings: A Review. Int. J. Biol. Macromol. 2023, 253, 127249. [Google Scholar] [CrossRef] [PubMed]
- Froelich, A.; Jakubowska, E.; Wojtyłko, M.; Jadach, B.; Gackowski, M.; Gadziński, P.; Napierała, O.; Ravliv, Y.; Osmałek, T. Alginate-Based Materials Loaded with Nanoparticles in Wound Healing. Pharmaceutics 2023, 15, 1142. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Tan, H. Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials 2013, 6, 1285–1309. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, X. Alginate Hydrogel Dressings for Advanced Wound Management. Int. J. Biol. Macromol. 2020, 162, 1414–1428. [Google Scholar] [CrossRef]
- Varaprasad, K.; Jayaramudu, T.; Kanikireddy, V.; Toro, C.; Sadiku, E.R. Alginate-Based Composite Materials for Wound Dressing Application: A Mini Review. Carbohydr. Polym. 2020, 236, 116025. [Google Scholar] [CrossRef]
- Farshidfar, N.; Iravani, S.; Varma, R.S. Alginate-Based Biomaterials in Tissue Engineering and Regenerative Medicine. Mar. Drugs 2023, 21, 189. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, J.; Ao, Q. Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Mar. Drugs 2021, 19, 264. [Google Scholar] [CrossRef]
- Sung, Y.K.; Lee, D.R.; Chung, D.J. Advances in the Development of Hemostatic Biomaterials for Medical Application. Biomater. Res. 2021, 25, 37. [Google Scholar] [CrossRef]
- Guo, B.; Dong, R.; Liang, Y.; Li, M. Haemostatic Materials for Wound Healing Applications. Nat. Rev. Chem. 2021, 5, 773–791. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, S.; Zhang, H.; Dong, L.; Cong, Y.; Sun, S.; Sun, X. Polysaccharides Composite Materials for Rapid Hemostasis. J. Drug Deliv. Sci. Technol. 2021, 66, 102890. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, J.; Zhu, Y.; Wu, C. Inorganic-Based Biomaterials for Rapid Hemostasis and Wound Healing. Chem. Sci. 2022, 14, 29–53. [Google Scholar] [CrossRef]
- Gheorghita Puscaselu, R.; Lobiuc, A.; Dimian, M.; Covasa, M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers 2020, 12, 2417. [Google Scholar] [CrossRef]
- Dodero, A.; Alberti, S.; Gaggero, G.; Ferretti, M.; Botter, R.; Vicini, S.; Castellano, M. An Up-to-Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. Adv. Mater. Interfaces 2021, 8, 2100809. [Google Scholar] [CrossRef]
- Chan, L.W.; Jin, Y.; Heng, P.W.S. Cross-Linking Mechanisms of Calcium and Zinc in Production of Alginate Microspheres. Int. J. Pharm. 2002, 242, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Pavel, T.I.; Chircov, C.; Rădulescu, M.; Grumezescu, A.M. Regenerative Wound Dressings for Skin Cancer. Cancers 2020, 12, 2954. [Google Scholar] [CrossRef]
- Gardner, R.L. Application of Alginate Gels to the Study of Mammalian Development. In Germ Cell Protocols: Volume 2: Molecular Embryo Analysis, Live Imaging, Transgenesis, and Cloning; Schatten, H., Ed.; Humana Press: Totowa, NJ, USA, 2004; pp. 383–392. ISBN 978-1-59259-741-3. [Google Scholar]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Saranya, P.; Ramesh, S.T.; Gandhimathi, R. Coagulation Performance Evaluation of Alginate as a Natural Coagulant for the Treatment of Turbid Water. Water Pract. Technol. 2021, 17, 395–404. [Google Scholar] [CrossRef]
- Zhong, Y.; Hu, H.; Min, N.; Wei, Y.; Li, X.; Li, X. Application and Outlook of Topical Hemostatic Materials: A Narrative Review. Ann. Transl. Med. 2021, 9, 577. [Google Scholar] [CrossRef]
- Augst, A.D.; Kong, H.J.; Mooney, D.J. Alginate Hydrogels as Biomaterials. Macromol. Biosci. 2006, 6, 623–633. [Google Scholar] [CrossRef]
- Aguero, L.; Alpdagtas, S.; Ilhan, E.; Zaldivar-Silva, D.; Gunduz, O. Functional Role of Crosslinking in Alginate Scaffold for Drug Delivery and Tissue Engineering: A Review. Eur. Polym. J. 2021, 160, 110807. [Google Scholar] [CrossRef]
- Sreya, E.S.; Kumar, D.P.; Balakrishnan, P.; Gopi, S. Science and Technology of Alginates: A Review. In Handbook of Biomass; Thomas, S., Hosur, M., Pasquini, D., Jose Chirayil, C., Eds.; Springer Nature: Singapore, 2023; pp. 1–28. ISBN 978-981-19677-2-6. [Google Scholar]
- Abka-khajouei, R.; Tounsi, L.; Shahabi, N.; Patel, A.K.; Abdelkafi, S.; Michaud, P. Structures, Properties and Applications of Alginates. Mar. Drugs 2022, 20, 364. [Google Scholar] [CrossRef]
- Hu, C.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Ions-Induced Gelation of Alginate: Mechanisms and Applications. Int. J. Biol. Macromol. 2021, 177, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Lansdown, A.B.G. Calcium: A Potential Central Regulator in Wound Healing in The Skin. Wound Repair Regen. 2002, 10, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, T.; Fauz, B.; Lokanathan, Y.; Law, J.X. The Role of Calcium in Wound Healing. Int. J. Mol. Sci. 2021, 22, 6486. [Google Scholar] [CrossRef]
- Pawar, S.N.; Edgar, K.J. Alginate Derivatization: A Review of Chemistry, Properties and Applications. Biomaterials 2012, 33, 3279–3305. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y. The Gel Swelling Properties of Alginate Fibers and Their Applications in Wound Management. Polym. Adv. Technol. 2008, 19, 6–14. [Google Scholar] [CrossRef]
- Segal, H.C.; Hunt, B.J.; Gilding, K. The Effects of Alginate and Non-Alginate Wound Dressings on Blood Coagulation and Platelet Activation. J. Biomater. Appl. 1998, 12, 249–257. [Google Scholar] [CrossRef]
- Shen, S.; Chen, X.; Shen, Z.; Chen, H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021, 13, 1666. [Google Scholar] [CrossRef]
- Szymonowicz, M.; Kucharska, M.; Wiśniewska-Wrona, M.; Dobrzyński, M.; Kołodziejczyk, K.; Rybak, Z. The Evaluation of Resorbable Haemostatic Wound Dressings in Contact with Blood in Vitro. Acta Bioeng. Biomech. 2017, 19, 151–165. [Google Scholar] [CrossRef]
- Tang, N.F.R.; Heryanto, H.; Armynah, B.; Tahir, B. Bibliometric Analysis of the Use of Calcium Alginate for Wound Dressing Applications: A Review. Int. J. Biol. Macromol. 2023, 228, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Hattori, H.; Amano, Y.; Nogami, Y.; Takase, B.; Ishihara, M. Hemostasis for Severe Hemorrhage with Photocrosslinkable Chitosan Hydrogel and Calcium Alginate. Ann. Biomed. Eng. 2010, 38, 3724–3732. [Google Scholar] [CrossRef]
- Taşkın, A.K.; Yaşar, M.; Ozaydın, I.; Kaya, B.; Bat, O.; Ankaralı, S.; Yıldırım, U.; Aydın, M. The Hemostatic Effect of Calcium Alginate in Experimental Splenic Injury Model. Turk. J. Trauma Emerg. Surg. 2013, 19, 195–199. [Google Scholar] [CrossRef]
- Sen, P.; Kemppainen, E.; Orešič, M. Perspectives on Systems Modeling of Human Peripheral Blood Mononuclear Cells. Front. Mol. Biosci. 2018, 4, 96. [Google Scholar] [CrossRef]
- Miquelestorena-Standley, E.; da Silva, A.V.V.; Monnier, M.; Chadet, S.; Piollet, M.; Héraud, A.; Lemoine, R.; Bochaton, T.; Derumeaux, G.; Roger, S.; et al. Human Peripheral Blood Mononuclear Cells Display a Temporal Evolving Inflammatory Profile after Myocardial Infarction and Modify Myocardial Fibroblasts Phenotype. Sci. Rep. 2023, 13, 16745. [Google Scholar] [CrossRef]
- Juszczak, M.; Kluska, M.; Kosińska, A.; Palusiak, M.; Rybarczyk-Pirek, A.J.; Wzgarda-Raj, K.; Rudolf, B.; Woźniak, K. Cytotoxicity of Piano-Stool Ruthenium Cyclopentadienyl Complexes Bearing Different Imidato Ligands. Appl. Organomet. Chem. 2022, 36, e6595. [Google Scholar] [CrossRef]
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell Viability Assays. In Assay Guidance Manual; Markossian, S., Grossman, A., Arkin, M., Auld, D., Austin, C., Baell, J., Brimacombe, K., Chung, T.D.Y., Coussens, N.P., Dahlin, J.L., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar]
- Vieira-da-Silva, B.; Castanho, M.A.R.B. Resazurin Reduction-Based Assays Revisited: Guidelines for Accurate Reporting of Relative Differences on Metabolic Status. Molecules 2023, 28, 2283. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Ganguly, A.; Roy, A.; BoseDasgupta, S.; D’Annessa, I.; Desideri, A.; Majumder, H.K. ATP Independent Type IB Topoisomerase of Leishmania Donovani Is Stimulated by ATP: An Insight into the Functional Mechanism. Nucleic Acids Res. 2011, 39, 3295–3309. [Google Scholar] [CrossRef] [PubMed]
- Kudzin, M.H.; Boguń, M.; Mrozińska, Z.; Kaczmarek, A. Physical Properties, Chemical Analysis, and Evaluation of Antimicrobial Response of New Polylactide/Alginate/Copper Composite Materials. Mar. Drugs 2020, 18, 660. [Google Scholar] [CrossRef]
- Kudzin, M.H.; Kaczmarek, A.; Mrozińska, Z.; Olczyk, J. Deposition of Copper on Polyester Knitwear Fibers by a Magnetron Sputtering System. Physical Properties and Evaluation of Antimicrobial Response of New Multi-Functional Composite Materials. Appl. Sci. 2020, 10, 6990. [Google Scholar] [CrossRef]
- Kudzin, M.H.; Mrozińska, Z.; Kaczmarek, A.; Lisiak-Kucińska, A. Deposition of Copper on Poly(Lactide) Non-Woven Fabrics by Magnetron Sputtering-Fabrication of New Multi-Functional, Antimicrobial Composite Materials. Materials 2020, 13, 3971. [Google Scholar] [CrossRef] [PubMed]
- Kudzin, M.H.; Giełdowska, M.; Król, P.; Sobańska, Z. Preparation of Cotton–Zinc Composites by Magnetron Sputtering Metallization and Evaluation of their Antimicrobial Properties and Cytotoxicity. Materials 2022, 15, 2746. [Google Scholar] [CrossRef] [PubMed]
- Kudzin, M.H.; Giełdowska, M.; Mrozińska, Z.; Boguń, M. Poly(Lactic acid)/zinc/alginate Complex Material: Preparation and Antimicrobial Properties. Antibiotics 2021, 10, 1327. [Google Scholar] [CrossRef]
- Mrozińska, Z.; Ponczek, M.; Kaczmarek, A.; Boguń, M.; Sulak, E.; Kudzin, M.H. Blood Coagulation Activities of Cotton–Alginate–Copper Composites. Mar. Drugs 2023, 21, 625. [Google Scholar] [CrossRef]
- Mrozińska, Z.; Świerczyńska, M.; Juszczak, M.; Woźniak, K.; Kudzin, M.H. Poly(Lactide) Nonwoven Fabric with Iron Coating and its Biological Properties. Coatings 2024, 14, 1050. [Google Scholar] [CrossRef]
- Mrozińska, Z.; Kudzin, M.H.; Ponczek, M.B.; Kaczmarek, A.; Król, P.; Lisiak-Kucińska, A.; Żyłła, R.; Walawska, A. Biochemical Approach to Poly(Lactide)–Copper Composite—Impact on Blood Coagulation Processes. Materials 2024, 17, 608. [Google Scholar] [CrossRef] [PubMed]
- Mrozińska, Z.; Kaczmarek, A.; Świerczyńska, M.; Juszczak, M.; Kudzin, M.H. Biochemical Behavior, Influence on Cell DNA Condition, and Microbiological Properties of Wool and Wool–Copper Materials. Materials 2024, 17, 2878. [Google Scholar] [CrossRef] [PubMed]
- Świerczyńska, M.; Mrozińska, Z.; Lisiak-Kucińska, A.; Walawska, A.; Kudzin, M.H. Biochemical Evaluation and Structural Characteristics of Copper Coating Cellulose Nonwovens Prepared by Magnetron Sputtering Technology. Coatings 2024, 14, 843. [Google Scholar] [CrossRef]
- Yamauchi, K.; Yoshihara, T.; Suzuki, S.; Sugawara, H.; Maehara, S.; Sato, M.; Nishida, R.; Azuma, T.; Yamamoto, J.; Nakajima, K. Swelling Behavior of Calcium Ion-Crosslinked Sodium Alginate in an in Vitro Hemostatic Tamponade Model. Int. J. Biol. Macromol. 2024, 265, 131060. [Google Scholar] [CrossRef]
- Firmino, F.; Santos, J.; Cardoso Meira, K.; de Araújo, J.L.; Alvarenga Júnior, V.; De Gouveia Santos, V.L.C. Regenerated Oxidised Cellulose Versus Calcium Alginate in Controlling Bleeding fom Malignant Breast Cancer Wounds: Randomised Control Trial Study Protocol. J. Wound Care 2020, 29, 52–60. [Google Scholar] [CrossRef]
- Borkowski, D.; Krucińska, I.; Draczyński, Z. Preparation of Nanocomposite Alginate Fibers Modified with Titanium Dioxide and Zinc Oxide. Polymers 2020, 12, 1040. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sah, D.K.; Khanna, K.; Rai, Y.; Yadav, A.K.; Ansari, M.S.; Bhatt, A.N. A Calcium and Zinc Composite Alginate Hydrogel for Pre-Hospital Hemostasis and Wound Care. Carbohydr Polym. 2023, 299, 120186. [Google Scholar] [CrossRef] [PubMed]
- Rong, J.J.; Liang, M.; Xuan, F.Q.; Sun, J.Y.; Zhao, L.J.; Zhen, H.Z.; Tian, X.X.; Liu, D.; Zhang, Q.Y.; Peng, C.F.; et al. Alginate-Calcium Microsphere Loaded with Thrombin: A New Composite Biomaterial for Hemostatic Embolization. Int. J. Biol. Macromol. 2015, 75, 479–488. [Google Scholar] [CrossRef]
- Wu, X.; Tang, Z.; Liao, X.; Wang, Z.; Liu, H. Fabrication of Chitosan@Calcium Alginate Microspheres with Porous Core and Compact Shell, and Application as a Quick Traumatic Hemostat. Carbohydr. Polym. 2020, 247, 116669. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.-Y.; Fang, Q.-Q.; Wang, X.-F.; Wang, X.W.; Zhang, T.; Shi, B.H.; Zheng, B.; Zhang, D.D.; Hu, Y.Y.; Ma, L.; et al. Chitosan-Calcium Alginate Dressing Promotes Wound Healing: A Preliminary Study. Wound Repair Regen. 2020, 28, 326–337. [Google Scholar] [CrossRef]
- Mohandas, A.; Sudheesh Kumar, P.T.; Raja, B.; Lakshmanan, V.-K.; Jayakumar, R. Exploration of Alginate Hydrogel/Nano Zinc Oxide Composite Bandages for Infected Wounds. Int. J. Nanomed. 2015, 10, 53–56. [Google Scholar] [CrossRef]
- Che, C.; Liu, L.; Wang, X.; Zhang, X.; Luan, S.; Yin, J.; Li, X.; Shi, H. Surface-Adaptive and On-Demand Antibacterial Sponge for Synergistic Rapid Hemostasis and Wound Disinfection. ACS Biomater. Sci. Eng. 2020, 6, 1776–1786. [Google Scholar] [CrossRef]
- Dai, M.; Li, M.; Gong, J.; Meng, L.; Zhang, B.; Zhang, Y.; Yin, Y.; Wang, J. Silk Fibroin/Gelatin/Calcium Alginate Composite Materials: Preparation, Pore Characteristics, Comprehensive Hemostasis In Vitro. Mater. Des. 2022, 216, 110577. [Google Scholar] [CrossRef]
- Zheng, A.; Li, L.; Zhao, Z.; Tian, Y.; Li, H. Effect of Torrefaction Pretreatment on Chemical Structure and Pyrolysis Behaviors of Cellulose. IOP Conf. Ser. Earth Environ. Sci. 2021, 621, 012014. [Google Scholar] [CrossRef]
- Wilmer, C.E.; Leaf, M.; Lee, C.Y.; Farha, O.K.; Hauser, B.G.; Hupp, J.T.; Snurr, R.Q. Large-Scale Screening of Hypothetical Metal− Organic Frameworks. Nat. Chem. 2012, 4, 83–89. [Google Scholar] [CrossRef]
- De Lange, M.F.; Lin, L.C.; Gascon, J.; Vlugt, T.J.; Kapteijn, F. Assessing the Surface Area of Porous Solids: Limitations, Probe Molecules, and Methods. Langmuir 2016, 32, 12664–12675. [Google Scholar] [CrossRef] [PubMed]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Swenson, H.; Stadie, N.P. Langmuir’s Theory of Adsorption: A Centennial Review. Langmuir 2019, 35, 5409–5426. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Datar, A.; Jeong, C.; Deng, X.; Chung, Y.; Lin, L.C. Surface Area Determination of Porous Materials Using the Brunauer-Emmett-Teller (BET) Method: Limitations and Improvements. J. Phys. Chem. C 2019, 123, 20195–20209. [Google Scholar] [CrossRef]
- Datar, A.; Chung, Y.G.; Lin, L.C. Beyond the BET Analysis: The Surface Area Prediction of Nanoporous Materials Using a Machine Learning Method. J. Phys. Chem. Lett. 2020, 11, 5412–5417. [Google Scholar] [CrossRef]
- Shimizu, S.; Matubayasi, N. Surface Area Estimation: Replacing the Brunauer–Emmett–Teller Model with the Statistical Thermodynamic Fluctuation Theory. Langmuir 2022, 38, 7989–8002. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Qi, L.; Tang, X.; Wang, Z.; Peng, X. Pore Characterization of Different Types of Coal from Coal and Gas Outburst Disaster Sites Using Low Temperature Nitrogen Adsorption Approach. Int. J. Min. Sci. Technol. 2017, 27, 371–377. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, J.; Ding, J.; Liu, T.; Shi, G.; Li, X.; Dang, W.; Cheng, Y.; Guo, R. Pore Structure and Fractal Characteristics of Different Shale Lithofacies in the Dalong Formation in the Western Area of the Lower Yangtze Platform. Minerals 2020, 10, 72. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- ALOthman, Z.A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Bläker, C.; Muthmann, J.; Pasel, C.; Bathen, D. Characterization of Activated Carbon Adsorbents—State of the Art and Novel Approaches. ChemBioEng Rev. 2019, 6, 119–138. [Google Scholar] [CrossRef]
- Airaksinen, S. Role of Excipients in Moisture Sorption and Physical Stability of Solid Pharmaceutical Formulations; University of Helsinki: Helsinki, Finland, 2005; ISBN 978-952-10-2734-5. [Google Scholar]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-1-4020-2303-3. [Google Scholar]
- Gregg, S.J.; Sing, K.S.W.; Salzberg, H.W. Adsorption Surface Area and Porosity. J. Electrochem. Soc. 1967, 114, 279Ca. [Google Scholar] [CrossRef]
- Baldovino-Medrano, V.G.; Niño-Celis, V.; Isaacs Giraldo, R. Systematic Analysis of the Nitrogen Adsorption–Desorption Isotherms Recorded for a Series of Materials Based on Microporous–Mesoporous Amorphous Aluminosilicates Using Classical Methods. J. Chem. Eng. 2023, 68, 2512–2528. [Google Scholar] [CrossRef]
- Dragan, G.; Kutarov, V.; Schieferstein, E.; Iorgov, A. Adsorption Hysteresis in Open Slit-like Micropores. Molecules 2021, 26, 5074. [Google Scholar] [CrossRef] [PubMed]
- Mutch, N.J.; Waters, E.K.; Morrissey, J.H. Immobilized Transition Metal Ions Stimulate Contact Activation and Drive Factor XII-mediated Coagulation. J. Thromb. Haemost. 2012, 10, 2108–2115. [Google Scholar] [CrossRef] [PubMed]
- Toyama, T.; Kobayashi, M.; Rubiyatno; Morikawa, M.; Mori, K. Sulfamethoxazole Removal and Fuel-Feedstock Biomass Production from Wastewater in a Phyto-Fenton Process Using Duckweed Culture. Chemosphere 2024, 361, 142592. [Google Scholar] [CrossRef]
- Fernando, P.D.S.M.; Ko, D.O.; Piao, M.J.; Kang, K.A.; Herath, H.M.U.L.; Hyun, J.W. Protective Effect of Luteolin against Oxidative Stress-mediated Cell Injury via Enhancing Antioxidant Systems. Mol. Med. Rep. 2024, 30, 1–10. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, H.; Zhao, Y.; Chen, H.; Li, Q.; Li, X.; Hua, S.; Cao, D.; Chang, Y. Disrupting Redox Homeostasis for Tumor Therapy Based on PDT/Chemo/Ferroptosis Therapeutic Hybrid Liposomes. RSC Adv. 2024, 14, 20152–20162. [Google Scholar] [CrossRef]
- Liu, S.; Yan, W.; Zhang, J.; Li, Z.; Guo, Y. Copper Ions Amplify the Oxidative Stress Caused by Calcium Overload Leading to Apoptosis. Biomed. Anal. 2024, 1, 124–137. [Google Scholar] [CrossRef]
- Jing, M.; Liu, Y.; Song, W.; Yan, Y.; Yan, W.; Liu, R. Oxidative Damage Induced by Copper in Mouse Primary Hepatocytes by Single-Cell Analysis. Environ. Sci. Pollut. Res. 2016, 23, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Erxleben, A. Interactions of Copper Complexes with Nucleic Acids. Coord. Chem. Rev. 2018, 360, 92–121. [Google Scholar] [CrossRef]
- de Souza, Í.P.; Machado, B.D.P.; de Carvalho, A.B.; Binatti, I.; Krambrock, K.; Molphy, Z.; Kellett, A.; Pereira-Maia, E.C.; Silva-Caldeira, P.P. Exploring the DNA Binding, Oxidative Cleavage, and Cytotoxic Properties of New Ternary Copper(II) Compounds Containing 4-Aminoantipyrine and N,N-Heterocyclic Co-Ligands. J. Mol. Struct. 2019, 1178, 18–28. [Google Scholar] [CrossRef]
- EN ISO 20645:2006; Textile Fabrics. Determination of Antibacterial Activity—Agar Diffusion Plate Test. International Organization for Standardization: Geneva, Switzerland, 2006.
- EN 14119: 2005 Point 10.5 (B2); Testing of Textiles. Evaluation of the Action of Microfungi. Visual Method. International Organization for Standardization: Geneva, Switzerland, 2005.
- Kluska, M.; Juszczak, M.; Wysokiński, D.; Żuchowski, J.; Stochmal, A.; Woźniak, K. Kaempferol Derivatives Isolated from Lens Culinaris Medik. Reduce DNA Damage Induced by Etoposide in Peripheral Blood Mononuclear Cells. Toxicol. Res. 2019, 8, 896–907. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (Resazurin) Fluorescent Dye for the Assessment of Mammalian Cell Cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Juszczak, M.; Das, S.; Kosińska, A.; Rybarczyk-Pirek, A.J.; Wzgarda-Raj, K.; Tokarz, P.; Vasudevan, S.; Chworos, A.; Woźniak, K.; Rudolf, B. Piano-Stool Ruthenium(II) Complexes with Maleimide and Phosphine or Phosphite Ligands: Synthesis and Activity against Normal and Cancer Cells. Dalton Trans. 2023, 52, 4237–4250. [Google Scholar] [CrossRef]
Composite | Core | Upper Layer | Biomedical Application | Ref. | ||
---|---|---|---|---|---|---|
Polym. | Agent | Polym. (Formed) a | Agent | |||
ALG−Ca2+, Na+ | ALG−Na+ | CaCl2 a | hemostatic tamponade | [52] | ||
ALG−H+/ALG−Ca2+ | ALG−H+ | ALG−Na+ | CaCl2 | hemostasis/breast cancer wounds | [53] | |
ALG−Na+/TiO2 and ZnO | ALG−Na+-F | TiO2 and ZnO | biocidal | [54] | ||
ALG−Ca2 and Zn2+ | ALG−Na+ | CaCl2, Zn+Cl2 | pre-hospital hemostasis | [55] | ||
ALG−Ca2+/THR+ | ALG−Na+ | CaCl2 | (ALG−Ca2+) | THR | hemostatic embolization | [56] |
CTS/ALG−Ca2+ | CTS | ALG−Na+ | (CTS/ALG−Na+) | CaCl2 | traumatic hemostat | [57] |
CTS/ALG−Ca2+ | CTS | ALG−Ca2+ | wound healing | [58] | ||
CTS*/ALG−Na+/ZnO | CTS | ALG−Na+ | (CTS*/ALG−Na+) | ZnO | bandages for infected wounds | [59] |
GEL/ALG−Ca2+/HA and PHHB | GEL-ALG−Na+ | Ca2+Cl2 | (GEL/ALG−Ca2+) | PHMB and HA-LBL | hemostasis and disinfection | [60] |
SF/ALG−Ca2+ | SF | ALG−Na+ | (SF/ALG−Na+) | CaCl2 | hemostasis in vitro | [61] |
SF/GA/ALG−Ca2+ | SF/GEL | ALG−Na+ | (SF/GA/ALG−Na2+) | |||
CNW-Cu0-ALG−Ca2+ | CNW-Cu0 | ALG−Na+ | (CNW-Cu0-ALG−Na+) | CaCl2 | hemostatic and biocidal | This work |
Parameter | Range | Mixture Components of Film-Forming Material (%) | ||
---|---|---|---|---|
Gas Pressure | 2.3 × 10−3 mbar | Sodium Alginate Solution | Calcium Chloride Solutions | |
Magnetron Power | 0.4 kW and 0.8 kW | |||
Samples Investigated | Process duration (Magnetron power) | 0.5% | 5% | 10% |
CNW-Cel | − | − | − | − |
CNW-Cu0 | 32 min (0.8 kW) | − | − | − |
CNW-Cu0/ALG−Na+ | 32 min (0.8 kW) | + | − | − |
CNW-Cu0/ALG−Na+,Ca2+-1 | 32 min (0.8 kW) | + | + | − |
CNW-Cu0/ALG−Na+,Ca2+-2 | 32 min (0.8 kW) | + | − | + |
Analyzed Samples | Determined Elements | |||||
---|---|---|---|---|---|---|
C | H | O | Cu | Na | Ca | |
Cellulose a | 42.35 | 6.12 | 51.53 | |||
C6H10O5 b | 44.45 | 6.22 | 49.34 | |||
CNW | 40.2 | 8.4 | 51.4 | |||
CNW-Cu | 26.0 | 5.4 | 45.2 | 23.4 | ||
C6H10O5Cu c | 31.93 | 4.47 | 35.45 | 28.16 | ||
CNW-Cu0(0.4)/ALG−Na+ | 18.5 | 5.1 | 41.6 | 33.9 | 0.9 | |
CNW-Cu0(0.4)/ALG−Ca2+(1.4) | 16.9 | 52.3 | 29.3 | 0.2 | 1.3 | |
CNW-Cu0(0.4)/ALG−Ca2+(2.2) | 13.79 | 7.2 | 67.89 | 4.6 | 6.7 |
Elements | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Ca | Cu | Cl | ||||||
A.C. | W.C. | A.C. | W.C. | A.C. | W.C. | A.C. | W.C. | A.C. | W.C. | |
CNW-Cu0(0.4)/Alg−Na+ | 42.07 | 26.2 | 47.49 | 39.4 | 10.44 | 34.40 | ||||
CNW-Cu0(0.4)/Alg−Ca2+(1.4) | 23.15 | 11.64 | 40.44 | 27.08 | 10.82 | 18.15 | 4.38 | 11.64 | 21.22 | 31.49 |
CNW-Cu0(0.4)/Alg−Ca2+ (2.2) | 26.5 | 13.89 | 40.91 | 28.57 | 10.45 | 18.28 | 4.07 | 11.29 | 18.07 | 27.97 |
Sample Name | Total Pore Volume (TPV) | Specific Surface Area (SSA) |
---|---|---|
cm3/g | m2/g | |
CNW | 3.714 × 10−3 | 5.98 × 10−1 |
CNW-Cu(0.4) | 3.491 × 10−3 | 8.55 × 10−1 |
CNW-Cu(0.4)/ALG | 3.438 × 10−3 | 7.40 × 10−1 |
CNW-Cu(0.4)/ALG−Ca2+(1.4) | 4.254 × 10−3 | 9.79 × 10−1 |
CNW-Cu(0.4)/ALG−Ca2+(2.2) | 4.541 × 10−3 | 9.97 × 10−1 |
Sample a | Average Inhibition Zone(mm) | LIT | |||
---|---|---|---|---|---|
Bacteria | Fungi | ||||
E.coli | Staph. aureus | A. niger | C. globosum | ||
CNW | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | [51] | |
CNW-Cu0(0.2) | 2 | 1 | 1 | 2 | [51] |
CNW-Cu0(0.4) | 3 | 2 | 3 | 2 | |
CNW-Cu0(0.4) | 3 | 2 | 3 | 2 | [51] |
CNW-Cu0(0.4)/ALG−Na+ | 3 | 2 | 3 | 2 | |
CNW-Cu0(0.4)/ALG−Ca2+(1) | 3 | 2 | 2 | 4 | |
CNW-Cu0(0.4)/ALG−Ca2+(2) | 3 | 2 | 2 | 4 | |
PLA-ALG−Na+ | 0 | 0 | 0 | 0 | [42,45] |
PLA-ALG-Cu2+(0.2) | 3 | 2 | 3 | 3 | [42] |
PLA-ALG-Cu2+(1.2) | 3 | 4 | 3 | 3 | [42] |
PLA-ALG-Zn2+(0.2) | 0 | >1 | <1 | <1 | [45] |
PLA-ALG-Zn2+(0.4) | >1 | >1 | <1 | <1 | [45] |
PLA-Cu(0.2) | 2 | 1 | 1 | [44] | |
PLA-Cu(0.4) | 2 | 1 | 3 | [44] | |
WO-Cu0(0.1) | 1 | 1 | 1 | [50] | |
WO-Cu0(0.4) | 3 | 2 | 1 | [50] | |
PET-Cu(0.1) | 1 | 1 | 3 | [43] | |
PET-Cu(0.2) | 2 | 1 | 3 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świerczyńska, M.; Mrozińska, Z.; Juszczak, M.; Woźniak, K.; Kudzin, M.H. Preparation and Biochemical Activity of Copper-Coated Cellulose Nonwoven Fabric via Magnetron Sputtering and Alginate-Calcium Ion Complexation. Mar. Drugs 2024, 22, 436. https://doi.org/10.3390/md22100436
Świerczyńska M, Mrozińska Z, Juszczak M, Woźniak K, Kudzin MH. Preparation and Biochemical Activity of Copper-Coated Cellulose Nonwoven Fabric via Magnetron Sputtering and Alginate-Calcium Ion Complexation. Marine Drugs. 2024; 22(10):436. https://doi.org/10.3390/md22100436
Chicago/Turabian StyleŚwierczyńska, Małgorzata, Zdzisława Mrozińska, Michał Juszczak, Katarzyna Woźniak, and Marcin H. Kudzin. 2024. "Preparation and Biochemical Activity of Copper-Coated Cellulose Nonwoven Fabric via Magnetron Sputtering and Alginate-Calcium Ion Complexation" Marine Drugs 22, no. 10: 436. https://doi.org/10.3390/md22100436
APA StyleŚwierczyńska, M., Mrozińska, Z., Juszczak, M., Woźniak, K., & Kudzin, M. H. (2024). Preparation and Biochemical Activity of Copper-Coated Cellulose Nonwoven Fabric via Magnetron Sputtering and Alginate-Calcium Ion Complexation. Marine Drugs, 22(10), 436. https://doi.org/10.3390/md22100436