Green Synthesis of TiO2 Nanoparticles Using Natural Marine Extracts for Antifouling Activity
Abstract
:1. Introduction
2. Results
2.1. CTiO2 and BTiO2 Characterization
2.1.1. Crystal Phase and Particle Size Analysis
2.1.2. Surface Morphology
2.1.3. EDS Analysis
2.1.4. XPS Analysis
XPS Analysis for CTiO2
XPS Analysis for BTiO2
2.1.5. FT-IR Analysis
2.2. Antifouling Coatings Performance in Seawater
2.3. Physicochemical Parameters of Seawater
2.4. Mechanism for Marine Extract Mediated Synthesis of TiO2 Nanoparticles
- Reduction phase: involves the reduction of Ti4+ ions and the reduced Ti atoms undergo nucleation. This phase is the most important one, wherein the Ti ions (Ti4+) are recovered from their salt precursor (Titanium (IV) butoxide) through the interaction of marine extract (alga/sponge) secondary metabolites. These metabolites including alkaloids, flavonoids, polyphenols, and terpenoids can act as chelator to Ti4+. Mostly the hydroxyl function (OH−) of the metabolites content develops coordination with metal ions and donates an electron for the reduction process. The Ti metal ions are transferred from +4 oxidation state to zero-valent state, and then nucleation of the reduced Ti atoms occurs;
- Growth phase: involves the spontaneous coalescence of small adjacent Ti nanoparticles into larger size nanoparticles, that is, Ostwald ripening (a process in which nanoparticles are directly formed through heterogeneous nucleation and growth and further reduction of metal ion). The aggregation occurs because of stronger binding energy between Ti metal atoms as compared to atom-solvent binding energy. This process enhances the thermodynamic stability of Ti nanoparticles;
- Stabilization phase: is the final phase in the biosynthesis of TiO2 nanoparticles. Nanoparticles acquire the most energetically favorable conformation, with this process being strongly influenced by the ability of the alga/sponge extracts to stabilize metal nanoparticles. Ti nanoparticles eventually get their most intensely favorable and steady morphology when capped through marine alga/sponge metabolites, which prevents further aggregation of metal nanoparticles. After drying and calcination processes, the final TiO2 nanoparticles, capped with the bioactive metabolites, were obtained. The presence of these biologically active capping metabolites has been confirmed by the detection of the surface functional groups such as C-C, C-O/C=O and O-C=O, derived from these compounds of the marine alga/sponge extracts, as illustrated by XPS analysis of both BTiO2 and CTiO2. These capping bioactive compounds are presumed to increase the stability of the nanoparticles as well as enhance their antifouling efficiency.
2.5. Antifouling Mechanism
3. Materials and Methods
3.1. Extraction of the Marine Samples
3.1.1. Extraction of the Red Sea Algal Materials
3.1.2. Extraction of the Red Sea Sponge Carteriospongia Foliascens
3.2. Green Synthesis of TiO2 Nanoparticles
3.3. Characterization of BTiO2 and CTiO2
3.4. Fabrication of a New Marine Antifouling Paint Formulation
3.5. Preparation of Steel Panels
3.6. Paints Applications
3.7. Panel’s Immersion Test
3.8. Physicochemical Parameters Measurements of Seawater
- N = Normality of sodium thiosulphate,
- V = Volume of sodium thiosulphate
- B = Volume of oxygen bottle
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Labriere, C.; Cervin, G.; Pavia, H.; Hansen, J.H.; Svenson, J. Structure–Activity Relationship Probing of the Natural Marine Antifoulant Barettin. Mar. Biotechnol. 2021, 23, 904–916. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.V.; Brooks, S. The environmental fate and effects of antifouling paint biocides. Biofouling 2010, 26, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Han, P.; Wei, H.; Jia, L. Fouling-resistant behavior of silver nanoparticle modified surfaces against the bioadhesion of microalgae. ACS Appl. Mater. Interfaces 2014, 6, 3829–3838. [Google Scholar] [CrossRef] [PubMed]
- Devatha, C.P.; Thalla, A.K.; Katte, S.Y. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J. Clean. Prod. 2016, 139, 1425–1435. [Google Scholar] [CrossRef]
- Al-Lihaibi, S.S.; Abdel-Lateff, A.; Alarif, W.M.; Alorfi, H.S.; Nogata, Y.; Okino, T. Environmentally Friendly Antifouling Metabolites from Red Sea Organisms. J. Chem. 2019, 2019, 3278394. [Google Scholar] [CrossRef]
- Demirel, Z.; Yilmaz-Koz, F.F.; Karabay-Yavasoglu, N.U.; Ozdemir, G.; Sukatar, A. Antimicrobial and antioxidant activities of solvent extracts and the essentialoil composition of Laurencia obtusa and Laurencia obtusa var. pyramidata. Rom. Biotechnol. Lett. 2011, 16, 5927–5936. [Google Scholar]
- de Felicio, R.; de Albuquerque, S.; Young, M.C.M.; Yokoya, N.S. Debonsi, Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). J. Pharm. Biomed. Anal. 2010, 52, 763–769. [Google Scholar] [CrossRef]
- Indira, K.; Balakrishnan, S.; Srinivasan, M.; Bragadeeswaran, S.; Balasubramanian, T. Evaluation of in vitro antimicrobial property of seaweed (Halimeda tuna) from Tuticorin coast, Tamil Nadu, Southeast coast of India. Afr. J. Biotechnol. 2013, 12, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Ibrahium, H.A.; Amin, H.A.; Bondock, S. Effect of antibacterial substance extracted from brown algae on bacteria isolated from wastewater. Desali. Water Treat. 2020, 198, 284–294. [Google Scholar] [CrossRef]
- Abdelaleem, E.R.; Samy, M.N.; Desoukey, S.Y.; Liu, M.; Quinn, R.J.; Abdelmohsen, U.R. Marine natural products from sponges (Porifera) of the order Dictyoceratida (2013 to 2019); a promising source for drug discovery. RSC Adv. 2020, 10, 34959–34976. [Google Scholar] [CrossRef]
- Kordas, G. Nanotechnology to improve the biofouling and corrosion performance of marine paints: From lab experiments to real tests in sea. Int. J. Phys. Res. Appl. 2019, 2, 033–037. [Google Scholar]
- Scandura, G.; Ciriminna, R.; Ozer, L.Y.; Meneguzzo, F.; Palmisano, G.; Pagliaro, M. Antifouling and Photocatalytic Antibacterial Activity of the AquaSun Coating in Seawater and Related Media. ACS Omega 2017, 2, 7568–7575. [Google Scholar] [CrossRef] [PubMed]
- Khalili, M.; Razmjou, A.; Shafiei, R.; Shahavi, M.H.; Li, M.C.; Orooji, Y. High durability of food due to the flow cytometry proved antibacterial and antifouling properties of TiO2 decorated nanocomposite films. Food Chem. Toxicol. 2022, 168, 113291. [Google Scholar] [CrossRef] [PubMed]
- Agrios, A.G.; Pichat, P. State of the art and perspectives on materials and applications of photocatalysis over TiO2. J. Appl. Electrochem. 2005, 35, 655–663. [Google Scholar] [CrossRef]
- Shaban, Y.A. Solar light-induced photodegradation of chrysene in seawater in the presence of carbon-modified n-TiO2 nanoparticles. Arab. J. Chem. 2019, 12, 652–663. [Google Scholar] [CrossRef]
- Shaban, Y.A.; Fallata, H.M. Sunlight-induced photocatalytic degradation of acetaminophen over efficient carbon doped TiO2 (CTiO2 ) nanoparticles. Res. Chem. Intermed. 2019, 45, 2529–2547. [Google Scholar] [CrossRef]
- Shaban, Y.A.; Orif, M.I. Purification of seawater by C-Cu-TiO2 ceramic based membrane. Desalin. Water Treat. 2019, 162, 60–69. [Google Scholar] [CrossRef]
- Gu, J.; Zheng, M.; Zhu, T.; Wang, N.; Wang, L.; Yu, J.; Qin, X. Electrostatic-modulated interfacial crosslinking and waterborne emulsion coating toward waterproof, breathable, and antifouling fibrous membranes. Chem. Eng. J. 2023, 454, 140439. [Google Scholar] [CrossRef]
- Hu, C.; Kwan, K.; Xie, X.; Zhou, C.; Ren, K. Superhydrophobic polyaniline/TiO2 composite coating with enhanced anticorrosion function. React. Funct. Polym. 2022, 179, 105381. [Google Scholar] [CrossRef]
- Tian, S.; He, Y.; Zhang, L.; Li, S.; Bai, Y.; Wang, Y.; Wu, J.; Yu, J.; Guo, X. CNTs/TiO2- loaded carbonized nanofibrous membrane with two-type self-cleaning performance for high efficiency oily wastewater remediation. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 656, 130306. [Google Scholar] [CrossRef]
- Sundrarajan, M.; Gowri, S. Green synthesis of titanium dioxide nanoparticles by nyctanthes arbor-tristis leaves extract. Chalcogenide Lett. 2011, 8, 447–451. [Google Scholar]
- Almeida, E.; Diamantino, T.C.; de Sousa, O. Marine paints: The particular case of antifouling paints. Prog. Org. Coatings 2007, 59, 2–20. [Google Scholar] [CrossRef]
- Tadros, A.B.; El-Naggar, M.A.; Zaghloul, F.A. Assessment of marine paints based on tubeworms and Sepia shell. World Appl. Sci. J. 2013, 28, 304–311. [Google Scholar]
- Soliman, Y.A.; Ibrahim, A.M.; Tadros, H.R.Z.; Abou-Taleb, A.E.A.; Moustafa, A.H.; Hamed, M.A. Antifouling and antibacterial activities of marine bioactive compounds extracted from some Red Sea cucumber. Int. J. Contemp. Appl. Sci. 2016, 3, 83–103. [Google Scholar]
- Roethle, P.A.; Trauner, D. The chemistry of marine furanocembranoids, pseudopteranes, gersolanes, and related natural products. Nat. Prod. Rep. 2008, 25, 298–317. [Google Scholar] [CrossRef]
- Bundele, M.; Rane, N.; Lande, V.; Dani, A.; Shende, S. Green synthesis of TiO2 nanoparticle from Plumeria rubra L. leaves for anticorrosive application. Mater. Today Proc. 2022; in press. [Google Scholar] [CrossRef]
- Kavitha, R.; Devi, L.G. Synergistic effect between carbon dopant in titania lattice and surface carbonaceous species for enhancing the visible light photocatalysis. J. Environ. Chem. Eng. 2014, 2, 857–867. [Google Scholar] [CrossRef] [Green Version]
- Manoharan, R.K.; Sankaran, S. Photocatalytic degradation of organic pollutant aldicarb by non-metal-doped nanotitania: Synthesis and characterization. Environ. Sci. Pollut. Res. 2018, 25, 20510–20517. [Google Scholar] [CrossRef]
- Lin, J.; Yu, J.C. An investigation on photocatalytic activities of mixed TiO2 -rare earth oxides for the oxidation of acetone in air. J. Photochem. Photobiol. A Chem. 1998, 116, 63–67. [Google Scholar] [CrossRef]
- Ji, J.; Long, Z.; Lin, D. Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem. Eng. J. 2011, 170, 525–530. [Google Scholar] [CrossRef]
- Di Valentin, C.; Finazzi, E.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Paganini, M.C.; Giamello, E. N-doped TiO2: Theory and experiment. Chem. Phys. 2007, 339, 44–56. [Google Scholar] [CrossRef]
- Sakatani, Y.; Ando, H.; Okusako, K.; Koike, H.; Nunoshige, J.; Takata, T.; Kondo, J.N.; Hara, M.; Domen, K. Metal ion and N co-doped TiO2 as a visible-light photocatalyst. J. Mater. Res. 2004, 19, 2100–2108. [Google Scholar] [CrossRef]
- Tao, Y.G.; Xu, Y.Q.; Pan, J.; Gu, H.; Qin, C.Y.; Zhou, P. Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis. Mater. Sci. Eng. 2012, 177, 1664–1671. [Google Scholar] [CrossRef]
- El-Sheikh, S.M.; Zhang, G.; El-Hosainy, H.M.; Ismail, A.A.; O’Shea, K.E.; Falaras, P.; Kontos, A.G.; Dionysiou, D.D. High performance sulfur, nitrogen and carbon doped mesoporous anatase–brookite TiO2 photocatalyst for the removal of microcystin- LR under visible light irradiation. J. Hazard. Mater. 2014, 280, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, V.; Olivo, A.; Pinna, F.; Signoretto, M.; Vindigni, F.; Cerrato, G.; Bianchi, C.L. C-N/TiO2 photocatalysts: Effect of co-doping on the catalytic performance under visible light. Appl. Catal. B Environ. 2014, 160–161, 152–160. [Google Scholar] [CrossRef]
- Amaniampong, P.N.; Booshehri, A.Y.; Jia, X.; Dai, Y.; Wang, B.; Mushrif, S.H.; Borgna, A.; Yang, Y. High-temperature reduction improves the activity of rutile TiO2 nanowires-supported gold-copper bimetallic nanoparticles for cellobiose to gluconic acid conversion. Appl. Catal. A Gen. 2015, 505, 16–27. [Google Scholar] [CrossRef]
- Trinh, Q.T.; Bhola, K.; Amaniampong, P.N.; Jerome, F.; Mushrif, S.H. Synergistic application of XPS and DFT to investigate metal oxide surface catalysis. J. Phys. Chem. 2018, 122, 22397–22406. [Google Scholar] [CrossRef]
- Guo, X.; Mao, D.; Lu, G.; Wang, S.; Wu, G. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. J. Mol. Catal. A-Chem. 2011, 345, 60–68. [Google Scholar] [CrossRef]
- Etacheri, V.; Michlits, G.; Seery, M.K.; Hinder, S.J.; Pillai, S.C. A highly efficient TiO2-XCx nano-heterojunction photocatalyst for visible-light induced antibacterial applications. ACS Appl. Mater. Interfaces 2013, 5, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.F.; Xue, X.X.; Yang, H.; Chen, C.; Li, X.; Niu, M.C.; Gao, X.Y.; Yang, Y.T. Effect of calcination temperature on the structure and visible-light photocatalytic activities of (N, S and C) co-doped TiO2 nano-materials. Appl. Surf. Sci. 2015, 332, 172–180. [Google Scholar] [CrossRef]
- Dolat, D.; Quici, N.; Nejman, E.K.; Morawski, A.W.; Puma, G.L. One-step, hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N, C TiO2) photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursors on photocatalytic activity and catalyst deactivation. Appl. Catal. B Environ. 2012, 115–116, 81–89. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Z.; Cheng, X.; Wang, Q.; Chen, Y.; Dong, P.; Zhang, X. Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogen-sources. Appl. Surf. Sci. 2015, 355, 45–51. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.C.; Nadagouda, M.; Han, C.; O’Shea, K.; El-Sheikh, S.M.; Ismail, A.A.; Dionysiou, D.D. Visible light-sensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of microcystin-LR. Appl. Catal. B Environ. 2014, 144, 614–621. [Google Scholar] [CrossRef]
- Abbasizadeh, S.; Keshtkar, A.R.; Mousavian, M.A. Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution. Chem. Eng. J. 2013, 220, 161–171. [Google Scholar] [CrossRef]
- Faragallah, H.M.; Tadros, H.R.Z.; Okbah, M.A. Nutrient salts and chlorophyll-a during short term scale in the Eastern Harbor, Alexandria (Egypt). Egypt. J. Aquat. Res. 2009, 35, 243–250. [Google Scholar]
- Hamdona, S.K.; Abo-Taleb, A.E.A.; Salem, D.M.S.A.; Tadros, H.R.Z. Fouling control by new Egyptian natural sources in marine aquaculture. J. Chem. Biol. Phys. Sci. Sect. D Environ. Sci. JCBPS 2019, 9, 92–105. [Google Scholar] [CrossRef]
- Wahl, M.; Goecke, F.; Labes, A.; Dobretsov, S.; Weinberger, F. The second skin: Ecological role of epibiotic biofilms on marine organisms. Front. Microbiol. 2012, 3, 292. [Google Scholar] [CrossRef] [Green Version]
- Dobretsov, S.; Dahms, H.U.; Qian, P.Y. Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 2006, 22, 43–54. [Google Scholar] [CrossRef]
- Dahms, H.D.; Dobretsov, S. Antifouling compounds from marine macroalgae. Mar. Drugs 2017, 15, 265. [Google Scholar] [CrossRef] [Green Version]
- Orfanoudaki, M.; Hartmann, A.; Miladinovic, H.; Ngoc, H.N.; Karsten, U.; Ganzera, M. Bostrychines A-F, six novel mycosporine-like amino-acids and a novel betaine from the red alga Bostrychia scorpioides. Mar. Drugs 2019, 17, 356. [Google Scholar] [CrossRef] [Green Version]
- Orfanoudaki, M.; Hartmann, A.; Ngoc, H.N.; Gelbrich, T.; West, J.; Karsten, U.; Ganzera, M. Mycosporine-like amino acids, brominated and sulphated phenols: Suitable chemotaxonomic markers for the reassessment of classification of Bostrychia calliptera (Ceramiales, Rhodophyta). Phytochemistry 2020, 174, 112344. [Google Scholar] [CrossRef]
- Maciel, O.M.C.; Tavares, R.S.N.; Caluz, D.R.E.; Gaspar, L.R.; Debonsi, H.M. Photoprotective potential of metabolites isolated from algae-associated fungi Annulohypoxylon stygium. JPPBEG 2018, 178, 316–322. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, H.C.R.; Jeller, A.H.; Debonsi, H.M.; Alves, P.B.; Porto, A.L.M. Multiple monohydroxylation products from rac-camphor by marine fungus Botryosphaeria sp. isolated from marine alga Bostrychia radicans. J. Braz. Chem. Soc. 2017, 28, 498–504. [Google Scholar] [CrossRef]
- de Felicio, R.; Pavao, G.B.; de Oliveira, A.L.L.; Erbert, C.; Conti, R.; Pupo, M.T.; Furtado, N.A.J.C.; Ferreira, E.G.; Costa-Lotufo, L.V.; Young, M.C.M.; et al. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Rev. Braz. Farmacogn. 2015, 25, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.D.L.; Ramlov, F.; Carneiro, N.P.N.; Gestinari, L.M.; dos Santos, B.F.; Bento, L.M.; Lhullier, C.; Gouvea, L.; Bastos, E.; Horta, P.A.; et al. Antioxidant properties and total phenolic contents of some tropical seaweeds of the Brazilian coast. J. Appl. Phycol. 2013, 25, 1179–1187. [Google Scholar] [CrossRef]
- Erbert, C.; Lopes, A.A.; Yokoya, N.S.; Furtado, N.A.J.C.; Conti, R.; Pupo, M.T.; Lopes, J.L.C.; Debonsi, H.M. Antibacterial compound from the endophytic fungus Phomopsis iongicolla isolated from the tropical red seaweed Bostrychia radicans. Bot. Mar. 2012, 55, 435–440. [Google Scholar] [CrossRef]
- de Oliveira, A.L.L.; da Silva, D.B.; Turatti, I.C.; Yokoya, N.S.; Debonsi, H.M. Volatile constituents of Brazilian Bostrychia species (Rhodomelaceae) from mangrove and rocky shore. Biochem. Syst. Ecol. 2009, 37, 761–765. [Google Scholar] [CrossRef]
- Prabhakaran, S.; Rajaram, R.; Balasubramanian, V.; Mathivanan, K. Antifouling potentials of extracts from seaweeds, seagrasses and mangroves against primary biofilm forming bacteria. Asian Pac. J. Trop. Biomed. 2012, 2, 316–322. [Google Scholar] [CrossRef]
- Konig, G.M.; Wright, A.D. Hydrophilic metabolites from the tropical marine sponge Carteriospongia sp. Planta Med. 1999, 65, 679–680. [Google Scholar] [CrossRef]
- Schmitz, F.J.; Chang, J.C. Sesterterpenes from a Pacific sponge, Carteriospongia flabellifera. J. Nat. Prod. 1988, 51, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Braekman, J.C.; Daloze, D.; Kaisin, M.; Moussiaux, B. Ichthyotoxicsesterterpenoids from the New Guinean sponge Carteriospongia foliascens. Tetrahedron 1985, 41, 4603–4613. [Google Scholar] [CrossRef]
- Diyabalanage, T.; Ratnayake, R.; Bokesch, H.R.; Ransom, T.T.; Henrich, C.J.; Beutler, J.A.; McMahon, J.B.; Gustafson, K.R. Flabelliferins A and B, sesterterpenoids from the South Pacific sponge Carteriospongia flabellifera. J. Nat. Prod. 2012, 75, 1490–1494. [Google Scholar] [CrossRef]
- Williams, D.E.; Hollander, I.; Feldberg, L.; Frommer, E.; Mallon, R.; Tahir, A.; Soest, R.; Andersen, R.J. Scalarane-based sesterterpenoid RCE-protease inhibitors isolated from the Indonesian marine sponge Carteriospongia foliascens. J. Nat. Prod. 2009, 72, 1106–1109. [Google Scholar] [CrossRef]
- McCulloch, M.W.B.; Bugni, T.S.; Concepcion, G.P.; Coombs, G.S.; Harper, M.K.; Kaur, S.; Mangalindan, G.C.; Mutizwa, M.M.; Veltri, C.A.; Virshup, D.M.; et al. Carteriosulfonic Acids A-C, GSK-3 Inhibitors from a Carteriospongia sp. J. Nat. Prod. 2009, 72, 1651–1656. [Google Scholar] [CrossRef] [Green Version]
- Alorfi, H.S. Bioactive Metabolites from Saudi Marine Macro-Organisms. PhD. Thesis, King Abdulaziz University, Jeddah, Saudi Arabia, May 2015. [Google Scholar]
- Ramadan, S.E.; Kheirallah, A.M.; Abdel-Salam, K.M. Marine fouling community in the Eastern harbour of Alexandria, Egypt compared with four decades of previous studies. Mediterr. Mar. Sci. 2006, 7, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Makarov, V.V.; Love, A.J.; Sinitsyna, O.; Makarova, S.S.; Yamnsky, I.V.; Taliansky, M.E.; Kalinina, N.O. Green nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat. 2014, 6, 35–44. [Google Scholar] [CrossRef]
- Marshall, A.T.; Haverkamp, R.G.; Davies, C.E.; Parsons, J.G.; Gardea-Torresdey, J.L.; van Agterveld, D. Accumulation of gold nanoparticles in Brassic juncea. Int. J. Phytoremediat. 2007, 9, 197–206. [Google Scholar] [CrossRef]
- Malik, P.; Shankar, R.; Malik, V.; Sharma, N.; Mukherjee, T.K. Green chemistry based benign routes for nanoparticle synthesis. J. Nanopart. 2014, 2014, 302429. [Google Scholar] [CrossRef] [Green Version]
- Lam, S.M.; Sin, J.C.; Abdullah, A.Z.; Mohamed, A.R. Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review. Desalination Water Treat. 2012, 41, 131–169. [Google Scholar] [CrossRef]
- Nikazar, M.; Gholivand, K.; Mahanpoor, K. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst. Desalination 2008, 219, 293–300. [Google Scholar] [CrossRef]
- FAO. Permanganate value of organic matter in natural waters. Fish. Tech. Pap. 1975, 137, 169–171. [Google Scholar]
- Grasshoff, K.; Kremling, K.; Ehrhardt, M. Methods of Seawater Analysis; Wiley-VCH: New York, NY, USA, 1999. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater by American Public Health Association; Broadway: New York, NY, USA, 1989. [Google Scholar]
- Parsons, T.R.; Maita, Y.; Lalli, C.M. A Manual of Chemical and Biological Methods for Sea Water Analysis, 1st ed.; Pergamon Press: Oxford, UK, 1984. [Google Scholar]
- Bather, J.M.; Riley, J.P. The chemistry of the Irish Sea. Part I. The sulphate-chlorinity ratio. ICES J. Mar. Sci. 1954, 20, 145–152. [Google Scholar] [CrossRef]
Catalyst | Crystal Phase | Crystalline Size (nm) | EDS (Atomic%) | XPS (Atomic%) | ||||
---|---|---|---|---|---|---|---|---|
Ti | O | C | Ti | O | C | |||
CTiO2 | Anatase | 8.3 | 29.82 | 53.27 | 16.91 | 22.9 | 53.4 | 23.7 |
BTiO2 | Anatase | 22.86 | 33.50 | 52.90 | 13.60 | 19.5 | 66.3 | 14.2 |
Days | Temp. (°C) | pH | Salinity (PSU/ppt) | Transparency (cm) | Alkalinity (meq/L) | DO (mL O2/L) | OOM (mg O2/L) | NO2− | NO3− | NH3 | PO43− | SiO3− | SO42− (g/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(µM) | ||||||||||||||
0 | 24.7 | 8.21 | 37.3 | 148 | 3.45 | 3.60 | 1.913 | 1.250 | 14.39 | 3.15 | 3.75 | 5.65 | 3.587 | |
20 | 26.3 | 8.19 | 37.5 | 149 | 3.42 | 3.88 | 2.230 | 0.940 | 13.94 | 3.89 | 3.21 | 5.31 | 3.489 | |
40 | 26.7 | 8.01 | 37.8 | 147 | 3.25 | 3.91 | 2.473 | 1.240 | 14.56 | 4.01 | 3.52 | 5.42 | 3.459 | |
60 | 27.4 | 8.13 | 37.7 | 148 | 3.35 | 4.13 | 2.653 | 1.450 | 14.32 | 3.96 | 3.15 | 5.24 | 3.656 | |
80 | 28.3 | 8.41 | 37.8 | 144 | 3.35 | 3.64 | 2.875 | 1.025 | 14.57 | 4.21 | 2.94 | 4.96 | 3.565 | |
108 | 30.2 | 8.32 | 37.8 | 149 | 3.42 | 3.25 | 2.743 | 0.075 | 15.32 | 4.65 | 2.15 | 4.75 | 3.487 | |
Max | 30.2 | 8.41 | 37.8 | 149 | 3.45 | 4.13 | 2.857 | 1.450 | 15.32 | 4.65 | 3.75 | 5.65 | 3.656 | |
Min | 24.7 | 8.01 | 37.3 | 144 | 3.25 | 3.25 | 1.913 | 0.075 | 13.94 | 3.15 | 2.15 | 4.75 | 3.495 | |
Average | 27.26 | 37.65 | 147.5 | 3.37 | 3.74 | 2.481 | 0.996 | 14.52 | 3.98 | 3.12 | 5.22 | 3.541 | ||
St dev. | 1.87 | 0.21 | 1.87 | 0.07 | 0.31 | 0.357 | 0.486 | 0.455 | 0.49 | 0.55 | 0.32 | 0.075 |
Panel | Weight before Painting (g) | Weight after Painting (g) | Weight of Paint Film (g) | Weight of Paint Film Per Unit Area (g/cm2) |
---|---|---|---|---|
BTP | 8.705 | 11.880 | 3.175 | 0.063 |
CTP | 7.861 | 11.055 | 3.194 | 0.064 |
Blank | 8.658 | 10.474 | 1.816 | 0.036 |
Control | 8.771 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarif, W.M.; Shaban, Y.A.; Orif, M.I.; Ghandourah, M.A.; Turki, A.J.; Alorfi, H.S.; Tadros, H.R.Z. Green Synthesis of TiO2 Nanoparticles Using Natural Marine Extracts for Antifouling Activity. Mar. Drugs 2023, 21, 62. https://doi.org/10.3390/md21020062
Alarif WM, Shaban YA, Orif MI, Ghandourah MA, Turki AJ, Alorfi HS, Tadros HRZ. Green Synthesis of TiO2 Nanoparticles Using Natural Marine Extracts for Antifouling Activity. Marine Drugs. 2023; 21(2):62. https://doi.org/10.3390/md21020062
Chicago/Turabian StyleAlarif, Walied M., Yasser A. Shaban, Mohammed I. Orif, Mohamed A. Ghandourah, Adnan J. Turki, Hajer S. Alorfi, and Hermine R. Z. Tadros. 2023. "Green Synthesis of TiO2 Nanoparticles Using Natural Marine Extracts for Antifouling Activity" Marine Drugs 21, no. 2: 62. https://doi.org/10.3390/md21020062
APA StyleAlarif, W. M., Shaban, Y. A., Orif, M. I., Ghandourah, M. A., Turki, A. J., Alorfi, H. S., & Tadros, H. R. Z. (2023). Green Synthesis of TiO2 Nanoparticles Using Natural Marine Extracts for Antifouling Activity. Marine Drugs, 21(2), 62. https://doi.org/10.3390/md21020062