Manzamine-A Alters In Vitro Calvarial Osteoblast Function
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALP | Alkaline Phosphatase |
°C | Degrees Celsius |
COVID | Corona Virus Disease |
Dach | Dachshund Homolog 1 |
DNA | Deoxyribonucleic acid |
Eya1 | Eyes absent homolog 1 |
Gro | Groucho |
HIV | Human Immunodeficiency Virus |
IC50 | Inhibitory concentration 50% |
Mdfi | MyoD Family Inhibitor |
mRNA | Message ribonucleic acid |
MTS | 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium |
NIH | United States National Institutes of Health |
Notch | Notch Receptor |
PCR | Polymerase Chain Reaction |
qrtPCR | Quantitative Real Time Polymerase Chain Reaction |
PI3K/AKT | Phosphoinositide 3-kinases/Protein kinase B |
RNA | Ribonucleic Acid |
Six1 | Sine Oculis Homeobox |
US-CDC | United State Center for Disease Control |
WNT | Wingless Intergrated |
References
- Ren, Z.; Bremer, A.A.; Pawlyk, A.C. Drug development research in pregnant and lactating women. Am. J. Obs. Gynecol 2021, 225, 33–42. [Google Scholar]
- Tsamantioti, E.S.; Hashmi, M.F. Teratogenic Medications. In StatPearls; Statpearl Publishing LLC: Treasure Island, FL, USA, 2021. [Google Scholar]
- Wesley, B.D.; Sewell, C.A.; Chang, C.Y.; Hatfield, K.P.; Nguyen, C.P. Prescription medications for use in pregnancy-perspective from the US Food and Drug Administration. Am. J. Obs. Gynecol. 2021, 225, 21–32. [Google Scholar] [CrossRef]
- Barrow, P. Review of embryo-fetal developmental toxicity studies performed for pharmaceuticals approved by FDA in 2016 and 2017. Reprod. Toxicol. 2018, 80, 117–125. [Google Scholar] [CrossRef]
- Brucker, M.C.; King, T.L. The 2015 US Food and Drug Administration Pregnancy and Lactation Labeling Rule. J. Midwifery Womens Health 2017, 62, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Wilmer, E.; Chai, S.; Kroumpouzos, G. Drug safety: Pregnancy rating classifications and controversies. Clin. Derm. 2016, 34, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, C.; Dever, D.; Stanbery, L.; Edelman, G.; Dworkin, L.; Nemunaitis, J. FDA efficiency for approval process of COVID-19 therapeutics. Infect. Agent Cancer 2020, 15, 73. [Google Scholar] [CrossRef]
- Chary, M.A.; Barbuto, A.F.; Izadmehr, S.; Hayes, B.D.; Burns, M.M. COVID-19: Therapeutics and Their Toxicities. J. Med. Toxicol. 2020, 16, 284–294. [Google Scholar] [CrossRef]
- Dauner, D.G.; Dauner, K.N. Summary of adverse drug events for hydroxychloroquine, azithromycin, and chloroquine during the COVID-19 pandemic. J. Am. Pharm. Assoc. 2021, 61, 293–298. [Google Scholar] [CrossRef]
- Kato, S.; Kurzrock, R. Repurposing Interleukin-6 Inhibitors to Combat COVID-19. J. Immunother. Precis. Oncol. 2020, 3, 52–55. [Google Scholar] [CrossRef]
- Li, D.; Sempowski, G.D.; Saunders, K.O.; Acharya, P.; Haynes, B.F. SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. Annu. Rev. Med. 2021, 73, 1–16. [Google Scholar] [CrossRef]
- Manivannan, E.; Karthikeyan, C.; Moorthy, N.; Chaturvedi, S.C. The Rise and Fall of Chloroquine/Hydroxychloroquine as Compassionate Therapy of COVID-19. Front. Pharm. 2021, 12, 584940. [Google Scholar] [CrossRef] [PubMed]
- Mouffak, S.; Shubbar, Q.; Saleh, E.; El-Awady, R. Recent advances in management of COVID-19: A review. Biomed. Pharm. 2021, 143, 112107. [Google Scholar] [CrossRef] [PubMed]
- Saleem, A.; Akhtar, M.F.; Haris, M.; Abdel-Daim, M.M. Recent updates on immunological, pharmacological, and alternative approaches to combat COVID-19. Inflammopharmacology 2021, 29, 1331–1346. [Google Scholar] [CrossRef]
- Shyr, Z.A.; Gorshkov, K.; Chen, C.Z.; Zheng, W. Drug Discovery Strategies for SARS-CoV-2. J. Pharm. Exp. 2020, 375, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ho, M. Emerging antibody-based therapeutics against SARS-CoV-2 during the global pandemic. Antib. Ther. 2020, 3, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021, 9, 689. [Google Scholar] [CrossRef]
- Zarenezhad, E.; Behrouz, S.; Farjam, M.; Rad, M.N.S. A Mini Review on Discovery and Synthesis of Remdesivir as an Effective and Promising Drug against COVID-19. Russ. J. Bioorg. Chem. 2021, 47, 609–621. [Google Scholar] [CrossRef]
- Gammone, M.A.; Riccioni, G.; Galvano, F.; D’Orazio, N. Novel Therapeutic Strategies Against Cancer: Marine-derived Drugs May Be the Answer? Anticancer.Agents Med. Chem. 2016, 16, 1549–1557. [Google Scholar] [CrossRef]
- Mioso, R.; Marante, F.J.; Bezerra, R.S.; Borges, F.V.; Santos, B.V.; Laguna, I.H. Cytotoxic Compounds Derived from Marine Sponges. A Review (2010–2012). Molecules 2017, 22, 208. [Google Scholar] [CrossRef]
- Mioso, R.; Marante, F.J.; Laguna, I.H. Chemical constituents of the fermentation broth of the marine-derived fungus Penicillium roqueforti. Rev. Iberoam. Micol. 2015, 32, 147–152. [Google Scholar] [CrossRef]
- Nair, D.G.; Weiskirchen, R.; Al-Musharafi, S.K. The use of marine-derived bioactive compounds as potential hepatoprotective agents. Acta Pharm. Sin. 2015, 36, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M.; Battershill, C.N. Therapeutic agents from the sea: Biodiversity, chemo-evolutionary insight and advances to the end of Darwin’s 200th year. Diving Hyperb. Med. 2009, 39, 216–225. [Google Scholar] [PubMed]
- Newman, D.J.; Cragg, G.M.; Holbeck, S.; Sausville, E.A. Natural products and derivatives as leads to cell cycle pathway targets in cancer chemotherapy. Curr. Cancer Drug Targets 2002, 2, 279–308. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep. 2000, 17, 215–234. [Google Scholar] [CrossRef]
- Ang, K.K.; Holmes, M.J.; Higa, T.; Hamann, M.T.; Kara, U.A. In vivo antimalarial activity of the beta-carboline alkaloid manzamine A. Antimicrob. Agents Chemother. 2000, 44, 1645–1649. [Google Scholar] [CrossRef]
- Ang, K.K.; Holmes, M.J.; Kara, U.A. Immune-mediated parasite clearance in mice infected with Plasmodium berghei following treatment with manzamine A. Parasitol. Res. 2001, 87, 715–721. [Google Scholar] [CrossRef]
- Laport, M.S.; Santos, O.C.; Muricy, G. Marine sponges: Potential sources of new antimicrobial drugs. Curr. Pharm. Biotechnol. 2009, 10, 86–105. [Google Scholar] [CrossRef]
- Peng, J.; Kudrimoti, S.; Prasanna, S.; Odde, S.; Doerksen, R.J.; Pennaka, H.K.; Choo, Y.M.; Rao, K.V.; Tekwani, B.L.; Madgula, V.; et al. Structure-activity relationship and mechanism of action studies of manzamine analogues for the control of neuroinflammation and cerebral infections. J. Med. Chem. 2010, 53, 61–76. [Google Scholar] [CrossRef]
- Radwan, M.; Hanora, A.; Khalifa, S.; Abou-El-Ela, S.H. Manzamines: A potential for novel cures. Cell Cycle 2012, 11, 1765–1772. [Google Scholar] [CrossRef]
- Rao, K.V.; Santarsiero, B.D.; Mesecar, A.D.; Schinazi, R.F.; Tekwani, B.L.; Hamann, M.T. New manzamine alkaloids with activity against infectious and tropical parasitic diseases from an Indonesian sponge. J. Nat. Prod. 2003, 66, 823–828. [Google Scholar] [CrossRef]
- Thompson, M.J.; Louth, J.C.; Little, S.M.; Jackson, M.P.; Boursereau, Y.; Chen, B.; Coldham, I. Synthesis and evaluation of 1-amino-6-halo-beta-carbolines as antimalarial and antiprion agents. ChemMedChem 2012, 7, 578–586. [Google Scholar] [CrossRef]
- Hu, J.F.; Hamann, M.T.; Hill, R.; Kelly, M. The manzamine alkaloids. Alkaloids. Chem. Biol. 2003, 60, 207–285. [Google Scholar]
- Hanna, G.S.; Choo, Y.M.; Harbit, R.; Paeth, H.; Wilde, S.; Mackle, J.; Verga, J.U.; Wolf, B.J.; Thomas, O.P.; Croot, P.; et al. Contemporary Approaches to the Discovery and Development of Broad-Spectrum Natural Product Prototypes for the Control of Coronaviruses. J. Nat. Prod. 2021, 84, 3001–3007. [Google Scholar] [CrossRef]
- Ichiba, T.; Corgiat, J.M.; Scheuer, P.J.; Kelly-Borges, M. 8-Hydroxymanzamine A, a beta-carboline alkaloid from a sponge, Pachypellina sp. J. Nat. Prod. 1994, 57, 168–170. [Google Scholar] [CrossRef]
- Palem, J.R.; Bedadala, G.R.; El Sayed, K.A.; Hsia, S.C. Manzamine A as a novel inhibitor of herpes simplex virus type-1 replication in cultured corneal cells. Planta Med. 2011, 77, 46–51. [Google Scholar] [CrossRef]
- Palem, J.R.; Mudit, M.; Hsia, S.V.; Sayed, K.A.E. Discovery and preliminary structure-activity relationship of the marine natural product manzamines as herpes simplex virus type-1 inhibitors. Zeitschrift Nat. C J. Biosci. 2017, 72, 49–54. [Google Scholar] [CrossRef]
- Indraningrat, A.A.; Smidt, H.; Sipkema, D. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds. Mar. Drugs 2016, 14, 87. [Google Scholar] [CrossRef]
- Peng, J.; Hu, J.F.; Kazi, A.B.; Li, Z.; Avery, M.; Peraud, O.; Hill, R.T.; Franzblau, S.G.; Zhang, F.; Schinazi, R.F.; et al. Manadomanzamines A and B: A novel alkaloid ring system with potent activity against mycobacteria and HIV-1. J. Am. Chem. Soc. 2003, 125, 13382–13386. [Google Scholar] [CrossRef]
- Rao, K.V.; Donia, M.S.; Peng, J.; Garcia-Palomero, E.; Alonso, D.; Martinez, A.; Medina, M.; Franzblau, S.G.; Tekwani, B.L.; Khan, S.I.; et al. Manzamine B and E and ircinal A related alkaloids from an Indonesian Acanthostrongylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer’s diseases. J. Nat. Prod. 2006, 69, 1034–1040. [Google Scholar] [CrossRef]
- Rao, K.V.; Kasanah, N.; Wahyuono, S.; Tekwani, B.L.; Schinazi, R.F.; Hamann, M.T. Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. J. Nat. Prod. 2004, 67, 1314–1318. [Google Scholar] [CrossRef]
- Sayed, K.A.; Khalil, A.A.; Yousaf, M.; Labadie, G.; Kumar, G.M.; Franzblau, S.G.; Mayer, A.M.; Avery, M.A.; Hamann, M.T. Semisynthetic studies on the manzamine alkaloids. J. Nat. Prod. 2008, 71, 300–308. [Google Scholar] [CrossRef]
- Yousaf, M.; Hammond, N.L.; Peng, J.; Wahyuono, S.; McIntosh, K.A.; Charman, W.N.; Mayer, A.M.; Hamann, M.T. New manzamine alkaloids from an Indo-Pacific sponge. Pharmacokinetics, oral availability, and the significant activity of several manzamines against HIV-I, AIDS opportunistic infections, and inflammatory diseases. J. Med. Chem. 2004, 47, 3512–3517. [Google Scholar] [CrossRef]
- Karan, D.; Dubey, S.; Pirisi, L.; Nagel, A.; Pina, I.; Choo, Y.M.; Hamann, M.T. The Marine Natural Product Manzamine A Inhibits Cervical Cancer by Targeting the SIX1 Protein. J. Nat. Prod. 2020, 83, 286–295. [Google Scholar] [CrossRef]
- Adrados, I.; Larrasa-Alonso, J.; Galarreta, A.; Lopez-Antona, I.; Menendez, C.; Abad, M.; Gil, J.; Moreno-Bueno, G.; Palmero, I. The homeoprotein SIX1 controls cellular senescence through the regulation of p16INK4A and differentiation-related genes. Oncogene 2016, 35, 3485–3494. [Google Scholar] [CrossRef]
- Bessarab, D.A.; Chong, S.W.; Korzh, V. Expression of zebrafish six1 during sensory organ development and myogenesis. Dev. Dyn. 2004, 230, 781–786. [Google Scholar] [CrossRef]
- Bonnet, A.; Dai, F.; Brand-Saberi, B.; Duprez, D. Vestigial-like 2 acts downstream of MyoD activation and is associated with skeletal muscle differentiation in chick myogenesis. Mech. Dev. 2010, 127, 120–136. [Google Scholar] [CrossRef]
- Bonnin, M.A.; Laclef, C.; Blaise, R.; Eloy-Trinquet, S.; Relaix, F.; Maire, P.; Duprez, D. Six1 is not involved in limb tendon development, but is expressed in limb connective tissue under Shh regulation. Mech. Dev. 2005, 122, 573–585. [Google Scholar] [CrossRef]
- Cheng, Q.; Ning, D.; Chen, J.; Li, X.; Chen, X.P.; Jiang, L. SIX1 and DACH1 influence the proliferation and apoptosis of hepatocellular carcinoma through regulating p53. Cancer Biol. Ther. 2018, 19, 381–390. [Google Scholar] [CrossRef]
- Coletta, R.D.; Christensen, K.; Reichenberger, K.J.; Lamb, J.; Micomonaco, D.; Huang, L.; Wolf, D.M.; Muller-Tidow, C.; Golub, T.R.; Kawakami, K.; et al. The Six1 homeoprotein stimulates tumorigenesis by reactivation of cyclin A1. Proc. Natl. Acad. Sci. USA 2004, 101, 6478–6483. [Google Scholar] [CrossRef]
- Freyer, L.; Morrow, B.E. Canonical Wnt signaling modulates Tbx1, Eya1, and Six1 expression, restricting neurogenesis in the otic vesicle. Dev. Dyn. 2010, 239, 1708–1722. [Google Scholar] [CrossRef]
- Funato, N. New Insights Into Cranial Synchondrosis Development: A Mini Review. Front. Cell Dev. Biol. 2020, 8, 706. [Google Scholar] [CrossRef]
- Grifone, R.; Demignon, J.; Giordani, J.; Niro, C.; Souil, E.; Bertin, F.; Laclef, C.; Xu, P.X.; Maire, P. Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev. Biol. 2007, 302, 602–616. [Google Scholar] [CrossRef]
- Grifone, R.; Laclef, C.; Spitz, F.; Lopez, S.; Demignon, J.; Guidotti, J.E.; Kawakami, K.; Xu, P.X.; Kelly, R.; Petrof, B.J.; et al. Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype. Mol. Cell. Biol. 2004, 24, 6253–6267. [Google Scholar] [CrossRef]
- He, Z.; Li, G.; Tang, L.; Li, Y. SIX1 overexpression predicts poor prognosis and induces radioresistance through AKT signaling in esophageal squamous cell carcinoma. Onco Targets Ther. 2017, 10, 1071–1079. [Google Scholar] [CrossRef]
- Hosseinipour, M.; Wan, F.; Altomare, D.; Creek, K.E.; Pirisi, L. HPV16-transformed human keratinocytes depend on SIX1 expression for proliferation and HPV E6/E7 gene expression. Virology 2019, 537, 20–30. [Google Scholar] [CrossRef]
- Ikeda, K.; Kageyama, R.; Suzuki, Y.; Kawakami, K. Six1 is indispensable for production of functional progenitor cells during olfactory epithelial development. Int. J. Dev. Biol. 2010, 54, 1453–1464. [Google Scholar] [CrossRef]
- Ji, Q.; Zhu, J.; Fang, C.L.; Jin, H.; Zhan, D.P.; Huang, J. Down-regulation of MIAT suppresses osteosarcoma progression by acting as a ceRNA for miR-141-3p to regulate SIX1-mediated PI3K/AKT pathway. Eur. Rev. Med. Pharm. Sci. 2020, 24, 2218–2228. [Google Scholar]
- Jin, H.; Cui, M.; Kong, J.; Cui, X.; Lin, Z.; Wu, Q.; Liu, S. Sineoculis homeobox homolog 1 protein is associated with breast cancer progression and survival outcome. Exp. Mol. Pathol. 2014, 97, 247–252. [Google Scholar] [CrossRef]
- Laclef, C.; Hamard, G.; Demignon, J.; Souil, E.; Houbron, C.; Maire, P. Altered myogenesis in Six1-deficient mice. Development 2003, 130, 2239–2252. [Google Scholar] [CrossRef]
- Laclef, C.; Souil, E.; Demignon, J.; Maire, P. Thymus, kidney and craniofacial abnormalities in Six 1 deficient mice. Mech. Dev. 2003, 120, 669–679. [Google Scholar] [CrossRef]
- Li, B.; Kuriyama, S.; Moreno, M.; Mayor, R. The posteriorizing gene Gbx2 is a direct target of Wnt signalling and the earliest factor in neural crest induction. Development 2009, 136, 3267–3278. [Google Scholar] [CrossRef]
- Li, C.M.; Guo, M.; Borczuk, A.; Powell, C.A.; Wei, M.; Thaker, H.M.; Friedman, R.; Klein, U.; Tycko, B. Gene expression in Wilms’ tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am. J. Pathol. 2002, 160, 2181–2190. [Google Scholar] [CrossRef]
- Li, W.; Qin, Y.; Zhou, R.; Liu, Y.; Zhang, G. High expression of SIX1 is an independent predictor of poor prognosis in endometrial cancer. Am. J. Transl. Res. 2021, 13, 2840–2848. [Google Scholar]
- Li, X.; Oghi, K.A.; Zhang, J.; Krones, A.; Bush, K.T.; Glass, C.K.; Nigam, S.K.; Aggarwal, A.K.; Maas, R.; Rose, D.W.; et al. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 2003, 426, 247–254. [Google Scholar] [CrossRef]
- Li, Y.M.; Li, X.J.; Yang, H.L.; Zhang, Y.B.; Li, J.C. MicroRNA-23b suppresses cervical cancer biological progression by directly targeting six1 and affecting epithelial-to-mesenchymal transition and AKT/mTOR signaling pathway. Eur. Rev. Med. Pharm. Sci. 2019, 23, 4688–4697. [Google Scholar]
- Nagel, S.; Meyer, C.; Kaufmann, M.; Drexler, H.G.; MacLeod, R.A. Aberrant expression of homeobox gene SIX1 in Hodgkin lymphoma. Oncotarget 2015, 6, 40112–40126. [Google Scholar] [CrossRef]
- Nie, X.; Xu, J.; El-Hashash, A.; Xu, P.X. Six1 regulates Grem1 expression in the metanephric mesenchyme to initiate branching morphogenesis. Dev. Biol. 2011, 352, 141–151. [Google Scholar] [CrossRef]
- Petropoulos, H.; Skerjanc, I.S. Beta-catenin is essential and sufficient for skeletal myogenesis in P19 cells. J. Biol. Chem. 2002, 277, 15393–15399. [Google Scholar] [CrossRef]
- Relaix, F.; Demignon, J.; Laclef, C.; Pujol, J.; Santolini, M.; Niro, C.; Lagha, M.; Rocancourt, D.; Buckingham, M.; Maire, P. Six homeoproteins directly activate Myod expression in the gene regulatory networks that control early myogenesis. PLoS Genet. 2013, 9, e1003425. [Google Scholar] [CrossRef]
- Riddiford, N.; Schlosser, G. Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes. Dev. Biol. 2017, 431, 152–167. [Google Scholar] [CrossRef]
- Rodriguez, S.; Sickles, H.M.; Deleonardis, C.; Alcaraz, A.; Gridley, T.; Lin, D.M. Notch2 is required for maintaining sustentacular cell function in the adult mouse main olfactory epithelium. Dev. Biol. 2008, 314, 40–58. [Google Scholar] [CrossRef]
- Sato, S.; Ikeda, K.; Shioi, G.; Nakao, K.; Yajima, H.; Kawakami, K. Regulation of Six1 expression by evolutionarily conserved enhancers in tetrapods. Dev. Biol. 2012, 368, 95–108. [Google Scholar] [CrossRef]
- Song, W.; Ma, J.; Lei, B.; Yuan, X.; Cheng, B.; Yang, H.; Wang, M.; Feng, Z.; Wang, L. Sine oculis homeobox 1 promotes proliferation and migration of human colorectal cancer cells through activation of Wnt/beta-catenin signaling. Cancer Sci. 2019, 110, 608–616. [Google Scholar] [CrossRef]
- Tavares, A.L.P.; Cox, T.C.; Maxson, R.M.; Ford, H.L.; Clouthier, D.E. Negative regulation of endothelin signaling by SIX1 is required for proper maxillary development. Development 2017, 144, 2021–2031. [Google Scholar] [CrossRef]
- Towers, C.G.; Guarnieri, A.L.; Micalizzi, D.S.; Harrell, J.C.; Gillen, A.E.; Kim, J.; Wang, C.A.; Oliphant, M.U.J.; Drasin, D.J.; Guney, M.A.; et al. The Six1 oncoprotein downregulates p53 via concomitant regulation of RPL26 and microRNA-27a-3p. Nat. Commun. 2015, 6, 10077. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Liu, H.; Sun, L.; Zhang, R.; Li, L.; Wangding, M.; Wang, J. Six1 induces protein synthesis signaling expression in duck myoblasts mainly via up-regulation of mTOR. Genet. Mol. Biol. 2016, 39, 151–161. [Google Scholar] [CrossRef]
- Wu, W.; Huang, R.; Wu, Q.; Li, P.; Chen, J.; Li, B.; Liu, H. The role of Six1 in the genesis of muscle cell and skeletal muscle development. Int. J. Biol. Sci. 2014, 10, 983–989. [Google Scholar] [CrossRef]
- Wu, W.; Ren, Z.; Li, P.; Yu, D.; Chen, J.; Huang, R.; Liu, H. Six1: A critical transcription factor in tumorigenesis. Int. J. Cancer 2015, 136, 1245–1253. [Google Scholar] [CrossRef]
- Xin, X.; Li, Y.; Yang, X. SIX1 is overexpressed in endometrial carcinoma and promotes the malignant behavior of cancer cells through ERK and AKT signaling. Oncol. Lett. 2016, 12, 3435–3440. [Google Scholar] [CrossRef]
- Xu, P.X.; Zheng, W.; Huang, L.; Maire, P.; Laclef, C.; Silvius, D. Six1 is required for the early organogenesis of mammalian kidney. Development 2003, 130, 3085–3094. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, B.; Li, Y.L.; Yu, X.R. SIX1 reduces the expression of PTEN via activating PI3K/AKT signal to promote cell proliferation and tumorigenesis in osteosarcoma. Biomed. Pharm. 2018, 105, 10–17. [Google Scholar] [CrossRef]
- Yu, J.; McMahon, A.P.; Valerius, M.T. Recent genetic studies of mouse kidney development. Curr. Opin. Genet. Dev. 2004, 14, 550–557. [Google Scholar] [CrossRef]
- Zou, D.; Silvius, D.; Davenport, J.; Grifone, R.; Maire, P.; Xu, P.X. Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1. Dev. Biol. 2006, 293, 499–512. [Google Scholar] [CrossRef]
- Calpena, E.; Wurmser, M.; McGowan, S.J.; Atique, R.; Bertola, D.R.; Cunningham, M.L.; Gustafson, J.A.; Johnson, D.; Morton, J.E.V.; Passos-Bueno, M.R.; et al. Unexpected role of SIX1 variants in craniosynostosis: Expanding the phenotype of SIX1-related disorders. J. Med. Genet. 2021, 59, 165–169. [Google Scholar] [CrossRef]
- National Center for Health Statistics (Ed.) Osteoporosis or low bone mass in older adults: United States, 2017–2018. In NCHS Data Briefs; US Center for Disease Control: Hyattsville, MD, USA, 2021. [Google Scholar]
- Guzon-Illescas, O.; Perez Fernandez, E.; Crespi Villarias, N.; Quiros Donate, F.J.; Pena, M.; Alonso-Blas, C.; Garcia-Vadillo, A.; Mazzucchelli, R. Mortality after osteoporotic hip fracture: Incidence, trends, and associated factors. J. Orthop. Surg. Res. 2019, 14, 203. [Google Scholar] [CrossRef]
- Lisk, R.; Yeong, K. Reducing mortality from hip fractures: A systematic quality improvement programme. BMJ Open Qual. 2014, 3. [Google Scholar] [CrossRef]
- Morri, M.; Ambrosi, E.; Chiari, P.; Orlandi Magli, A.; Gazineo, D.; D’Alessandro, A.; Forni, C. One-year mortality after hip fracture surgery and prognostic factors: A prospective cohort study. Sci. Rep. 2019, 9, 18718. [Google Scholar] [CrossRef]
- Panula, J.; Pihlajamaki, H.; Mattila, V.M.; Jaatinen, P.; Vahlberg, T.; Aarnio, P.; Kivela, S.L. Mortality and cause of death in hip fracture patients aged 65 or older: A population-based study. BMC Musculoskelet. Disord. 2011, 12, 105. [Google Scholar] [CrossRef]
- Schnell, S.; Friedman, S.M.; Mendelson, D.A.; Bingham, K.W.; Kates, S.L. The 1-year mortality of patients treated in a hip fracture program for elders. Geriatr. Orthop. Surg. Rehabil. 2010, 1, 6–14. [Google Scholar] [CrossRef]
- Fabbro, D.; Cowan-Jacob, S.W.; Moebitz, H. Ten things you should know about protein kinases: IUPHAR Review 14. Br. J. Pharmacol. 2015, 172, 2675–2700. [Google Scholar] [CrossRef]
- Jänne, P.A.; Gray, N.; Settleman, J. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat. Rev. Drug Discov. 2009, 8, 709–723. [Google Scholar] [CrossRef]
- Knight, J.D.; Qian, B.; Baker, D.; Kothary, R. Conservation, variability and the modeling of active protein kinases. PLoS ONE 2007, 2, e982. [Google Scholar] [CrossRef]
- Hamann, M.; Alonso, D.; Martín-Aparicio, E.; Fuertes, A.; Pérez-Puerto, M.J.; Castro, A.; Morales, S.; Navarro, M.L.; Del Monte-Millán, M.; Medina, M.; et al. Glycogen synthase kinase-3 (GSK-3) inhibitory activity and structure-activity relationship (SAR) studies of the manzamine alkaloids. Potential for Alzheimer’s disease. J. Nat. Prod. 2007, 70, 1397–1405. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Hall, M.L.; Lach, J.; Clifford, J.; Chandrasena, K.; Canton, C.; Kontoyianni, M.; Choo, Y.-M.; Karan, D.; Hamann, M.T. RSK1 vs. RSK2 Inhibitory Activity of the Marine β-Carboline Alkaloid Manzamine A: A Biochemical, Cervical Cancer Protein Expression, and Computational Study. Mar. Drugs 2021, 19, 506. [Google Scholar] [CrossRef]
- Birkinshaw, R.W.; Gong, J.N.; Luo, C.S.; Lio, D.; White, C.A.; Anderson, M.A.; Blombery, P.; Lessene, G.; Majewski, I.J.; Thijssen, R.; et al. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat. Commun. 2019, 10, 2385. [Google Scholar] [CrossRef]
- Kular, J.; Tickner, J.; Chim, S.M.; Xu, J. An overview of the regulation of bone remodelling at the cellular level. Clin. Biochem. 2012, 45, 863–873. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, D.; Jin, H.; Ye, Z.; Wang, C.; Chen, K.; Kuek, V.; Xu, K.; Qiu, H.; Chen, P.; et al. Hymenialdisine: A Marine Natural Product That Acts on Both Osteoblasts and Osteoclasts and Prevents Estrogen-Dependent Bone Loss in Mice. J. Bone Miner. Res. 2020, 35, 1582–1596. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, D.; Wang, Y.; Dong, C.; Liu, J.; Chen, K.; Song, F.; Wang, C.; Yuan, J.; Davis, R.A.; et al. Thiaplakortone B attenuates RANKL-induced NF-kappaB and MAPK signaling and dampens OVX-induced bone loss in mice. Biomed. Pharmacother. 2022, 154, 113622. [Google Scholar] [CrossRef]
- Shilabin, A.G.; Kasanah, N.; Tekwani, B.L.; Hamann, M.T. Kinetic studies and bioactivity of potential manzamine prodrugs. J Nat. Prod. 2008, 71, 1218–1221. [Google Scholar] [CrossRef]
- Holliday, L.S.; Patel, S.S.; Rody, W.J., Jr. RANKL and RANK in extracellular vesicles: Surprising new players in bone remodeling. Extracell. Vesicles Circ. Nucl. Acids 2021, 2, 18–28. [Google Scholar] [CrossRef]
- Yuan, J.S.; Reed, A.; Chen, F.; Stewart, C.N. Jr. Statistical analysis of real-time PCR data. BMC Bioinform. 2006, 7, 85. [Google Scholar] [CrossRef]
- Burley, S.K.; Berman, H.M.; Bhikadiya, C.; Bi, C.; Chen, L.; Di Costanzo, L.; Christie, C.; Dalenberg, K.; Duarte, J.M.; Dutta, S.; et al. RCSB Protein Data Bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019, 47, D464–D474. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Sanner, M.F. Python: A programming language for software integration and development. J Mol Graph Model 1999, 17, 57–61. [Google Scholar]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
TGF-b | Ikb | JAK2 | PI3K | AKT | PKC | FAK | Bcl-2 | |
---|---|---|---|---|---|---|---|---|
PDB ID | 6B8Y | 4KIK | 6WTO | 4FA6 | 3MVH | 1XJD | 3BZ3 | 6O0K |
x-centre | 5.788 | 49.323 | −21.148 | 44.555 | 24.812 | 56.783 | 10.234 | −14.226 |
y-centre | 9.372 | 30.567 | −14.051 | 13.306 | 5.644 | 8.908 | 2.763 | 1.146 |
z-centre | 5.017 | −56.867 | 8.259 | 31.313 | 18.343 | 2.494 | 5.109 | −10.800 |
Manzamine A | 10.3 | −8.2 | −10.8 | −6.6 | −9.2 | −10.3 | −9 | −10.1 |
ATP | −8.2 | −7.7 | −8 | −7 | −7.8 | −7.3 | −7.7 | n.a. |
Venetoclax | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | −12.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardy, S.; Choo, Y.-M.; Hamann, M.; Cray, J. Manzamine-A Alters In Vitro Calvarial Osteoblast Function. Mar. Drugs 2022, 20, 647. https://doi.org/10.3390/md20100647
Hardy S, Choo Y-M, Hamann M, Cray J. Manzamine-A Alters In Vitro Calvarial Osteoblast Function. Marine Drugs. 2022; 20(10):647. https://doi.org/10.3390/md20100647
Chicago/Turabian StyleHardy, Samantha, Yeun-Mun Choo, Mark Hamann, and James Cray. 2022. "Manzamine-A Alters In Vitro Calvarial Osteoblast Function" Marine Drugs 20, no. 10: 647. https://doi.org/10.3390/md20100647
APA StyleHardy, S., Choo, Y.-M., Hamann, M., & Cray, J. (2022). Manzamine-A Alters In Vitro Calvarial Osteoblast Function. Marine Drugs, 20(10), 647. https://doi.org/10.3390/md20100647