Application of Microalgal Stress Responses in Industrial Microalgal Production Systems
Abstract
:1. Introduction
2. Adaptive Laboratory Evolution Experimental Design
2.1. Cultivation Modes
2.1.1. Continuous Culture
2.1.2. Batch and Fed-Batch Culture
2.1.3. Staged Cultivation
2.2. Choice of Stress Conditions and Equipment
3. Increased Cell Growth Rate
4. Improved Product Yield
5. Enhanced Environmental Tolerance
6. Promoted Nitrogen and Phosphorus Removal in Wastewater
7. Industrial Application of ALE in Microalgae
8. Challenges and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maria, M.; Alexandra, D.; Seraphim, P.; George, A. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol. Adv. 2021, 56, 1–16. [Google Scholar]
- Lee, H.-S.; Kim, Z.-H.; Park, H.; Lee, C.-G. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris. Bioprocess Biosyst. Eng. 2016, 39, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Kim, Z.-H.; Park, Y.-S.; Ryu, Y.-J.; Lee, C.-G. Enhancing biomass and fatty acid productivity of Tetraselmis sp. in bubble column photobioreactors by modifying light quality using light filters. Biotechnol. Bioprocess Eng. 2017, 22, 397–404. [Google Scholar] [CrossRef]
- Zhang, T.-Y.; Hu, H.-Y.; Wu, Y.-H.; Zhuang, L.-L.; Xu, X.-Q.; Wang, X.-X.; Dao, G.-H. Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production. Renew. Sustain. Energy Rev. 2016, 60, 1602–1614. [Google Scholar] [CrossRef]
- Salama, E.-S.; Kurade, M.B.; Abou-Shanab, R.A.I.; El-Dalatony, M.M.; Yang, I.-S.; Min, B.; Jeon, B.-H. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew. Sustain. Energy Rev. 2017, 79, 1189–1211. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Hong, K.Q.; Wang, B.W.; Liu, D.Y.; Chen, T.; Wang, Z.W. Genetic Diversity for Accelerating Microbial Adaptive Laboratory Evolution. ACS Synth. Biol. 2021, 10, 1574–1586. [Google Scholar] [CrossRef] [PubMed]
- Alaina, J.L.; Anagha, K.; Matthew, C.P. Adaptive Laboratory Evolution for algal strain improvement: Methodologies and applications. Algal Res. 2020, 53, 102122. [Google Scholar]
- Kuebler, J.E.; Davison, I.R.; Yarish, C. Photosynthetic adaptation to temperature in the red algae Lomentaria baileyana and Lomentaria orcadensis. Eur. J. Phycol. 1991, 26, 9–19. [Google Scholar] [CrossRef]
- Yinan, W.; Aysha, J.; XinHui, X.; Chong, Z. Advanced strategies, and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends Biotechnol. 2021, 1036, 66–72. [Google Scholar]
- Neha, A.; George, P.P. Microalgae strain improvement strategies: Random mutagenesis and adaptive laboratory evolution. Trends Plant Sci. 2021, 26, 1199–1200. [Google Scholar]
- Michaela, G.; Thorsten, H.; Felix, M.; Anina, B.; Julia, H.-B.; Andreas, F.; Alexander, N.; Marcus, P.; Jörn, K.; Bastian, B.; et al. Continuous Adaptive Evolution of a Fast-Growing Corynebacterium glutamicum Strain Independent of Protocatechuate. Front. Microbiol. 2019, 10, 1648. [Google Scholar]
- Hoskisson, P.A.; Hobbs, G. Continuous culture—Making a comeback? Microbiology 2005, 151, 3153–3159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, F.; Roukas, T.; Biliaderis, C.G. Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochem. 1999, 34, 355–366. [Google Scholar] [CrossRef]
- Jinbyung, P.; Byungcheol, S.; Jungryul, K.; Yongkun, P. Production of erythritol in fed-batch cultures of Trichosporon sp. J. Ferment. Bioeng. 1998, 86, 577–580. [Google Scholar]
- Lee, Y.Y.; Wong, K.T.; Nissom, P.M.; Wong, D.C.; Yap, M.G. Transcriptional profiling of batch and fed-batch protein-free 293-HEK cultures. Metab. Eng. 2007, 9, 52–67. [Google Scholar] [CrossRef]
- Henley, W.J. The past, present and future of algal continuous cultures in basic research and commercial applications. Algal Res. 2019, 43, 101636. [Google Scholar] [CrossRef]
- Sun, X.-M.; Ren, L.-J.; Zhao, Q.-Y.; Ji, X.-J.; Huang, H. Microalgae to produce lipid and carotenoids: A review with focus on stress regulation and adaptation. BioMed Cent. 2018, 11, 227. [Google Scholar]
- Diao, J.; Song, X.; Cui, J.; Liu, L.; Shi, M.; Wang, F.; Zhang, W. Rewiring metabolic network by chemical modulator-based laboratory evolution doubles lipid production in Crypthecodinium cohnii. Metab. Eng. 2019, 51, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Bin, L.; Jin, L.; Peipei, S.; Xiaonian, M.; Yue, J.; Feng, C. Sesamol Enhances Cell Growth and the Biosynthesis and Accumulation of Docosahexaenoic Acid in the Microalga Crypthecodinium cohnii. J. Agric. Food Chem. 2015, 63, 5640–5645. [Google Scholar]
- Perez-Garcia, O.; Escalante, F.M.; De-Bashan, L.E.; Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 2011, 45, 11–36. [Google Scholar]
- Nam, H.; Conrad, T.M.; Lewis, N.E. The role of cellular objectives and selective pressures in metabolic pathway evolution. Curr. Opin. Biotechnol. 2011, 22, 595–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamberlin, J.; Harrison, K.; Zhang, W. Impact of Nutrient Availability on Tertiary Wastewater Treatment by Chlorella vulgaris. Water Environ. Res. 2018, 90, 2008–2016. [Google Scholar] [CrossRef] [PubMed]
- Narang, A. The Steady States of Microbial Growth on Mixtures of Substitutable Substrates in a Chemostat. J. Theor. Biol. 1998, 190, 241–261. [Google Scholar] [CrossRef]
- Sandberg, T.E.; Salazar, M.J.; Weng, L.L.; Palsson, B.O.; Feist, A.M. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 2019, 56, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Winkler, J.D.; Kao, K.C. Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 2014, 104, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Sen, T.J.; Ying, L.S.; Wayne, C.K.; Kee, L.M.; Wei, L.J.; ShihHsin, H.; Loke, S.P. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 2020, 11, 116–129. [Google Scholar]
- Baldev, E.; MubarakAli, D.; Ilavarasi, A.; Pandiaraj, D.; Ishack, K.A.S.S.; Thajuddin, N. Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae. Colloids Surf. B Biointerfaces 2013, 105, 207–214. [Google Scholar] [CrossRef]
- Davoodbasha, M.; Edachery, B.; Nooruddin, T.; Lee, S.-Y.; Kim, J.-W. Evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property. Microb. Pathog. 2018, 115, 233–238. [Google Scholar] [CrossRef]
- Deepika, P.; MubarakAli, D. Production and assessment of microalgal liquid fertilizer for the enhanced growth of four crop plants. Biocatal. Agric. Biotechnol. 2020, 28, 101701. [Google Scholar] [CrossRef]
- Pathak, J.; Rajneesh; Maurya, P.K.; Singh, S.P.; Hader, D.-P.; Sinha, R.P. Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives. Front. Environ. Sci. 2018, 6, 7. [Google Scholar] [CrossRef]
- Schoepp, G.N.; Stewart, L.R.; Vincent, S.; Quigley, J.A.; Dominick, M.; Mayfield, P.S.; Burkart, D.M. System and method for research-scale outdoor production of microalgae and cyanobacteria. Bioresour. Technol. 2014, 166, 273–281. [Google Scholar] [CrossRef]
- Griffiths, M.J.; Harrison, S.T.L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 2009, 21, 493–507. [Google Scholar] [CrossRef]
- Shin, S.-E.; Koh, H.G.; Kang, N.K.; Suh, W.I.; Jeong, B.-R.; Lee, B.; Chang, Y.K. Isolation, phenotypic characterization, and genome wide analysis of a Chlamydomonas reinhardtii strain naturally modified under laboratory conditions: Towards enhanced microalgal biomass and lipid production for biofuels. Biotechnol. Biofuels 2017, 10, 308. [Google Scholar] [CrossRef] [Green Version]
- Lan, S.; Wu, L.; Zhang, D.; Hu, C. Effects of light and temperature on open cultivation of desert cyanobacterium Microcoleus vaginatus. Bioresour. Technol. 2015, 182, 144–150. [Google Scholar] [CrossRef]
- Fu, W.; Gudmundsson, O.; Feist, A.M.; Herjolfsson, G.; Brynjolfsson, S.; Palsson, B.Ø. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. J. Biotechnol. 2012, 161, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Song, Y.; Jin, S.; Shin, J.; Bae, J.; Kim, D.R.; Lee, J.-K.; Kim, S.C.; Cho, S.; Cho, B.-K. Adaptive Laboratory Evolution of Eubacterium limosum ATCC 8486 on Carbon Monoxide. Front. Microbiol. 2020, 11, 402. [Google Scholar] [CrossRef]
- Cheng, J.; Li, K.; Yang, Z.; Lu, H.; Zhou, J.; Cen, K. Gradient domestication of Haematococcus pluvialis mutant with 15% CO2 to promote biomass growth and astaxanthin yield. Bioresour. Technol. 2016, 216, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Perrineau, M.-M.; Gross, J.; Zelzion, E.; Price, D.C.; Levitan, O.; Boyd, J.; Bhattacharya, D. Using natural selection to explore the adaptive potential of Chlamydomonas reinhardtii. PLoS ONE 2017, 9, e92533. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Zhao, Q.; Miao, X.; Shi, J. Enhancement of lipid production in low-starch mutants Chlamydomonas reinhardtii by adaptive laboratory evolution. Bioresour. Technol. 2013, 147, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Yam, F.K.; Hassan, Z. Innovative advances in LED technology. Microelectron. J. 2004, 36, 129–137. [Google Scholar] [CrossRef]
- Li, K.; Cheng, J.; Qiu, Y.; Tian, J.; Zhou, J.; Cen, K. Potential use of accumulation lipid as a biodiesel feedstock Haematococcus pluvialis induced by 15% CO2. Acta Energ. Sol. Sin. 2020, 41, 351–355. [Google Scholar]
- Li, X.; Pei, G.; Liu, L.; Chen, L.; Zhang, W. Metabolomic analysis and lipid accumulation in a glucose tolerant Crypthecodinium cohnii strain obtained by adaptive laboratory evolution. Bioresour. Technol. 2017, 235, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Liu, B. Starch and Lipid Contents and Transcriptome Analysis of Chlorella G32 Based on Glucose Concentration. Zhejiang University: Hangzhou, China, 2018. [Google Scholar]
- Sarkar, P.; Mukherjee, M.; Goswami, G.; Das, D. Adaptive laboratory evolution induced novel mutations in Zymomonas mobilis ATCC ZW658: A potential platform for co-utilization of glucose and xylose. J. Ind. Microbiol. Biotechnol. 2020, 47, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Chetan, P.; Imran, P.; Tonmoy, G.; Rahulkumar, M.; Kaumeel, C.; Vamsi Bharadwaj, S.V.; Shristi, R.; Sandhya, M. Selective carotenoid accumulation by varying nutrient media and salinity in Synechocystis sp. CCNM 2501. Bioresour. Technol. 2015, 197, 363–368. [Google Scholar]
- Hun, K.Z.; Kwangmin, K.; Hanwool, P.; Soo, L.C.; Won, N.S.; June, Y.K.; Young, J.J.; Joo, H.S.; Gyun, L.C. Enhanced Fatty Acid Productivity by ParaChlorella sp., a Freshwater Microalga, via Adaptive Laboratory Evolution Under Salt Stress. Biotechnol. Bioprocess Eng. 2021, 26, 223–231. [Google Scholar]
- Sun, X.-M.; Ren, L.-J.; Bi, Z.-Q.; Ji, X.-J.; Zhao, Q.-Y.; Huang, H. Adaptive evolution of microalgae Schizochytrium sp. under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis. Bioresour. Technol. 2018, 267, 438–444. [Google Scholar] [CrossRef]
- Hang, L.T.; Mori, K.; Tanaka, Y.; Morikawa, M.; Toyama, T. Enhanced lipid productivity of Chlamydomonas reinhardtii with combination of NaCl and CaCl2 stresses. Bioprocess Biosyst. Eng. 2020, 43, 971–980. [Google Scholar] [CrossRef]
- Takagi, M.; Karseno; Yoshida, T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 2006, 101, 223–226. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; Guðmundsson, Ó.; Paglia, G.; Herjólfsson, G.; Andrésson, Ó.S.; Palsson, B.Ø.; Brynjólfsson, S. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 2013, 97, 2395–2403. [Google Scholar] [CrossRef] [Green Version]
- Rachel, P.; Lorraine, A.; Dónal, M.G.; Thomas, J.S.; Eoin, G.; Nicolas, T. Differential responses in EPA and fucoxanthin production by the marine diatom Stauroneis sp. under varying cultivation conditions. Biotechnol. Prog. 2021, 37, 3197. [Google Scholar]
- Telli, M.; Sahin, G. Effects of gradual and sudden changes of salinity and light supply for astaxanthin production in Haematococcus pluvialis (Chlorophyceae). Fundam. Appl. Limnol. 2020, 194, 11–17. [Google Scholar] [CrossRef]
- Zhiqian, Y.; Maonian, X.; Manuela, M.; Yuetuan, Z.; Sigurdur, B.; Weiqi, F. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation. Mar. Drugs 2015, 13, 6138–6151. [Google Scholar]
- Lamers, P.P.; van de Laak, C.C.W.; Kaasenbrood, P.S.; Lorier, J.; Janssen, M.; Vos, R.C.H.D.; Bino, R.J.; Wijffels, R.H. Carotenoid and fatty acid metabolism in light stressed Dunaliella salina. Biotechnol. Bioeng. 2010, 106, 638–648. [Google Scholar] [CrossRef]
- Xie, Y.; Ho, S.-H.; Chen, C.-N.N.; Chen, C.-Y.; Ng, I.-S.; Jing, K.-J.; Chang, J.-S.; Lu, Y. Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: Effects of nitrate concentration, light intensity, and fed-batch operation. Bioresour. Technol. 2013, 144, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Claude, A.; Yuval, M.; Aliza, Z.; Sammy, B. On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol. Bioeng. 2007, 98, 300–305. [Google Scholar]
- Wan, M.; Zhang, J.; Hou, D.; Fan, J.; Li, Y.; Huang, J.; Wang, J. The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light–dark cyclic cultivation. Bioresour. Technol. 2014, 167, 276–283. [Google Scholar] [CrossRef]
- Sun, X.-M.; Ren, L.-J.; Ji, X.-J.; Chen, S.-L.; Guo, D.-S.; Huang, H. Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis. Bioresour. Technol. 2016, 211, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Löwe, H.; Hobmeier, K.; Moos, M.; Kremling, A.; Pflüger-Grau, K. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol. Biofuels 2017, 10, 190. [Google Scholar] [CrossRef]
- Amr, B.; Shouhei, T.; Mitsuharu, N.; Stefano, F.; Peter, L.; Koji, S. Glycogen Production in Marine Cyanobacterial Strain Synechococcus sp. NKBG 15041c. Mar. Biotechnol. 2018, 20, 109–117. [Google Scholar]
- Sun, H.; Ren, Y.; Lao, Y.; Li, X.; Chen, F. A novel fed-batch strategy enhances lipid and astaxanthin productivity without compromising biomass of Chromochloris zofingiensis. Bioresour. Technol. 2020, 308, 123306. [Google Scholar] [CrossRef]
- Atsushi, S.; Rie, M.; Naomi, H.; Mikio, T.; Norihiro, S. Responsibility of regulatory gene expression and repressed protein synthesis for triacylglycerol accumulation on sulfur-starvation in Chlamydomonas reinhardtii. Front. Plant Sci. 2014, 5, 444. [Google Scholar]
- Chu, F.-F.; Chu, P.-N.; Cai, P.-J.; Li, W.-W.; Lam, P.K.S.; Zeng, R.J. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour. Technol. 2013, 134, 341–346. [Google Scholar] [CrossRef]
- Aboim, J.B.; de Oliveira, D.T.; de Mescouto, V.A.; dos Reis, A.S.; da Rocha Filho, G.N.; Santos, A.V.; Xavier, L.P.; Santos, A.S.; Gonçalves, E.C.; do Nascimento, L.A.S. Optimization of Light Intensity and NaNO3 Concentration in Amazon Cyanobacteria Cultivation to Produce Biodiesel. Molecules 2019, 24, 2326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamers, P.P.; Janssen, M.; De Vos, R.C.H.; Bino, R.J.; Wijffels, R.H. Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol. 2008, 26, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Seabra, L.M.J.; Pedrosa, L.F.C. Ataxanthin: Structural and functional aspects. Rev. Nutr. Braz. J. Nutr. 2010, 23, 1041–1050. [Google Scholar]
- Yu, X.; Yue, C.; Ding, W. Application of melatonin for improving astaxanthin content in Haematococcus pluvialis. CN107418993-A; CN107418993-B, 1 December 2017. [Google Scholar]
- Sun, H.; Li, X.; Ren, Y.; Zhang, H.; Mao, X.; Lao, Y.; Wang, X.; Chen, F. Boost carbon availability and value in algal cell for economic deployment of biomass. Bioresour. Technol. 2020, 300, 122640. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhao, L.; Qi, Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review. Appl. Energy 2015, 137, 282–291. [Google Scholar] [CrossRef]
- Ra, C.-H.; Kang, C.-H.; Jung, J.-H.; Jeong, G.-T.; Kim, S.-K. Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresour. Technol. 2016, 212, 254–261. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, M.; Niu, X.; Zhang, X.; Gao, L.; Chen, L.; Wang, J.; Zhang, W. Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. BioMed Cent. 2014, 13, 151. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, V.; Amanna, R.; Rowden, S.J.; Sengupta, S.; Madhu, S.; Howe, C.J.; Wangikar, P.P. Adaptive laboratory evolution of the fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for improved solvent tolerance. J. Biosci. Bioeng. 2021, 131, 491–500. [Google Scholar] [CrossRef]
- Supekar, S.D.; Skerlos, S.J. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants. Environ. Sci. Technol. 2015, 49, 12576–12584. [Google Scholar] [CrossRef]
- Chakravarti, L.J.; Beltran, V.H.; van Oppen, M.J. Rapid thermal adaptation in photosymbionts of reef-building corals. Glob. Change Biol. 2017, 23, 4675–4688. [Google Scholar] [CrossRef]
- Schaum, C.-E.; Buckling, A.; Smirnoff, N.; Studholme, D.J.; Yvon-Durocher, G. Publisher Correction: Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat. Commun. 2018, 9, 1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dann, M.; Ortiz, E.M.; Thomas, M.; Guljamow, A.; Lehmann, M.; Schaefer, H.; Leister, D. Enhancing photosynthesis at high light levels by adaptive laboratory evolution. Nat. Plants 2021, 7, 681–695. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Sun, T.; Li, S.; Chen, L.; Zhang, W. Adaptive laboratory evolution of cadmium tolerance in Synechocystis sp. PCC 6803. BioMed Cent. 2018, 11, 205. [Google Scholar] [CrossRef]
- Uchiyama, J.; Kanesaki, Y.; Iwata, N.; Asakura, R.; Funamizu, K.; Tasaki, R.; Agatsuma, M.; Tahara, H.; Matsuhashi, A.; Yoshikawa, H.; et al. Genomic analysis of parallel-evolved cyanobacterium Synechocystis sp. PCC 6803 under acid stress. Photosynth. Res. 2015, 125, 243–254. [Google Scholar] [CrossRef]
- Li, X.; Yuan, Y.; Cheng, D.; Gao, J.; Kong, L.; Zhao, Q.; Wei, W.; Sun, Y. Exploring stress tolerance mechanism of evolved freshwater strain Chlorella sp. S30 under 30 g/L salt. Bioresour. Technol. 2018, 250, 495–504. [Google Scholar] [CrossRef]
- Li, D.; Wang, L.; Zhao, Q.; Wei, W.; Sun, Y. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution. Bioresour. Technol. 2015, 185, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.; Thomas-Hall, S.R.; Mughal, T.A.; Schenk, P.M. Selection, and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas. Bioresour. Technol. 2017, 233, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Li, X.; Yuan, Y.; Yang, C.; Tang, T.; Zhao, Q.; Sun, Y. Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas. Sci. Total Environ. 2019, 650, 2931–2938. [Google Scholar] [CrossRef]
- Andreeva, N.A.; Melnikov, V.V.; Snarskaya, D.D. The Role of Cyanobacteria in Marine Ecosystems. Russ. J. Mar. Biol. 2020, 46, 154–165. [Google Scholar] [CrossRef]
- Hsueh, H.T.; Chu, H.; Yu, S.T. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 2007, 66, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.; Pires, J.C.M. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresour. Technol. 2016, 215, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Mofihur, M.; Rizwanul Fattah, I.M.; Senthil, K.P.; Arafat, S.S.Y.; Ashrafur, R.S.M.; Ahmed, S.F.; Chyuan, O.H.; Shiung, L.S.; Anjum, B.I.; Yunus, K.T.M.; et al. Bioenergy recovery potential through the treatment of the meat processing industry waste in Australia. J. Environ. Chem. Eng. 2021, 9, 105657. [Google Scholar] [CrossRef]
- Xu, J.W.; Liu, C.; Hsu, P.C.; Zhao, J.; Wu, T.; Tang, J.; Liu, K.; Cui, Y. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nat. Commun. 2019, 10, 2440. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Pandey, L.K.; Gaur, J.P. Metal sorption by algal biomass: From batch to continuous system. Algal Res. 2016, 18, 95–109. [Google Scholar] [CrossRef]
- De Wilt, A.; Butkovskyi, A.; Tuantet, K.; Leal, L.H.; Fernandes, T.V.; Langenhoff, A.; Zeeman, G. Micropollutant removal in an algal treatment system fed with source separated wastewater streams. J. Hazard. Mater. 2016, 304, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, L.; Graça, S.; Sousa, C.; Ambrosano, L.; Ribeiro, B.; Botrel, E.P.; Neto, P.C.; Ferreira, A.F.; Silva, C.M. Microalgae biomass production using wastewater: Treatment and costs. Algal Res. 2016, 16, 167–176. [Google Scholar] [CrossRef]
- Pacheco, D.; Rocha, A.C.; Pereira, L.; Verdelhos, T. Microalgae Water Bioremediation: Trends and Hot Topics. Appl. Sci. 2020, 10, 1886. [Google Scholar] [CrossRef] [Green Version]
- Razzak, S.A.; Ali, S.A.M.; Hossain, M.M.; de Lasa, H. Biological CO2 fixation with production of microalgae in wastewater—A review. Renew. Sustain. Energy Rev. 2017, 76, 379–390. [Google Scholar] [CrossRef]
- Cai, T.; Park, S.Y.; Li, Y.B. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew. Sustain. Energy Rev. 2013, 19, 360–369. [Google Scholar] [CrossRef]
- Xu, K.; Zou, X.; Wen, H.; Xue, Y.; Qu, Y.; Li, Y. Effects of multi-temperature regimes on cultivation of microalgae in municipal wastewater to simultaneously remove nutrients and produce biomass. Appl. Microbiol. Biotechnol. 2019, 103, 8255–8265. [Google Scholar] [CrossRef]
- Lee, K.; Lee, C.-G. Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol. Bioprocess Eng. 2001, 41, 351–355. [Google Scholar] [CrossRef]
- Mahsa, B.; Marjan, A.; Hasan, J.; Ali, B.; Soroosh, D.; Esmaeili, B.M.; Abdeltif, A. Effect of light intensity and wavelength on nitrogen and phosphate removal from municipal wastewater by microalgae under semi-batch cultivation. Environ. Technol. 2020. [Google Scholar] [CrossRef]
- Liu, Y.; Yildiz, I. The effect of salinity concentration on algal biomass production and nutrient removal from municipal wastewater by Dunaliella salina. Int. J. Energy Res. 2018, 42, 2997–3006. [Google Scholar] [CrossRef]
- Yang, C.; Wang, S.; Yang, J.; Xu, D.; Li, Y.; Li, J.; Zhang, Y. Hydrothermal liquefaction and gasification of biomass and model compounds: A review. Green Chem. 2020, 22, 8210–8232. [Google Scholar] [CrossRef]
- Aigars, L.; Fredrika, M.; Elīna, Z.; Linda, M.; Tālis, J. Increasing Phosphorus Uptake Efficiency by Phosphorus-Starved Microalgae for Municipal Wastewater Post-Treatment. Microorganisms 2021, 9, 1598. [Google Scholar]
- Aigars, L.; Linda, M.; Tālis, J. Microalgae starvation for enhanced phosphorus uptake from municipal wastewater. Algal Res. 2020, 52, 102090. [Google Scholar]
- Junzhi, L.; Jinye, Y.; Yaming, G.; Houfeng, H.; Mei, L.; Feng, G. Improved lipid productivity of Scenedesmus obliquus with high nutrient removal efficiency by mixotrophic cultivation in actual municipal wastewater. Chemosphere 2021, 285, 131475. [Google Scholar]
- Wang, L.; Xue, C.; Wang, L.; Zhao, Q.; Wei, W.; Sun, Y. Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution. Bioresour. Technol. 2016, 205, 264–268. [Google Scholar] [CrossRef]
- Gude, V.G.; Blair, M.F.; Kokabian, B. Light and growth medium effect on Chlorellla vulgaris biomass production. Abstr. Pap. Am. Chem. Soc. 2014, 2, 674. [Google Scholar]
- Whitton, R.; Ometto, F.; Pidou, M.; Jarvis, P.; Villa, R.; Jefferson, B. Influence of light regime on the performance of an immpbilised microalgae reactor for wastewater nutrient removal. Algal Res. Biomass Biofuels Bioprod. 2019, 4, 148. [Google Scholar]
- Levasseur, W.; Perre, P.; Pozzobon, V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol. Adv. 2020, 41, 107545. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, P. Current Status and Applications of Adaptive Laboratory Evolution in Industrial Microorganisms. J. Microbiol. Biotechnol. 2020, 30, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Elena, S.F.; Lenski, R.E. Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nat. Rev. Genet. 2003, 4, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Wannier, T.M.; Kunjapur, A.M.; Rice, D.P.; McDonald, M.J.; Desai, M.M.; Church, G.M. Adaptive evolution of genomically recoded Escherichia coli. Proc. Natl. Acad. Sci. USA 2018, 115, 3090–3095. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Feng, J.; Sun, J.; Huang, Y.; Zhou, J.; Cen, K. Enhancing the lipid content of the diatom Nitzschia sp. by 60 Co-γ irradiation mutation and high-salinity domestication. Energy 2014, 78, 9–15. [Google Scholar] [CrossRef]
Stress Type | Strain | Stress Effect | Reference |
---|---|---|---|
Light intensity | Chlamydomonas reinhardtii, CC-124, CC-124H, CC-124 L | Fast growth rate cultivated on 120 μmol photons m−2 s−1 | [33] |
Microcoleus vaginatus | The biomass can arrive in 546.0 mg L−1 | [34] | |
Chlorella vulgaris | Biomass density rose to approximately 20 g L−1 under 680 nm LEDs | [35] | |
Carbon | Eubacterium limosum ATCC 8486 | Significant increased optical density (600 nm) and growth rate by 2.14 and 1.44 folds, respectively, under syngas conditions with 44% CO over 150 generations | [36] |
Haematococcus pluvialis | Biomass and astaxanthin yields t in an atmosphere comprising 15% CO2 were 1.3 times and 6 times higher than in normal air | [37] |
Stress Type | Strain | Stress Effect | Reference | |
---|---|---|---|---|
Carbon | Haematococcus pluvialis | Oil content increased to 35.2% under 15% CO2 | [41] | |
Crypthecodinium cohnii | DHA-rich lipids accumulation in the strain can increase by 15.49% at 45 g L−1 glucose concentrations | [42] | ||
Chlorella pyrenoidosa G32 | Starch content in the first few days under high glucose stress was eight times higher than that under low glucose stress | [43] | ||
Zymomonas mobilis ATCC ZW658 | Maximum ethanol productivity attaches to 3.3 g L−1 h−1 in dual substrate mixture containing 5% (w/v) of glucose and 5% (w/v) xylose | [44] | ||
Salt | Synechocystis sp. CCNM 2501 | β-carotene produced at 1 M salinity is three times higher than the control | [45] | |
Marine Phaeodactylum tricornutum | The addition of 20 g L−1 NaCl increased the total FA productivity to 219.0 ± 10.7 mg L−1 d−1, and the biological yield reached 80% of the salt-free culture | [46] | ||
Marine Schizochytrium sp. | Showed a maximal cell dry weight (CDW) of 134.5 g L−1 and lipid yield of 80.14 g L−1 under 30 g L−1 NaCl medium | [47] | ||
Chlamydomonas reinhardtii | Lipid content (73.4%) and lipid productivity (10.9 mg L−1 d−1) | [48] | ||
Marine Dunaliella salina | When salt concentration was increased from 4 to 9%, β-carotene yield was increased by 30-fold | [49] | ||
Light | Light quality | Marine Dunaliella salina | The all-trans β-carotene and lutein content was increased to 3.3 times and 2.3 times of initial levels combining red LED (75%) with blue LED (25%) | [50] |
Marine Stauroneis sp. | The highest EPA proportions and yields were obtained under blue LED in f/2 medium (16.5% and 4.8 mg g−1) and the fucoxanthin yield was the highest when cells were subjected to blue LEDs (5.9 mg g−1) | [51] | ||
Light intensity | Haematococcus pluvialis | The highest astaxanthin accumulation with 15.76 mg g−1 in the experimental group with light intensity of 350 μmol photons m−2 s−1 | [52] | |
Marine Phacodactylum tricornutum | Biomass production and fucoxanthin accumulation enhanced under combined red and blue light | [53] | ||
Marine Dunaliella salina | The β-carotene production of 30 pg cell−1 d−1 under high light intensity | [54] | ||
Desmodesmus sp. | The light intensity resulted in an enhanced lutein productivity of 3.6 mg L−1 d−1 | [55] | ||
Haematococcus pluvialis | Through a two-stage cultivation system in conjunction with light stress, a final astaxanthin productivity of 11.5 mg L−1 d−1 was obtained | [56] | ||
Temperature | Haematococcus pluvialis | The net biomass and astaxanthin yields increased 5 and 2.9-fold under the culture temperature was 28 °C (daytime) and < 28 °C (night) | [57] | |
Oxygen | Marine Schizochytrium sp. | Observed 84.34 g/L of cell dry weight and 26.40 g L−1 of DHA yield with high oxygen | [58] | |
Nitrogen | Chlamydomonas reinhardtii | Total lipid content of the strain increased suddenly from 24.27% to 44.67% after nitrogen deficiency for 6 h | [39] | |
Synechococcus elongatus cscB | The production of polyhydroxyalkanoates (PHA) of about 23.8 mg L−1 d−1 and a maximal titer of 156 mg L−1 | [59] | ||
Marine Synechococcus sp. NKBG 15041c | Under nitrogen ambient (3 mM NaNO3) conditions also gave a higher yield of glycogen (404 μg mL−1 OD730−1) | [60] | ||
Chromochloris zofingiensis | Increase lipid and astaxanthin productivity to 457.1 and 2.0 mg L−1 d−1 | [61] | ||
Sulfur | Chlamydomonas reinhardtii | Lipid accumulation in sulfur-free medium was 66% higher than usual | [62] | |
Phosphorus | Chlorella vulgaris | Oil content in medium without KH2PO4 was 1.02 times higher than that in control group | [63] | |
Chemical regulator | Crypthecodinium cohnii | Adding sethoxydim to 60 μM doubles lipid production | [18] | |
Combined | Light and CO2 | Haematococcus pluvialismutant | Yield of astaxanthin under 15% CO2 and strong light was 6 times higher than that of control group | [37] |
Temperatures and salinities | Marine Schizochytrium sp. | A maximal cell dry weight of 126.4 g L−1 and DHA yield of 38.12 g L−1 under concomitant low temperature and high salinity | [47] | |
Light and nitrogen | Limnothrix sp. CACIAM25 | Produced a high lipid content at a low level of NaNO3 concentration (1 g L−1) and a high level of light intensity (100 μmol photons m−2 s−1) | [64] |
Tolerance Type | Strain | Stress Effect | Reference |
---|---|---|---|
Butanol | Synechocystis sp. PCC 6803 | A 150% increase of the butanol (0.2–0.5% v/v) tolerance | [71] |
Synechococcus elongatus PCC 11801 | A 100% improvement in concentrations tolerated (2–5 g L−1 n-butanol and 15–30 g L−1 2,3-butanediol) | [73] | |
Temperature | Symbiodinium spp. | Tolerance to 31 °C | [74] |
Marine Thalassiosira pseudonana CCMP 1335 | Tolerance to 32 °C | [75] | |
Light | Synechocystis sp. PCC 6803 | Tolerance to 2000 μmol photons m−2 s−1 | [76] |
Cadmium | Synechocystis sp. PCC 6803 | Tolerated CdSO4 with a concentration up to 9.0 µM | [77] |
Acid | Synechocystis sp. PCC 6803 | Tolerance to pH 5.5 | [78] |
Salt | Chlorella sp. | Tolerance to 30 g L−1 NaCl | [79] |
Carbon dioxide | Chlorella sp. | They grew rapidly in 30% CO2 | [80] |
Oxygen | Marine Schizochytrium sp. | A 32.4% increase in dry weight | [58] |
Flue gas | Desmodesmus spp. | Tolerance to 100% unfiltered flue gas | [81] |
Chlorella sp. | 1.2 g L−1 d−1 CO2 fixation rate 2.7 g L−1 biomass concentration 68.4% carbohydrate content | [82] |
Stress Type | Types of Wastewater | Strain | Removal Rate | Reference |
---|---|---|---|---|
Temperature | Municipal wastewater | Chlorella vulgaris | TN (96.5%) TP (99.2%) COD (83.0%) NH3-N (97.8%) | [94] |
Light | Artificial wastewater | Chlorella kessleri | NO3−-N (88.1%) | [95] |
Municipal wastewater | Marine Spirulina platensis | PO43−-P (93%) NH4+-N (83%) | [96] | |
Salt | Municipal wastewater | Marine Dunaliella salina | NO3−-N (100%) NH4+-N (75.5%) PO43−-P (63.5%) | [97] |
Sludge liquor | Chlorella vulgaris | COD (85.3%) TN (99.6%) | [98] | |
Phosphorus | Municipal wastewater | Chlorella vulgaris | PO43−-P (>99%) | [99] |
Desmodesmus communis, Tetradesmus obliquus, Chlorella protothecoides | DIP (>99.9%) DIP (>99.9%) | [100] | ||
Sodium acetate | Municipal wastewater | Scenedesmus obliquus | TN (82.20%) TP (76.35%) | [101] |
Phenol | Phenolic wastewater | Chlorella sp. | Phenol (100%) | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, Y.; Wu, Y.; Fan, Y.; Zhu, C.; Fu, X.; Chu, Y.; Chen, F.; Sun, H.; Mou, H. Application of Microalgal Stress Responses in Industrial Microalgal Production Systems. Mar. Drugs 2022, 20, 30. https://doi.org/10.3390/md20010030
Wang J, Wang Y, Wu Y, Fan Y, Zhu C, Fu X, Chu Y, Chen F, Sun H, Mou H. Application of Microalgal Stress Responses in Industrial Microalgal Production Systems. Marine Drugs. 2022; 20(1):30. https://doi.org/10.3390/md20010030
Chicago/Turabian StyleWang, Jia, Yuxin Wang, Yijian Wu, Yuwei Fan, Changliang Zhu, Xiaodan Fu, Yawen Chu, Feng Chen, Han Sun, and Haijin Mou. 2022. "Application of Microalgal Stress Responses in Industrial Microalgal Production Systems" Marine Drugs 20, no. 1: 30. https://doi.org/10.3390/md20010030
APA StyleWang, J., Wang, Y., Wu, Y., Fan, Y., Zhu, C., Fu, X., Chu, Y., Chen, F., Sun, H., & Mou, H. (2022). Application of Microalgal Stress Responses in Industrial Microalgal Production Systems. Marine Drugs, 20(1), 30. https://doi.org/10.3390/md20010030