The Relationship Between Chest Wall Muscle Thickness, Pulmonary Function, and Prognostic Markers in Idiopathic Pulmonary Fibrosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.2. Ethics Approval and Consent to Participate
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IPF | Idiopathic pulmonary fibrosis |
PFT | Pulmonary function test |
CT | Computed tomography |
DLCO | Diffusing capacity of carbon monoxide |
FEV1 | Forced expiratory volume |
FV | Forced vital capacity |
GAP index | Gender-Age-Physiology Index |
HRCT | High-resolution chest computed tomography |
ILD | Interstitial lung disease |
SD | Standard deviation |
CSA | Cross-sectional area |
PMA | Pectoral muscle area |
ASMI | Appendicular skeletal muscle mass index |
DXA | Dual-energy X-ray absorptiometry |
ESMCSA | Cross-sectional area of the erector spinae muscle |
BMI | Body mass index |
References
- Raghu, G.; Remy-Jardin, M.; Richeldi, L.; Thomson, C.C.; Inoue, Y.; Johkoh, T.; Kreuter, M.; Lynch, D.A.; Maher, T.M.; Martinez, F.J.; et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: An official ATS/ERS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med. 2022, 205, e18–e47. [Google Scholar] [CrossRef] [PubMed]
- Ruaro, B.; Pozzan, R.; Confalonieri, P.; Tavano, S.; Hughes, M.; Matucci Cerinic, M.; Baratella, E.; Zanatta, E.; Lerda, S.; Geri, P.; et al. Gastroesophageal Reflux Disease in Idiopathic Pulmonary Fibrosis: Viewer or Actor? To Treat or Not to Treat? Pharmaceuticals 2022, 15, 1033. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Monteleone, G.; Bergantini, L.; D’Alessandro, M.; Pianigiani, T.; Simonetti, J.; Iovene, B.; Varone, F.; Sgalla, G.; Richeldi, L.; Bargagli, E.; et al. The management of Familial Pulmonary Fibrosis in different medical settings: Where does that leave us? An Italian nationwide survey. Sarcoidosis Vasc. Diffus. Lung Dis. 2024, 41, e2024047. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernández Pérez, E.R.; Daniels, C.E.; Schroeder, D.R.; St Sauver, J.; Hartman, T.E.; Bartholmai, B.J.; Yi, E.S.; Ryu, J.H. Incidence, prevalence, and clinical course of idiopathic pulmonary fibrosis: A population-based study. Chest 2010, 137, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Gonnelli, F.; Bonifazi, M.; Hubbard, R. Mortality trends in idiopathic pulmonary fibrosis in Europe between 2013 and 2018. Eur. Respir. J. 2024, 64, 2302080. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Perlman, D.; Tomic, R. Natural history of idiopathic pulmonary fibrosis. Respir. Med. 2015, 109, 661–670. [Google Scholar] [CrossRef]
- Fujita, K.; Ohkubo, H.; Nakano, A.; Mori, Y.; Fukumitsu, K.; Fukuda, S.; Kanemitsu, Y.; Uemura, T.; Tajiri, T.; Maeno, K.; et al. Frequency and impact on clinical outcomes of sarcopenia in patients with idiopathic pulmonary fibrosis. Chronic Respir. Dis. 2022, 19, 14799731221117298. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Gonzalez, M.C.; Lu, J.; Jia, G.; Zheng, J. Skeletal muscle mass and quality: Evolution of modern measurement concepts in the context of sarcopenia. Proc. Nutr. Soc. 2015, 74, 355–366. [Google Scholar] [CrossRef]
- Tanimura, K.; Sato, S.; Fuseya, Y.; Hasegawa, K.; Uemasu, K.; Sato, A.; Oguma, T.; Hirai, T.; Mishima, M.; Muro, S. Quantitative assessment of erector spinae muscles in patients with chronic obstructive pulmonary disease. Novel chest computed tomography derived index for prognosis. Ann. Am. Thorac. Soc. 2016, 13, 334–341. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Yang, Y.; Liu, M.; Lv, M.; Lv, Y.; Dai, H. Chest wall muscle mass depletion is related to certain pulmonary functions and diseases in patients with bronchiectasis. Chronic Respir. Dis. 2022, 19, 14799731221105517. [Google Scholar]
- Laszlo, G. Standardisation of lung function testing: Helpful guidance from the ATS/ERS task force. Thorax 2006, 61, 74–76. [Google Scholar] [CrossRef]
- Ley, B.; Ryerson, C.J.; Vittinghoff, E.; Ryu, J.H.; Tomassetti, S.; Lee, J.S.; Poletti, V.; Buccioli, M.; Elicker, B.M.; Jones, K.D.; et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann. Intern. Med. 2012, 156, 684–691. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Lutz, C.T.; Quinn, L.S. Sarcopenia, obesity, and natural killer cell immune senescence in aging: Altered cytokine levels as a common mechanism. Aging 2012, 4, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Altuna-Venegas, S.; Aliaga-Vega, R.; Maguiña, J.L.; Parodi, J.F.; Runzer-Colmenares, F.M. Risk of community-acquired pneumonia in older adults with sarcopenia of a hospital from Callao, Peru 2010–2015. Arch. Gerontol. Geriatr. 2019, 82, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Benz, E.; Trajanoska, K.; Lahousse, L.; Schoufour, J.D.; Terzikhan, N.; De Roos, E.; De Jonge, G.B.; Williams, R.; Franco, O.H.; Brusselle, G.; et al. Sarcopenia in COPD: A systematic review and meta-analysis. Eur. Respir. Rev. 2019, 28, 365. [Google Scholar] [CrossRef] [PubMed]
- Hanada, M.; Sakamoto, N.; Ishimoto, H.; Kido, T.; Miyamura, T.; Oikawa, M.; Nagura, H.; Takeuchi, R.; Kawazoe, Y.; Sato, S.; et al. A comparative study of the sarcopenia screening in older patients with interstitial lung disease. BMC Pulm. Med. 2022, 22, 45. [Google Scholar] [CrossRef]
- Kitamura, A.; Seino, S.; Abe, T.; Nofuji, Y.; Yokoyama, Y.; Amano, H.; Nishi, M.; Taniguchi, Y.; Narita, M.; Fujiwara, Y.; et al. Sarcopenia: Prevalence, associated factors, and the risk of mortality and disability in Japanese older adults. J. Cachexia Sarcopenia Muscle 2021, 12, 30–38. [Google Scholar] [CrossRef]
- Matsuda, T.; Taniguchi, H.; Ando, M.; Kondoh, Y.; Kimura, T.; Kataoka, K.; Nishimura, K.; Nishiyama, O.; Sakamoto, K.; Hasegawa, Y. Depression is significantly associated with the health status in patients with idiopathic pulmonary fibrosis. Intern. Med. 2017, 56, 1637–1644. [Google Scholar] [CrossRef]
- Li, Z.; Tong, X.; Ma, Y.; Bao, T.; Yue, J. Prevalence of depression in patients with sarcopenia and correlation between the two diseases: Systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 128–144. [Google Scholar] [CrossRef]
- Rozenberg, D.; Mathur, S.; Herridge, M.; Goldstein, R.; Schmidt, H.; Chowdhury, N.A.; Mendes, P.; Singer, L.G. Thoracic muscle cross-sectional area is associated with hospital length of stay post lung transplantation: A retrospective cohort study. Transpl. Int. 2017, 30, 713–724. [Google Scholar] [CrossRef]
- Moon, S.W.; Choi, J.S.; Lee, S.H.; Jung, K.S.; Jung, J.Y.; Kang, Y.A.; Park, M.S.; Kim, Y.S.; Chang, J.; Kim, S.Y. Thoracic skeletal muscle quantification: Low muscle mass is related with worse prognosis in idiopathic pulmonary fibrosis patients. Respir. Res. 2019, 20, 35. [Google Scholar] [CrossRef] [PubMed]
- Asakura, T.; Yamada, Y.; Suzuki, S.; Namkoong, H.; Okamori, S.; Kusumoto, T.; Niijima, Y.; Ozaki, A.; Hashimoto, M.; Yagi, K.; et al. Quantitative assessment of erector spinae muscles in patients with Mycobacterium avium complex lung disease. Respir. Med. 2018, 145, 66–72. [Google Scholar] [CrossRef]
- Awano, N.; Inomata, M.; Kuse, N.; Tone, M.; Yoshimura, H.; Jo, T.; Takada, K.; Sugimoto, C.; Tanaka, T.; Sumikawa, H.; et al. Quantitative computed tomography measures of skeletal muscle mass in patients with idiopathic pulmonary fibrosis according to a multidisciplinary discussion diagnosis: A retrospective nationwide study in Japan. Respir. Investig. 2020, 58, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Podolanczuk, A.J.; Thomson, C.C.; Remy-Jardin, M.; Richeldi, L.; Martinez, F.J.; Kolb, M.; Raghu, G. Idiopathic pulmonary fibrosis: State of the art for 2023. Eur. Respir. J. 2023, 61, 2200957. [Google Scholar] [CrossRef]
- Song, J.W.; Hong, S.B.; Lim, C.M.; Koh, Y.; Kim, D.S. Acute exacerbation of idiopathic pulmonary fibrosis: Incidence, risk factors and outcome. Eur. Respir. J. 2011, 37, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Molgat-Seon, Y.; Guler, S.A.; Peters, C.M.; Vasilescu, D.M.; Puyat, J.H.; Coxson, H.O.; Ryerson, C.J.; Guenette, J.A. Pectoralis muscle area and its association with indices of disease severity in interstitial lung disease. Respir. Med. 2021, 186, 106539. [Google Scholar] [CrossRef]
- Ebihara, K.; Iwanami, Y.; Yamasaki, K.; Takemura, A.; Sato, N.; Usui, Y.; Nakamura, Y.; Kishi, K.; Homma, S.; Ebihara, S. Appendicular skeletal muscle mass correlates with patient-reported outcomes and physical performance in patients with idiopathic pulmonary fibrosis. Tohoku J. Exp. Med. 2021, 253, 61–68. [Google Scholar] [CrossRef]
- Durdu, H.; Yurdalan, S.U.; Ozmen, I. Clinical significance of pectoralis muscle strength in elderly patients with idiopathic pulmonary fibrosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2022, 39, e2022009. [Google Scholar]
- Tosato, M.; Marzetti, E.; Cesari, M.; Savera, G.; Miller, R.R.; Bernabei, R.; Landi, F.; Calvani, R. Measurement of muscle mass in sarcopenia: From imaging to biochemical markers. Aging Clin. Exp. Res. 2017, 29, 19–27. [Google Scholar] [CrossRef]
- Nakatsuka, Y.; Handa, T.; Kokosi, M.; Tanizawa, K.; Puglisi, S.; Jacob, J.; Sokai, A.; Ikezoe, K.; Kanatani, K.T.; Kubo, T.; et al. The Clinical Significance of Body Weight Loss in Idio-pathic Pulmonary Fibrosis Patients. Respiration 2018, 96, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Perelas, A.; Glennie, J.; van Kerkhove, K.; Li, M.; Scheraga, R.G.; Olman, M.A.; Culver, D.A. Choice of antifibrotic medication and disease severity predict weight loss in idiopathic pulmonary fibrosis. Pulm. Pharmacol. Ther. 2019, 59, 101839. [Google Scholar]
- Corte, T.; Bonella, F.; Crestani, B.; Demedts, M.G.; Richeldi, L.; Coeck, C.; Pelling, K.; Quaresma, M.; Lasky, J.A. Safety, tolerability and appropriate use of nintedanib in idiopathic pulmonary fibrosis. Respir. Res. 2015, 16, 116. [Google Scholar] [CrossRef]
- Barratt, S.L.; Mulholland, S.; Al Jbour, K.; Steer, H.; Gutsche, M.; Foley, N.; Srivastava, R.; Sharp, C.; Adamali, H.I. South-West of England’s Experience of the Safety and Tolerability Pirfenidone and Nintedanib for the Treatment of Idiopathic Pulmonary Fibrosis (IPF). Front. Pharmacol. 2018, 9, 1480. [Google Scholar] [CrossRef]
Control (n = 53) | IPF Patients (n = 108) | p | |
---|---|---|---|
Age (years) (mean ± SD) | 63.66 ± 8.68 | 66.43 ± 8.46 | 0.054 * |
Gender (n, %) | |||
Male | 46 (86.8%) | 94 (87.0%) | 0.965 ** |
Female | 7 (13.2%) | 14 (13.0%) | |
Presence of chronic illness (n, %) | |||
Coronary Artery Disease | 18 (34.0%) | 50 (46.3%) | 0.137 ** |
Hypertension | 27 (50.9%) | 43 (39.8%) | 0.181 ** |
Diabetes Mellitus | 17 (32.1%) | 32 (29.6%) | 0.751 ** |
Control (Mean ± SD) (n = 53) | IPF (Mean ± SD) (n = 108) | p | |
---|---|---|---|
Aortic arch window (mm) | |||
Aortic pectoral (right) | 20.26 ± 6.16 | 19.49 ± 5.52 | 0.423 * |
Aortic pectoral (left) | 20.26 ± 6.14 | 19.46 ± 5.58 | 0.409 * |
Aortic interior scapular (right) | 19.11 ± 6.33 | 17.89 ± 5.20 | 0.198* |
Aortic interior scapular (left) | 19.13 ± 6.32 | 17.88 ± 5.21 | 0.188 * |
Aortic exterior scapular (right) | 27.35 ± 6.58 | 21.84 ± 5.75 | <0.001 * |
Aortic exterior scapular (left) | 27.33 ± 6.59 | 21.83 ± 5.78 | <0.001 * |
Erector spinae muscle (right) | 27.33 ± 4.65 | 27.36 ± 5.36 | 0.980 * |
Erector spinae muscle (left) | 27.33 ± 4.65 | 27.35 ± 5.37 | 0.989 * |
Pulmonary trunk | |||
Pectoral (right) | 12.77 ± 7.29 | 11.43 ± 4.03 | 0.217 * |
Pectoral (left) | 12.73 ± 7.27 | 11.39 ± 4.07 | 0.217 * |
Interior scapular (right) | 15.03 ± 5.50 | 13.82 ± 4.59 | 0.143 * |
Interior scapular (left) | 15.07 ± 5.50 | 13.84 ± 4.62 | 0.138 * |
Exterior scapular (right) | 23.39 ± 7.49 | 19.56 ± 5.04 | 0.001 * |
Exterior scapular (left) | 23.43 ± 7.46 | 19.60 ± 5.06 | 0.001 * |
Erector spinae muscle (right) | 25.50 ± 4.94 | 24.67 ± 5.43 | 0.348 * |
Erector spinae muscle (left) | 25.47 ± 4.94 | 24.66 ± 5.42 | 0.364 * |
10th thoracic vertebra level | |||
Erector spinae muscle (right) | 22.22 ± 4.15 | 22.57 ± 4.58 | 0.642 * |
Erector spinae muscle (left) | 22.22 ± 4.15 | 22.58 ± 4.57 | 0.633 * |
Correlation Index (r) | p | Correlation Index (r) | p | ||
---|---|---|---|---|---|
Aortic Pectoral (Right) | Pulmonary Trunk Pectoral (Right) | ||||
FVC (%) | 0.044 | 0.661 * | FVC (%) | −0.055 | 0.583 * |
FVC (L) | 0.229 | 0.031 * | FVC (L) | −0.013 | 0.901 * |
DLCO (%) | 0.115 | 0.253 * | DLCO (%) | 0.092 | 0.361 * |
GAP Stage | −0.178 | 0.077 * | GAP Stage | −0.145 | 0.150 * |
Acute exacerbation count | −0.267 | 0.006 * | Acute exacerbation count | −0.090 | 0.361 * |
Mortality | −0.111 | 0.255 * | Mortality | 0.110 | 0.259 * |
Aortic pectoral (left) | Pulmonary trunk pectoral (left) | ||||
FVC (%) | 0.053 | 0.599 * | FVC (%) | −0.030 | 0.764 * |
FVC (L) | 0.230 | 0.030 * | FVC (L) | 0.010 | 0.927 * |
DLCO (%) | 0.122 | 0.227 * | DLCO (%) | 0.108 | 0.284 * |
GAP Stage | −0.175 | 0.081 * | GAP Stage | −0.149 | 0.138 * |
Acute exacerbation count | −0.273 | 0.005 * | Acute exacerbation count | −0.105 | 0.285 * |
Mortality | −0.115 | 0.235 * | Mortality | 0.093 | 0.340 * |
Aortic inner scapular (right) | Pulmonary trunk innerscapular (right) | ||||
FVC (%) | 0.061 | 0.544 * | FVC (%) | −0.020 | 0.843 * |
FVC (L) | 0.151 | 0.158 * | FVC (L) | 0.094 | 0.381 * |
DLCO (%) | 0.252 | 0.012 * | DLCO (%) | 0.166 | 0.099 * |
GAP Stage | −0.219 | 0.029 * | GAP Stage | −0.163 | 0.105 * |
Acute exacerbation count | −0.242 | 0.013 * | Acute exacerbation count | −0.118 | 0.229 * |
Mortality | −0.148 | 0.126 * | Mortality | −0.047 | 0.627 * |
Aortic inner scapular (left) | Pulmonary trunk innerscapular (left) | ||||
FVC (%) | 0.058 | 0.562 * | FVC (%) | −0.015 | 0.879 * |
FVC (L) | 0.151 | 0.157 * | FVC (L) | 0.107 | 0.320 * |
DLCO (%) | 0.254 | 0.011 * | DLCO (%) | 0.169 | 0.093 * |
GAP Stage | −0.210 | 0.036 * | GAP Stage | −0.175 | 0.082 * |
Acute exacerbation count | −0.247 | 0.011 * | Acute exacerbation count | −0.123 | 0.210 * |
Mortality | −0.150 | 0.121 * | Mortality | −0.058 | 0.548* |
Aortic outer scapular (right) | Pulmonary trunk outer scapular (right) | ||||
FVC (%) | 0.055 | 0.583 * | FVC (%) | 0.120 | 0.230 * |
FVC (L) | 0.201 | 0.059 * | FVC (L) | 0.254 | 0.016 * |
DLCO (%) | 0.238 | 0.017 * | DLCO (%) | 0.354 | <0.001 * |
GAP Stage | −0.318 | 0.001 * | GAP Stage | −0.320 | 0.001 * |
Acute exacerbation count | −0.268 | 0.006 * | Acute exacerbation count | −0.374 | <0.001 * |
Mortality | −0.186 | 0.055 * | Mortality | −0.261 | 0.006 * |
Aortic outer scapular (left) | Pulmonary trunk outer scapular (left) | ||||
FVC (%) | 0.058 | 0.560 * | FVC (%) | 0.138 | 0.167 * |
FVC (L) | 0.206 | 0.053 * | FVC (L) | 0.258 | 0.015 * |
DLCO (%) | 0.239 | 0.017 * | DLCO (%) | 0.356 | <0.001 * |
GAP Stage | −0.317 | 0.001 * | GAP Stage | −0.316 | 0.001 * |
Acute exacerbation count | −0.263 | 0.007 * | Acute exacerbation count | −0.375 | <0.001 * |
Mortality | −0.190 | 0.049 * | Mortality | −0.258 | 0.007 * |
Aorticerector spinae muscle (right) | Pulmonary trunk erector spinae muscle (right) | ||||
FVC (%) | −0.022 | 0.823 * | FVC (%) | 0.083 | 0.407 * |
FVC (L) | 0.125 | 0.241 * | FVC (L) | 0.278 | 0.008 * |
DLCO (%) | 0.149 | 0.139 * | DLCO (%) | 0.185 | 0.066 * |
GAP Stage | −0.231 | 0.021 * | GAP Stage | −0.350 | <0.001 * |
Acute exacerbation count | −0.207 | 0.034 * | Acute exacerbation count | −0.133 | 0.178 * |
Mortality | −0.147 | 0.129 * | Mortality | −0.210 | 0.029 * |
Aorticerector spinae muscle (left) | Pulmonary trunk erector spinae muscle (left) | ||||
FVC (%) | −0.029 | 0.771 * | FVC (%) | 0.080 | 0.423 * |
FVC (L) | 0.128 | 0.232 * | FVC (L) | 0.276 | 0.009 * |
DLCO (%) | 0.144 | 0.154 * | DLCO (%) | 0.181 | 0.071 * |
GAP Stage | −0.231 | 0.021 * | GAP Stage | −0.348 | <0.001 * |
Acute exacerbation count | −0.206 | 0.035 * | Acute exacerbation count | −0.132 | 0.181 * |
Mortality | −0.149 | 0.124 * | Mortality | −0.209 | 0.030 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pınar Deniz, P.; Köse, S.; Hanta, İ.; Duru Çetinkaya, P.; Arslan, M.S.; Datlı, E. The Relationship Between Chest Wall Muscle Thickness, Pulmonary Function, and Prognostic Markers in Idiopathic Pulmonary Fibrosis. Medicina 2025, 61, 1181. https://doi.org/10.3390/medicina61071181
Pınar Deniz P, Köse S, Hanta İ, Duru Çetinkaya P, Arslan MS, Datlı E. The Relationship Between Chest Wall Muscle Thickness, Pulmonary Function, and Prognostic Markers in Idiopathic Pulmonary Fibrosis. Medicina. 2025; 61(7):1181. https://doi.org/10.3390/medicina61071181
Chicago/Turabian StylePınar Deniz, Pelin, Sevgül Köse, İsmail Hanta, Pelin Duru Çetinkaya, Merisa Sinem Arslan, and Erolcan Datlı. 2025. "The Relationship Between Chest Wall Muscle Thickness, Pulmonary Function, and Prognostic Markers in Idiopathic Pulmonary Fibrosis" Medicina 61, no. 7: 1181. https://doi.org/10.3390/medicina61071181
APA StylePınar Deniz, P., Köse, S., Hanta, İ., Duru Çetinkaya, P., Arslan, M. S., & Datlı, E. (2025). The Relationship Between Chest Wall Muscle Thickness, Pulmonary Function, and Prognostic Markers in Idiopathic Pulmonary Fibrosis. Medicina, 61(7), 1181. https://doi.org/10.3390/medicina61071181