A Retrospective Study on the Prevalence and Antimicrobial Susceptibility of Gram-Positive Cocci in a Pediatric Department: A Single-Center Report from Egypt
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Design
2.2. Microbiological Specimen Processing and Identification
2.3. Antimicrobial Susceptibility Testing
2.4. Quality Control
2.5. Data Collection and Analysis
2.6. Statistical Methods
3. Results
3.1. The Prevalence of Gram-Positive Pathogens in the Pediatric Tertiary Care Hospital over a Period of Five Years
3.2. Antimicrobial Susceptibility Profile of All Gram-Positive Pathogens over 5 Years
3.3. The Antimicrobial Susceptibility of Different Gram-Positive Bacteria
3.3.1. Staphylococcus aureus
- Vancomycin maintained 100% susceptibility throughout the study period.
- Resistance to erythromycin ranged from 37.4% to 51.7%, with no significant year-to-year change (p = 0.078).
- Cotrimoxazole resistance significantly declined from 24% in 2018 to 20.9% in 2022 (p ≤ 0.001).
- Doxycycline susceptibility increased significantly over time (from 39% to 57.4%, p ≤ 0.001) (Table 4).
3.3.2. MRSA
- MRSA isolates showed full susceptibility to vancomycin.
- Resistance to gentamicin (low potency) was highly variable, with a notable decline in 2019 (7.6% susceptibility, p ≤ 0.001).
- Doxycycline and cotrimoxazole susceptibility improved significantly (Table 5).
3.3.3. Coagulase-Negative Staphylococci (CoNS)
- Vancomycin retained 100% efficacy against CoNS isolates.
- Doxycycline and cotrimoxazole resistance decreased significantly.
- Erythromycin resistance remained high (lowest susceptibility of 11.7% in 2022).
- All antibiotics tested for CoNS showed statistically significant differences throughout the tested 5 years (Table 6).
3.3.4. Enterococcus Species
- Vancomycin susceptibility declined from 87% in 2018 to 70.7% in 2021, then rose to 86% in 2022 (p = 0.001).
- Erythromycin susceptibility dropped from 32% to 7.1% over the five years (p = 0.006).
- Doxycycline susceptibility varied, peaking in 2020 (68.2%), then decreasing (Table 7).
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Details |
MRSA | Methicillin-resistant Staphylococcus aureus |
CoNS | Coagulase-negative Staphylococcus |
AMR | Antimicrobial resistance |
AMS | Antimicrobial stewardship |
HAIs | Healthcare-associated infections |
CSF | Cerebrospinal fluid |
CLSI | Clinical Laboratory Standard Institute |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
MIC | Minimum Inhibitory Concentration |
VRSA | Vancomycin-resistant Staphylococcus aureus |
MDROs | Multidrug-resistant organisms |
VRE | Vancomycin-resistant Enterococcus |
References
- Cerini, P.; Meduri, F.R.; Tomassetti, F.; Polidori, I.; Brugneti, M.; Nicolai, E.; Bernardini, S.; Pieri, M.; Broccolo, F. Trends in antibiotic resistance of nosocomial and community-acquired infections in Italy. Antibiotics 2023, 12, 651. [Google Scholar] [CrossRef] [PubMed]
- AbdelHalim, M.M.; El Sherbini, S.A.; Ahmed, E.S.S.; Gharib, H.A.A.; Elgendy, M.O.; Ibrahim, A.R.; Abdel Aziz, H.S. Management of Ventilator-Associated Pneumonia Caused by Pseudomonas and Acinetobacter Organisms in a Pediatric Center: A Randomized Controlled Study. Medicina 2024, 60, 2098. [Google Scholar] [CrossRef] [PubMed]
- Tolera, M.; Abate, D.; Dheresa, M.; Marami, D. Bacterial nosocomial infections and antimicrobial susceptibility pattern among patients admitted at Hiwot Fana Specialized University Hospital, Eastern Ethiopia. Adv. Med. 2018, 2018, 2127814. [Google Scholar] [CrossRef] [PubMed]
- El-Gendy, A.; Essam, T.; Amin, M.; Ahmed, S.; Nes, I. Clinical screening for bacteriocinogenic Enterococcus faecalis isolated from intensive care unit inpatient in Egypt. J. Microb. Biochem. Technol. 2013, 4, 161–167. [Google Scholar] [CrossRef]
- Iqbal, S.; Hussain, S.S. Impact of COVID-19 pandemic on antimicrobial resistance pattern; transition from resistivity to susceptibility. Glob. J. Med. Pharm. Biomed. Update 2022, 17, 6. [Google Scholar] [CrossRef]
- El-Gendy, A.O.; Samir, A.; Ahmed, E.; Enwemeka, C.S.; Mohamed, T. The antimicrobial effect of 400 nm femtosecond laser and silver nanoparticles on gram-positive and gram-negative bacteria. J. Photochem. Photobiol. B Biol. 2021, 223, 112300. [Google Scholar] [CrossRef]
- Eid, R.A.; Elgendy, M.O.; El-Gendy, A.O.; Elgendy, S.O.; Belbahri, L.; Sayed, A.M.; Rateb, M.E. Efficacy of ceftazidime and cefepime in the management of COVID-19 patients: Single center report from Egypt. Antibiotics 2021, 10, 1278. [Google Scholar] [CrossRef]
- Cheesbrough, M. District Laboratory Practice in Tropical Countries, Part 2; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Weinstein, M.P.; Lewis, J.S. The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: Background, organization, functions, and processes. J. Clin. Microbiol. 2020, 58, e01864-19. [Google Scholar] [CrossRef]
- Kahlmeter, G.; Brown, D.; Goldstein, F.; MacGowan, A.; Mouton, J.; Odenholt, I.; Rodloff, A.; Soussy, C.J.; Steinbakk, M.; Soriano, F. European Committee on Antimicrobial Susceptibility Testing (EUCAST) technical notes on antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2006, 12, 501–503. [Google Scholar] [CrossRef]
- Humphries, R.; Bobenchik, A.M.; Hindler, J.A.; Schuetz, A.N. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. J. Clin. Microbiol. 2021, 59, 10-1128. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. version: 2019. Available online: http://www.eucast.org (accessed on 21 April 2025).
- Karatuna, O.; Dance, D.; Matuschek, E.; Åhman, J.; Turner, P.; Hopkins, J.; Amornchai, P.; Wuthiekanun, V.; Cusack, T.-P.; Baird, R. Burkholderia pseudomallei multi-centre study to establish EUCAST MIC and zone diameter distributions and epidemiological cut-off values. Clin. Microbiol. Infect. 2021, 27, 736–741. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. European Committee on Antimicrobial Susceptibility Testing, Breakpoint Tables for Interpretation of MICs and Zone Diameters; European Society of Clinical Microbiology and Infectious Diseases: Basel, Switzerland, 2015. [Google Scholar]
- Zaki, A.; Elgendy, M.O.; Abdelrahman, M.A.; Ali, H.; Khalil, E.M.; Hassan, M.; Fahmy, A.M.; Gad, R.A.; Salem, H.F. The Efficacy of Using Different Antibiotics to Prevent Maternal Surgical Site Infections in COVID-19-Infected Cases. Eur. Chem. Bull 2023, 6, 1342–1348. [Google Scholar]
- Abdou, L.M.; El-Gendy, A.O.; Elgendy, M.O.; Gad, R.A.; Elgendy, S.O.; Eid, R.A.; Sayed, A.M.; Mahmoud, T.M. The Impact of Combining Cefepime or Ceftazidime with Steroidal and Anticoagulant Therapy in the Treatment of COVID-19 Patients. NeuroQuantology 2022, 20, 3696–3701. [Google Scholar]
- Abdelrahman, M.A.; Zaki, A.; Salem, S.A.; Salem, H.F.; Ibrahim, A.R.; Hassan, A.; Elgendy, M.O. The Impact of Cefepime and Ampicillin/Sulbactam on Preventing Post-Cesarean Surgical Site Infections, Randomized Controlled Trail. Antibiotics 2023, 12, 1666. [Google Scholar] [CrossRef] [PubMed]
- Merdash, A.G.; El-Sherbiny, G.M.; Elgendy, A.O.; Ahmed, M.S.; El-Kabbany, H.M. The relation between antibiotic resistance pattern and the risk factors associated with urinary tract infections caused by E. coli. Egypt. J. Med. Microbiol. 2023, 32, 65–71. [Google Scholar] [CrossRef]
- Ahmed, E.; El-Gendy, A.O.; Moniem Radi, N.A.; Mohamed, T. The bactericidal efficacy of femtosecond laser-based therapy on the most common infectious bacterial pathogens in chronic wounds: An in vitro study. Lasers Med. Sci. 2021, 36, 641–647. [Google Scholar] [CrossRef]
- Raafat Hamed, R.M.; Dwedar, R.; Bassyouni, R.; Emira, A.S.; Abd El-Hmid, R.G.; Dowidar, M.A.; Hegab, A. Alarming Antibiotic Resistance Pattern of Bacterial Isolates in Neonatal Sepsis: A Study from Egypt. Egypt. J. Med. Microbiol. 2023, 32, 31–39. [Google Scholar] [CrossRef]
- Shebl, R.I.; Mosaad, Y.O. Frequency and antimicrobial resistance pattern among bacterial clinical isolates recovered from different specimens in Egypt. Cent. Afr. J. Public Health 2019, 5, 36–45. [Google Scholar]
- Basiri, B.; Sabzehei, M.K.; Shokouhi, M.; Moradi, A. Evaluating the Incidence and Risk Factors of Nosocomial Infection in Neonates Hospitalized in the Neonatal Intensive Care Unit of Fatemieh Hospital in Hamadan, Iran, 2012–2013. Arch. Pediatr. Infect. Dis. 2015, 3, e23327. [Google Scholar] [CrossRef]
- Aziz, H.S.A.; Ismail, D.K.; Mohammed, N.S.A.; Elgendy, M.O.; Bassiouny, D.M. Distribution and antifungal susceptibility profiles of Candida species isolated from candidemia patients admitted to Egyptian tertiary hospitals: A cross-sectional study. BMC Infect. Dis. 2024, 24, 1177. [Google Scholar] [CrossRef]
- Kishk, R.; Abu Bakr, N.M.; Anani, M.; Nemr, N.; Salama, B.; Samahy, M.; Kishk, S.M.; Salem, N.E.; Mohamed, H.A. Pattern of antimicrobial resistance in the pre and during COVID-19 era: An observational study. Microbes Infect. Dis. 2023, 4, 1100–1113. [Google Scholar] [CrossRef]
- Fahim, N.A.E. Prevalence and antimicrobial susceptibility profile of multidrug-resistant bacteria among intensive care units patients at Ain Shams University Hospitals in Egypt—A retrospective study. J. Egypt. Public Health Assoc. 2021, 96, 7. [Google Scholar] [CrossRef]
- Amsalu, G.; Moges, F.; Bayu, G.; Gelaw, B. Magnitude and antimicrobial susceptibility profile of bacteria isolated from pediatric sepsis cases at University of Gondar Hospital, Northwest Ethiopia. BMC Pediatr. 2024, 24, 491. [Google Scholar] [CrossRef]
- Alhumaid, S.; Al Mutair, A.; Al Alawi, Z.; Alzahrani, A.J.; Tobaiqy, M.; Alresasi, A.M.; Bu-Shehab, I.; Al-Hadary, I.; Alhmeed, N.; Alismail, M. Antimicrobial susceptibility of gram-positive and gram-negative bacteria: A 5-year retrospective analysis at a multi-hospital healthcare system in Saudi Arabia. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 43. [Google Scholar] [CrossRef]
- Mozaffari, K.; Bakhshandeh, H.; Khalaj, H.; Soudi, H. Incidence of catheter-related infections in hospitalized cardiovascular patients. Res. Cardiovasc. Med. 2013, 2, 99–103. [Google Scholar] [PubMed]
- Karimzadeh, I.; Mirzaee, M.; Sadeghimanesh, N.; Sagheb, M.M. Antimicrobial resistance pattern of Gram-positive bacteria during three consecutive years at the nephrology ward of a tertiary referral hospital in Shiraz, Southwest Iran. J. Res. Pharm. Pract. 2016, 5, 238–247. [Google Scholar]
- Khalili, H.; Dashti-Khavidaki, S.; Karimzadeh, I.; Jafari, S.; Abdollahi, A.; Shahidi, M.R.; Jahangard-Rafsanjani, Z.; Entezari-Maleki, T. Changes in 4-year antimicrobial resistance pattern of gram-positive bacteria at the main referral teaching hospital, Tehran, Iran. Acta Med. Iran. 2012, 50, 493–504. [Google Scholar] [PubMed]
- Balkhy, H.H.; El-Saed, A.; Alshamrani, M.M.; Alsaedi, A.; Al Nasser, W.; El Gammal, A.; Aljohany, S.M.; Almunif, S.; Arabi, Y.; Alqahtani, S. Ten-year resistance trends in pathogens causing healthcare-associated infections; reflection of infection control interventions at a multi-hospital healthcare system in Saudi Arabia, 2007–2016. Antimicrob. Resist. Infect. Control 2020, 9, 21. [Google Scholar] [CrossRef]
- Alzahrani, M.A.; Sadoma, H.H.M.; Mathew, S.; Alghamdi, S.; Malik, J.A.; Anwar, S. Retrospective analysis of antimicrobial susceptibility of uropathogens isolated from pediatric patients in tertiary hospital at Al-Baha Region, Saudi Arabia. Healthcare 2021, 9, 1564. [Google Scholar] [CrossRef]
- Saini, V.; Jain, C.; Singh, N.P.; Alsulimani, A.; Gupta, C.; Dar, S.A.; Haque, S.; Das, S. Paradigm shift in antimicrobial resistance pattern of bacterial isolates during the COVID-19 pandemic. Antibiotics 2021, 10, 954. [Google Scholar] [CrossRef]
- Golli, A.-L.; Zlatian, O.M.; Cara, M.L.; Olteanu, M. Pre-and post-COVID-19 antimicrobial resistance pattern of pathogens in an intensive care unit. Pharmaceuticals 2024, 17, 407. [Google Scholar] [CrossRef] [PubMed]
- Farhan, S.M.; Raafat, M.; Abourehab, M.A.; Abd El-Baky, R.M.; Abdalla, S.; El-Gendy, A.O.; Azmy, A.F. Effect of imipenem and amikacin combination against multi-drug resistant Pseudomonas aeruginosa. Antibiotics 2021, 10, 1429. [Google Scholar] [CrossRef] [PubMed]
- Ghany, S.S.H.A.E.; Ibrahem, R.A.; El-Gendy, A.O.; El-Baky, R.M.A.; Mustafa, A.; Azmy, A.F. Novel synergistic interactions between monolaurin, a mono-acyl glycerol and β lactam antibiotics against Staphylococcus aureus: An in vitro study. BMC Infect. Dis. 2024, 24, 379. [Google Scholar] [CrossRef]
- Becker, K.; Skov, R.L.; von Eiff, C. Staphylococcus, Micrococcus, and other catalase-positive cocci. In Manual of Clinical Microbiology; ASM Press: Washington, DC, USA, 2015; pp. 354–382. [Google Scholar]
- Hall, K.K.; Lyman, J.A. Updated review of blood culture contamination. Clin. Microbiol. Rev. 2006, 19, 788–802. [Google Scholar] [CrossRef] [PubMed]
- Favre, B.; Hugonnet, S.; Correa, L.; Sax, H.; Rohner, P.; Pittet, D. Nosocomial bacteremia clinical significance of a single blood culture positive for coagulase-negative staphylococci. Infect. Control. Hosp. Epidemiol. 2005, 26, 697–702. [Google Scholar] [CrossRef]
- El-Gendy, A.O.; Ezzat, S.; Samad, F.A.; Dabbous, O.A.; Dahm, J.; Hamblin, M.R.; Mohamed, T. Studying the viability and growth kinetics of vancomycin-resistant Enterococcus faecalis V583 following femtosecond laser irradiation (420–465 nm). Lasers Med. Sci. 2024, 39, 144. [Google Scholar] [CrossRef]
- Bakeer, W.; Gaafar, M.; El-Gendy, A.O.; El Badry, M.A.; Khalil, M.G.; Mansour, A.T.; Alharbi, N.K.; Selim, H.M.; Bendary, M.M. Proven anti-virulence therapies in combating methicillin-and vancomycin-resistant Staphylococcus aureus infections. Front. Cell. Infect. Microbiol. 2024, 14, 1403219. [Google Scholar] [CrossRef]
Organism | 2018 No. (%) | 2019 No. (%) | 2020 No. (%) | 2021 No. (%) | 2022 No. (%) | p Value |
---|---|---|---|---|---|---|
CONS no. 2054 | 320 (15.58%) | 372 (18.11%) | 405 (19.72%) | 509 (24.78%) | 448 (21.81%) | ≤0.001 |
S. aureus no. 869 (MSSA and MRSA) | 183 (21.06%) | 177 (20.37%) | 207 (23.82%) | 160 (18.41%) | 142 (16.34%) | ≤0.001 |
Enterococci no. 300 | 73 (24.33%) | 69 (23%) | 48 (16%) | 47 (15.67%) | 63 (21%) | 0.001 |
Total no. of gram-positive pathogens no. 3223 | 576 (17.87%) | 618 (19.17%) | 660 (20.48%) | 716 (22.22%) | 653 (20.26%) | ≤0.001 |
MDR Organism No. (%) | 2018 No. (%) | 2019 No. (%) | 2020 No. (%) | 2021 No. (%) | 2022 No. (%) | p Value |
---|---|---|---|---|---|---|
MRSA 716/869 (82.5%) | 166/183 (90.7%) | 153/177 (86.4%) | 172/207 (83%) | 137/160 (85.6%) | 88/142 (62%) | ≤0.001 |
VRE 18/300 (6%) | 5/73 (6.8%) | 1/69 (1.4%) | 8/48 (16.7%) | 3/47 (6.4%) | 1/63 (1.6%) | 0.006 |
Antibiotic | 2018 | 2019 | 2020 | 2021 | 2022 | p Value |
---|---|---|---|---|---|---|
CIP Ciprofloxacin | 234/505 (46.33%) | 276/580 (47.59%) | 289/593 (48.74%) | 290/587 (49.4%) | 510/1179 (43.26%) | 0.077 |
LEV Levofloxacin | 204/367 (55.59%) | 321/537 (59.78%) | 312/435 (71.72%) | 280/494 (56.68%) | 369/771 (47.86%) | ≤0.001 |
DA Clindamycin | 346/455 (76.04%) | 262/488 (53.69%) | 301/584 (51.54%) | 265/526 (50.38%) | 464/971 (47.79%) | ≤0.001 |
SXT Cotrimoxazole | 197/445 (44.27%) | 192/455 (42.2%) | 241/548 (43.98%) | 201/485 (41.44%) | 666/1119 (59.52%) | ≤0.001 |
DXT Doxycycline | 270/539 (50.09%) | 384/564 (68.09%) | 463/629 (73.61%) | 355/516 (68.8%) | 454/711 (63.85%) | ≤0.001 |
E Erythromycin | 140/532 (26.32%) | 129/525 (24.57%) | 139/633 (21.96%) | 145/584 (24.83%) | 203/930 (21.83%) | 0.239 |
GM low-potency Gentamycin | 149/452 (32.96%) | 139/472 (29.45%) | 280/583 (48.03%) | 184/462 (39.83%) | 389/963 (40.39%) | ≤0.001 |
GM high-potency Gentamycin | 42/66 (64%) | 31/42 (73.8%) | 19/33 (57.6%) | 12/21 (57.1%) | 72/297 (74.2%) | ≤0.001 |
VA Vancomycin | 564/573 (98.43%) | 596/598 (99.67%) | 642/654 (98.17%) | 584/596 (97.99%) | 1287/1317 (97.72%) | 0.049 |
Antibiotic | 2018 | 2019 | 2020 | 2021 | 2022 | p Value |
---|---|---|---|---|---|---|
CIP | 80/160 (50%) | 90/160 (56.3%) | 88/181 (48.6%) | 84/144 (58.3%) | 184/333 (55.3%) | 0.315 |
LEV | 55/100 (55%) | 94/151 (62.3%) | 93/140 (66.4%) | 83/124 (66.9%) | 111/180 (61.7%) | 0.353 |
DA | 91/164 (55%) | 94/152 (61.8%) | 108/204 (52.9%) | 84/144 (58.3%) | 196/336 (58.3%) | 0.510 |
SXT | 125/165 (76%) | 99/148 (66.9%) | 114/191 (59.7%) | 85/133 (63.9%) | 307/388 (79.1%) | ≤0.001 |
DXT | 67/170 (39%) | 96/151 (63.6%) | 135/201 (67.2%) | 81/141 (57.4%) | 132/230 (57.4%) | ≤0.001 |
E | 74/175 (42%) | 76/147 (51.7%) | 76/203 (37.4%) | 65/145 (44.8%) | 130/275 (47.3%) | 0.078 |
GM low potency | 46/159 (29%) | 28/178 (15.7%) | 74/194 (38.1%) | 26/118 (22%) | 109/340 (32.1%) | ≤0.001 |
VA | 181/181 (100%) | 167/167 (100%) | 206/206 (100%) | 153/153 (100%) | 391/391 (100%) | - |
Antibiotic | 2018 | 2019 | 2020 | 2021 | 2022 | p Value |
---|---|---|---|---|---|---|
CIP | 67/145 (46%) | 71/138 (51.4%) | 63/151 (41.7%) | 67/125 (53.6%) | 130/258 (50.4%) | 0.266 |
LEV | 53/98 (54%) | 72/127 (56.7%) | 67/112 (59.8%) | 68/107 (63.6%) | 69/124 (55.6%) | 0.646 |
DA | 78/147 (53%) | 73/127 (57.5%) | 83/169 (49.1%) | 68/125 (54.4%) | 116/211 (55%) | 0.672 |
SXT | 110/150 (73%) | 84/126 (66.7%) | 89/153 (58.2%) | 64/112 (57.1%) | 235/303 (77.6%) | ≤0.001 |
DXT | 59/153 (38.5%) | 80/126 (63.5%) | 109/166 (65.7%) | 69/125 (55.2%) | 112/198 (56.6%) | ≤0.001 |
E | 62/157 (39%) | 58/124 (46.8%) | 55/165 (33.3%) | 54/126 (42.9%) | 59/156 (37.8%) | 0.189 |
GM low potency | 38/148 (62%) | 12/157 (7.6%) | 45/158 (28.5%) | 18/103 (17.5%) | 69/267 (25.8%) | ≤0.001 |
VA | 165/165 (100%) | 144/144 (100%) | 170/170 (100%) | 131/131 (100%) | 310/310 (100%) | - |
Antibiotic | 2018 | 2019 | 2020 | 2021 | 2022 | p Value |
---|---|---|---|---|---|---|
CIP | 134/287 (47%) | 159/352 (45.2%) | 185/356 (52%) | 198/399 (49.6%) | 277/675 (41%) | 0.007 |
LEV | 118/205 (57.5%) | 196/326 (60.1%) | 206/261 (78.9%) | 185/338 (54.7%) | 218/498 (43.8%) | ≤0.001 |
DA | 149/291 (51%) | 168/336 (50%) | 193/380 (50.8%) | 181/382 (47.4%) | 268/635 (42.2%) | 0.024 |
SXT | 72/280 (26%) | 93/307 (30.3%) | 127/357 (35.6%) | 116/352 (33%) | 359/731 (49.1%) | ≤0.001 |
DXT | 182/308 (59%) | 263/348 (75.6%) | 298/384 (77.6%) | 260/334 (77.8%) | 288/391 (73.7%) | ≤0.001 |
E | 53/301 (18%) | 51/316 (16.1%) | 59/384 (15.4%) | 75/395 (19%) | 67/571 (11.7%) | 0.027 |
GM low potency | 103/293 (35%) | 111/294 (37.8%) | 206/389 (53%) | 158/344 (45.9%) | 280/623 (44.9%) | ≤0.001 |
VA | 323/323 (100%) | 366/366 (100%) | 400/400 (100%) | 402/402 (100%) | 740/740 (100%) | - |
Antibiotic | 2018 | 2019 | 2020 | 2021 | 2022 | p Value |
---|---|---|---|---|---|---|
AMC | 30/65 (46%) | 33/69 (47.8%) | 10/40 (25%) | 4/22 (18.2%) | 68/141 (48.2%) | 0.010 |
CIP | 20/58 (37%) | 27/68 (39.7%) | 16/56 (28.6%) | 8/44 (18.2%) | 49/171 (28.7%) | 0.153 |
LEV | 31/62 (50%) | 31/60 (51.7%) | 13/34 (38.2%) | 12/32 (37.5%) | 40/93 (43%) | 0.525 |
DXT | 21/61 (34%) | 25/65 (38.5%) | 30/44 (68.2%) | 14/41 (34.1%) | 34/90 (37.8%) | 0.003 |
E | 13/56 (32%) | 2/62 (3.2%) | 4/46 (8.7%) | 5/44 (11.4%) | 6/84 (7.1%) | 0.006 |
GM high potency | 42/66 (64%) | 31/42 (73.8%) | 19/33 (57.6%) | 12/21 (57.1%) | 72/297 (74.2%) | ≤0.001 |
VA | 60/69 (87%) | 63/65 (96.9%) | 36/48 (75%) | 29/41 (70.7%) | 160/186 (86%) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AbdelHalim, M.M.; Abdel Salam, S.A.; Elgendy, M.O.; Abdel Hamied, A.M.; Alshahrani, S.M.; Ibrahim, A.R.N.; Abdel Aziz, H.S. A Retrospective Study on the Prevalence and Antimicrobial Susceptibility of Gram-Positive Cocci in a Pediatric Department: A Single-Center Report from Egypt. Medicina 2025, 61, 1089. https://doi.org/10.3390/medicina61061089
AbdelHalim MM, Abdel Salam SA, Elgendy MO, Abdel Hamied AM, Alshahrani SM, Ibrahim ARN, Abdel Aziz HS. A Retrospective Study on the Prevalence and Antimicrobial Susceptibility of Gram-Positive Cocci in a Pediatric Department: A Single-Center Report from Egypt. Medicina. 2025; 61(6):1089. https://doi.org/10.3390/medicina61061089
Chicago/Turabian StyleAbdelHalim, Mona Moheyeldin, Shimaa A. Abdel Salam, Marwa O. Elgendy, Ahmed M. Abdel Hamied, Sultan M. Alshahrani, Ahmed R. N. Ibrahim, and Heba Sherif Abdel Aziz. 2025. "A Retrospective Study on the Prevalence and Antimicrobial Susceptibility of Gram-Positive Cocci in a Pediatric Department: A Single-Center Report from Egypt" Medicina 61, no. 6: 1089. https://doi.org/10.3390/medicina61061089
APA StyleAbdelHalim, M. M., Abdel Salam, S. A., Elgendy, M. O., Abdel Hamied, A. M., Alshahrani, S. M., Ibrahim, A. R. N., & Abdel Aziz, H. S. (2025). A Retrospective Study on the Prevalence and Antimicrobial Susceptibility of Gram-Positive Cocci in a Pediatric Department: A Single-Center Report from Egypt. Medicina, 61(6), 1089. https://doi.org/10.3390/medicina61061089