Double Malignancy and Double Transplant—A Bumpy Road to Success
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Friedman, D.N.; Chastain, K.; Chou, J.F.; Moskowitz, C.S.; Adsuar, R.; Wexler, L.H.; Chou, A.J.; DeRosa, A.; Candela, J.; Magnan, H.; et al. Morbidity and mortality after treatment of Ewing sarcoma: A single-institution experience. Pediatr. Blood Cancer 2017, 64, e26562. [Google Scholar] [CrossRef] [PubMed]
- Morton, L.M.; Dores, G.M.; Schonfeld, S.J.; Linet, M.S.; Sigel, B.S.; Lam, C.J.K.; Tucker, M.A.; Curtis, R.E. Association of Chemotherapy for Solid Tumors with Development of Therapy-Related Myelodysplastic Syndrome or Acute Myeloid Leukemia in the Modern Era. JAMA Oncol. 2019, 5, 318–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rihani, R.; Bazzeh, F.; Faqih, N.; Sultan, I. Secondary hematopoietic malignancies in survivors of childhood cancer. Cancer 2010, 116, 4385–4394. [Google Scholar] [CrossRef]
- Sanford, N.N.; Martin, A.M.; Brunner, A.M.; Cote, G.M.; Choy, E.; DeLaney, T.F.; Aizer, A.A.; Chen, Y.L. Secondary acute leukemia in sarcoma patients: A population-based study. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Kawashiri, T.; Kobayashi, D.; Uchida, M.; Hiromoto, S.; Inoue, M.; Ikeda, H.; Inoue, M.; Shimazoe, T. Analysis of Secondary Leukemia and Myelodysplastic Syndrome After Chemotherapy for Solid Organ Tumors Using the Food and Drug Administration Adverse Event Reporting System (FAERS). J. Pharm. Pharm. Sci. 2021, 24, 499–508. [Google Scholar] [CrossRef]
- Sanford, N.N.; Miao, R.; Wang, H.; Goldberg, S.; Jacobson, B.S.; Brunner, M.; Cote, G.M.; Yock, T.I.; Ebb, D.H.; Chen, Y.B. Characteristics and predictors for secondary leukemia and myelodysplastic syndrome in Ewing and osteosarcoma survivors. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Keegan, T.H.M.; Bleyer, A.; Rosenberg, A.S.; Li, Q.; Goldfarb, M. Second primary malignant neoplasms and survival in adolescent and young adult cancer survivors. JAMA Oncol. 2017, 3, 1554–1557. [Google Scholar] [CrossRef] [Green Version]
- Coombs, C.C.; Zehir, A.; Devlin, S.M.; Kishtagari, A.; Syed, A.; Jonsson, P.; Hyman, D.M.; Solit, D.B.; Robson, M.E.; Baselga, J.; et al. Therapy-Related Clonal Hematopoiesis in Patients with Non-hematologic Cancers Is Common and Associated with Adverse Clinical Outcomes. Cell Stem Cell 2017, 21, 374–382. [Google Scholar] [CrossRef] [Green Version]
- Stengel, A.; Schnittger, S.; Weissmann, S.; Kuznia, S.; Kern, W.; Kohlmann, A.; Haferlach, T.; Haferlach, C. TP53 mutations occur in 15.7% of ALL and are associated with MYC-rearrangement, low hypodiploidy, and a poor prognosis. Blood 2014, 124, 251–258. [Google Scholar] [CrossRef]
- Hsu, J.I.; Dayaram, T.; Tovy, A.; De Braekeleer, E.; Jeong, M.; Wang, F.; Zhang, J.; Heffernan, T.P.; Gera, S.; Kovacs, J.J.; et al. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell 2018, 23, 700–713.e6. [Google Scholar] [CrossRef] [Green Version]
- Holowiecki, J.; Krawczyk-Kulis, M.; Giebel, S.; Jagoda, K.; Stella-Holowiecka, B.; Piatkowska-Jakubas, B.; Paluszewska, M.; Seferynska, I.; Lewandowski, K.; Kielbinski, M.; et al. Status of minimal residual disease after induction predicts outcome in both standard and high-risk Ph-negative adult acute lymphoblastic leukaemia. The Polish Adult Leukemia Group ALL 4-2002 MRD study. Br. J. Haematol. 2008, 142, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Hingorani, S.; Guthrie, K.A.; Schoch, G.; Weiss, N.S.; McDonald, G.B. Chronic kidney disease in long-term survivors of hematopoietic cell transplant. Bone Marrow Transplant. 2007, 39, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Andronesi, A.; Sorohan, B.; Burcea, A.; Lipan, L.; Stanescu, C.; Craciun, O.; Stefan, L.; Ranete, A.; Varady, Z.; Ungureanu, O.; et al. Incidence and Risk Factors for Acute Kidney Injury after Allogeneic Stem Cell Transplantation: A Prospective Study. Biomedicines 2022, 10, 262. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; McNeely, J.; Parikh, S.; Bhinder, A.; Rovin, B.H.; Shidham, G. Kidney complications of hematopoietic stem cell transplantation. Am. J. Kidney Dis. 2013, 61, 809–821. [Google Scholar] [CrossRef]
- Issa, N.; Kukla, A.; Ibrahim, H.N. Calcineurin inhibitor nephrotoxicity: A review and perspective of the evidence. Am. J. Nephrol. 2013, 37, 602–612. [Google Scholar] [CrossRef]
- Penack, O.; Marchetti, M.; Ruutu, T.; Aljurf, M.; Bacigalupo, A.; Bonifazi, F.; Ciceri, F.; Cornelissen, J.; Malladi, R.; Duarte, R.F.; et al. Prophylaxis and management of graft versus host disease after stem-cell transplantation for haematological malignancies: Updated consensus recommendations of the European Society for Blood and Marrow Transplantation. Lancet Haematol. 2020, 7, e157–e167. [Google Scholar] [CrossRef]
- Chapchap, E.C.; Doher, M.P.; Kerbauy, L.N.; Belucci, T.R.; Santos, F.P.S.; Ribeiro, A.A.F.; Hamerschlak, N. Need for hemodialysis in patients undergoing hematopoietic stem cell transplantation: Risk factors and survival in a retrospective cohort. Hematol. Transfus. Cell Ther. 2022, 18, S2531-1379(22)00079-7. [Google Scholar] [CrossRef]
- Bolaños-Meade, J.; Hamadani, M.; Wu, J.; Al Malki, M.M.; Martens, M.J.; Runaas, L.; Elmariah, H.; Rezvani, A.R.; Gooptu, M.; Larkin, K.T.; et al. Post-Transplantation Cyclophosphamide-Based Graft-versus-Host Disease Prophylaxis. N. Engl. J. Med. 2023, 388, 2338–2348. [Google Scholar] [CrossRef]
- Sandmaier, B.M.; Kornblit, B.; Storer, B.E.; Olesen, G.; Maris, M.B.; Langston, A.A.; Gutman, J.A.; Petersen, S.L.; Chauncey, T.R.; Bethge, W.A.; et al. Addition of sirolimus to standard cyclosporine plus mycophenolate mofetil-based graft-versus-host disease prophylaxis for patients after unrelated non-myeloablative haemopoietic stem cell transplantation: A multicentre, randomised, phase 3 trial. Lancet Haematol. 2019, 6, e409–e418. [Google Scholar] [CrossRef]
- Naesens, M.; Kuypers, D.R.; Sarwal, M. Calcineurin inhibitor nephrotoxicity. Clin. J. Am. Soc. Nephrol. 2009, 4, 481–508. [Google Scholar] [CrossRef] [Green Version]
- Jensen, R.R.; Healy, R.M.; Ford, C.D.; Child, B.; Majers, J.; Draper, B.; Hasan, Y.; Hoda, D. Amlodipine and calcineurin inhibitor-induced nephrotoxicity following allogeneic hematopoietic stem cell transplant. Clin. Transplant. 2019, 33, e13633. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.P.; Bedi, M.; Irving, A.A.; Jacobs, E.; Tomic, R.; Klein, J.; Lawton, C.A.; Moulder, J.E. Mitigation of late renal and pulmonary injury after hematopoietic stem cell transplantation. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 292–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hingorani, S.; Pao, E.; Stevenson, P.; Schoch, G.; Laskin, B.L.; Gooley, T.; McDonald, G.B. Changes in Glomerular Filtration Rate and Impact on Long-Term Survival among Adults after Hematopoietic Cell Transplantation: A Prospective Cohort Study. Clin. J. Am. Soc. Nephrol. 2018, 13, 866–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, E.J.; Baker, K.S.; Lee, S.J.; Flowers, M.E.; Cushing-Haugen, K.L.; Inamoto, Y.; Khera, N.; Leisenring, W.M.; Syrjala, K.L.; Martin, P.J. Influence of conventional cardiovascular risk factors and lifestyle characteristics on cardiovascular disease after hematopoietic cell transplantation. J. Clin. Oncol. 2014, 32, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Raina, R.; Abusin, G.A.; Vijayaraghavan, P.; Auletta, J.J.; Cabral, L.; Hashem, H.; Vogt, B.A.; Cooke, K.R.; Abu-Arja, R.F. The role of continuous renal replacement therapy in the management of acute kidney injury associated with sinusoidal obstruction syndrome following hematopoietic cell transplantation. Pediatr. Transplant. 2018, 22, e13139. [Google Scholar] [CrossRef]
- Flores, F.X.; Brophy, P.D.; Symons, J.M. Continuous Renal Replacement Therapy (CRRT) after Stem Cell Transplantation. A Report from the Prospective Pediatric CRRT Registry Group. Pediatric. Nephrol. 2008, 23, 625–630. [Google Scholar] [CrossRef]
- Hingorani, S. Renal Complications of Hematopoietic-Cell Transplantation. N. Engl. J. Med. 2016, 374, 2256–2267. [Google Scholar] [CrossRef] [Green Version]
- Koenecke, C.; Hertenstein, B.; Schetelig, J.; van Biezen, A.; Dammann, E.; Gratwohl, A.; Ganser, A.; Schleuning, M.; Bornhäuser, M.; Jacobsen, N. Solid organ transplantation after allogeneic hematopoietic stem cell transplantation: A retrospective, multicenter study of the EBMT. Am. J. Transplant. 2010, 10, 1897–1906. [Google Scholar] [CrossRef]
- Suh, E.; Stratton, K.L.; Leisenring, W.M.; Nathan, P.C.; Ford, J.S.; Freyer, D.R.; McNeer, J.L.; Stock, W.; Stovall, M.; Krull, K.R.; et al. Late mortality and chronic health conditions in long-term survivors of early-adolescent and young adult cancers: A retrospective cohort analysis from the Childhood Cancer Survivor Study. Lancet Oncol. 2020, 21, 421–435. [Google Scholar] [CrossRef]
- Ando, M. An Overview of Kidney Disease Following Hematopoietic Cell Transplantation. Intern. Med. 2018, 57, 1503–1508. [Google Scholar] [CrossRef] [Green Version]
- Cohen, E.P.; Krzesinski, J.M.; Launay-Vacher, V.; Sprangers, B. Onco-nephrology: Core Curriculum 2015. Am. J. Kidney Dis. 2015, 66, 869–883. [Google Scholar] [CrossRef] [PubMed]
- Hudson, M.M.; Bhatia, S.; Casillas, J.; Landier, W.; Section on Hematology/Oncology American Society of Pediatric Hematology/Oncology. Long-term Follow-up Care for Childhood, Adolescent, and Young Adult Cancer Survivors. Pediatrics 2021, 148, e2021053127. [Google Scholar] [CrossRef] [PubMed]
- Raina, R.; Abu-Arja, R.; Sethi, S.; Dua, R.; Chakraborty, R.; Dibb, J.T.; Basu, R.K.; Bissler, J.; Felix, M.B.; Brophy, P.; et al. Acute kidney injury in pediatric hematopoietic cell transplantation: Critical appraisal and consensus. Pediatr. Nephrol. 2022, 37, 1179–1203. [Google Scholar] [CrossRef]
- Muto, H.; Ohashi, K.; Ando, M.; Akiyama, H.; Sakamaki, H. Cystatin C level as a marker of renal function in allogeneic hematopoietic stem cell transplantation. Int. J. Hematol. 2010, 91, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh-Ghehi, M.; Sarayani, A.; Ashouri, A.; Ataei, S.; Moslehi, A.; Hadjibabaie, M. Urine neutrophil gelatinase associated lipocalin as an early marker of acute kidney injury in hematopoietic stem cell transplantation patients. Ren. Fail. 2015, 37, 994–998. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razik, M.; Rozwadowska, P.; Koclęga, A.; Helbig, G. Double Malignancy and Double Transplant—A Bumpy Road to Success. Medicina 2023, 59, 1209. https://doi.org/10.3390/medicina59071209
Razik M, Rozwadowska P, Koclęga A, Helbig G. Double Malignancy and Double Transplant—A Bumpy Road to Success. Medicina. 2023; 59(7):1209. https://doi.org/10.3390/medicina59071209
Chicago/Turabian StyleRazik, Michał, Patrycja Rozwadowska, Anna Koclęga, and Grzegorz Helbig. 2023. "Double Malignancy and Double Transplant—A Bumpy Road to Success" Medicina 59, no. 7: 1209. https://doi.org/10.3390/medicina59071209